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Sofic and almost of finite type tree-shifts

Nathalie Aubrun and Marie-Pierre Béal

Université Paris-Est
Laboratoire d’informatique Gaspard-Monge, CNRS

Abstract. We introduce the notion of sofic tree-shifts which corresponds
to symbolic dynamical systems of infinite trees accepted by finite tree au-
tomata. We show that, contrary to shifts of infinite sequences, there is
no unique minimal deterministic irreducible tree automaton accepting
an irreducible sofic tree-shift, but that there is a unique synchronized
one, called the Shannon cover of the tree-shift. We define the notion of
almost finite type tree-shift which is a meaningful intermediate dynami-
cal class in between irreducible finite type tree-shifts and irreducible sofic
tree-shifts. We characterize the Shannon cover of an almost finite type
tree-shift and we design an algorithm to check whether a sofic tree-shift
is almost of finite type.

1 Introduction

In a previous article [1], we introduced the notion of tree-shifts of finite type
defined as sets of infinite trees avoiding a finite number of forbidden patterns.
Infinite trees have a natural structure of one-sided symbolic systems equipped
with several shift transformations. The ith shift transformation applied to a tree
gives the subtree rooted at the child number i of the tree. Tree-shifts are highly
interesting to study as they constitute an intermediate class between one-sided
shifts of infinite sequences and multidimensional shifts.

The conjugacy of multidimensional shifts of finite type, also called textile
systems or tiling systems (see for instance [11],[14],[8],[6]), is undecidable. How-
ever, the conjugacy of (one-sided) shift spaces of finite type of infinite sequences
is decidable ([19], see also [12]). In [1], we extended William’s result to trees,
showing that the conjugacy of irreducible tree-shifts of finite type is decidable.

In this paper, we focus on sofic tree-shifts, which are shifts of infinite trees
accepted by finite (bottom-up) tree automata, and thus whose set of patterns
is a recognizable set of finite trees. The goal is to extend to trees some results
of sofic shifts of infinite sequences, to define a hierarchy a sofic tree-shifts and
characterize each level of this hierarchy.

We introduce the notion of irreducible sofic tree-shifts. We show, that, unlike
for sofic shifts of sequences, an irreducible sofic tree-shift may be accepted by
several minimal deterministic irreducible tree automata. This is due to the lack
of a synchronizing block, even in minimal irreducible automata. We introduce
the notion of synchronized tree automaton and the notion of Shannon cover of



an irreducible sofic tree-shift. We prove that the Shannon cover is the unique
minimal synchronized tree automaton accepting an irreducible sofic tree-shift.

The existence of the Shannon cover allows us to introduce the class of almost
finite type tree-shifts, which extends the known notion of almost of finite type
shifts of sequences. The almost of finite type concept was introduced by Marcus
in [13] for coding purposes. The class of almost of finite type shifts is a meaningful
class of shifts between irreducible shifts of finite type and irreducible sofic shifts
(see [4], [20], [9], [3], [2]). The class contains strictly the class of irreducible shifts
of finite type and is strictly contained in the class of sofic shifts. The class is stable
by conjugacy and it is also invariant by a flow equivalence [7]. We characterize
the Shannon cover of an almost of finite type tree-shift and design an algorithm
to check whether a sofic tree-shift is almost of finite type.

The paper is organized as follows. In Section 2.1 and Section 2.2, we give
basic definitions about tree-shifts and conjugacies. In Section 3, we define the
notion of automaton accepting a tree-shift. We refer to [5], [18], [15] for more
general trees and automata on finite and infinite trees. The notion of Shannon
cover is introduced in Section 3.4. The characterization of almost of finite type
tree-shifts is done in Section 4. In the algorithmic issue, Section 5, we give a
construction of the Shannon cover of a sofic tree-shift. We design a polynomial-
time algorithm to check whether a sofic tree-shift given by its Shannon cover is
almost of finite type. Some proofs are omitted in this version of the paper.

2 Definitions

2.1 Tree-shifts

We first recall some basic definitions of symbolic dynamics on infinite trees
(see [1] for more details). We consider infinite trees whose nodes have a fixed
number of children and are labeled in a finite alphabet. We restrict to binary
trees, but all result extend to the case of trees with d children for all d ≥ 1.

Let Σ = {0, 1}. An infinite tree t over a finite alphabet A is a complete
function from Σ∗ to A. Unless otherwise stated, a tree is an infinite tree. A node
of a tree is a word of Σ∗. The empty word, that corresponds to the root of the
tree, is denoted by ǫ. If x is a node, its children are xi with i ∈ Σ. Let t be a
tree and let x be a node, we shall denote t(x) by tx. When Σ is fixed, we denote
by T (A) the set of all infinite trees on A, hence the set AΣ∗

.
We define the shift transformations σi for i ∈ Σ from T (A) to itself as follows.

If t is a tree, σi(t) is the tree rooted at the i-th child of t, i.e. σi(t)x = tix for all
x ∈ Σ∗. The set T (A) equipped with the shift transformations σi is called the
full shift of infinite trees over A. A sequence of words (xk)k≥0 of Σ∗ is called a
path if for all k, xk+1 = xkik with ik ∈ Σ.

A pattern is a function p : L → A, where L is a finite prefix-closed1 subset
of Σ∗. The set L is called the support of the pattern. A block of height n is
a pattern with support Σ≤n, where n is some nonnegative integer, and Σ≤n

1 each prefix of L belongs to L.



denotes the words of length at most n of letters of Σ. The height of a block u is
denoted by height(u). A leaf of a pattern is a node with no child.

We say that a block u of support L is a block of a tree t if there is a word
x ∈ Σ∗ such that txy = uy for all words y ∈ Σ∗. We say that u is a block of t

rooted at the node x. If u is not a block of t, one says that t avoids p.

We define a tree-shift space (or tree-shift) X of T (A) as the set XF of all trees
avoiding each element of a set of blocks F . If the set of trees on A is equipped
with the usual product topology, where the topology in A is the discrete one, a
tree-shift space is closed and invariant for any shift transformation σi. A tree-
shift of finite type (SFT) X of T (A) is a set XF of all trees avoiding each block
of a finite set of blocks F . The set F is called a set of forbidden blocks of X.

We denote by L(X) the set of patterns of all trees of the tree-shift X, by
B(X) the set of all blocks of X and by Bn(X) the set of all blocks of height
n of X. If u is a block of height n with n ≥ 1, we denote by σi(u) the block
of height n − 1 such that σi(u)x = bix for x ∈ Σ≤n−1. The block u is written
u = (uε, σ0(u), σ1(u)).

Example 1. In Figure 1 is pictured an infinite tree of a tree-shift X on the
alphabet {a, b}. The forbidden blocks are those containing an even number of a

between two b on any path in the tree. This tree-shift is not of finite type.

b

a

b b

a

a a

Fig. 1. An infinite tree of the tree-shift XF , where F is the set of patterns containing
an even number of a between two b on any path in the tree.

2.2 Block maps and conjugacies

Let A,A′ be two finite alphabets, X be a tree-shift of T (A) and m be a positive
integer. A map Φ : X ⊆ T (A) → T (A′) is called an m-local map (or an m-block
map) if there exists a function φ : Bm(X) → A′ such that, for all x ∈ Σ∗,
Φ(t)x = φ(txΣ≤m−1), where txΣ≤m−1 is the block q such that qy = txy for all
y ∈ Σ≤m−1. The smallest integer m−1 such that Φ is an m-block map, is called
the memory of the block map. A block map is a map which is an m-block map
for some nonnegative integer m.

The image of X by a block map is also a tree-shift, and is called a factor
of X. A one-to-one and onto block map from a tree-shift X onto a tree-shift Y

has an inverse which is also a block map, as for shifts of sequences. It is called a



conjugacy from X onto Y . The tree-shifts X and Y are then conjugate. We call
sofic a tree-shift which is a factor of a tree-shift of finite type.

Let X be a tree-shift and m a positive integer. We denote by X(m) the higher
block presentation of X. It is a tree-shift on the alphabet Bm(X). For each tree t

in X(m), there is tree t′ in X such that, for each node x, tx is the block of height
m of t′ rooted at x. The shifts X and X(m) are conjugate (see [1]).

3 Sofic tree-shifts

3.1 Tree automata

In this section we consider bottom-up automata of infinite trees. Such an au-
tomaton starts its computation from the infinite branches and moves upward.
A tree automaton is here a structure A = (V,A,∆) where V is a finite set of
states, A is a finite set of input symbols, and ∆ is a set of transitions of the
form (q0, q1), a → q, with q, qi ∈ V , a ∈ A. A transition (q0, q1), a → q is called
a transition labeled by a, going out of the pair of states (q0, q1) and coming in
the state q. A transition (q0, q1), a → q will be pictured by

a : q

q0 q1

Note that no initial nor final states are specified. This means that all states are
both initial and final.

Such an automaton is deterministic if for each pair of states (q0, q1) and for
each a ∈ A, there is at most one transition (q0, q1), a → q. Then the set of
transitions defines a partial function δ from V 2 × A to V .

A (bottom-up) computation of A on the infinite tree t is an infinite tree C

on V such that, for each node x, there is a transition (Cx0, Cx1), tx → Cx ∈ ∆.
A tree t is accepted by A if there exists a computation of A on t. The set of
infinite trees accepted by A is a tree-shift. Given a tree automaton A, it is always
possible to transform it into a deterministic tree automaton which accepts the
same set of trees (this process is called determinization, see for instance [5] for
details). In the sequel, we assume that all states of an automaton are accessible,
i.e. each state ends some computation of the automaton.

A (bottom-up) finite computation of A on the complete finite tree t is a
complete finite tree C on V such that, for each node x which is not a leaf, there
is a transition (Cx0, Cx1), tx → Cx ∈ ∆.

A tree automaton is called an edge tree automaton is all transitions have
distinct labels. An edge tree-shift is a tree-shift (of finite type) accepted by an
edge tree automaton.

Example 2. We define a tree automaton A with three state qb, q0 and q1 which
accepts the tree-shift X of Example 1. The two states q0 and q1 only label nodes
with an a, and they control the parity of the number of a encountered from any



last b below. The state qb only labels nodes with a b. The transitions of the tree
automaton A are

a : q1

q0 q0

a : q0

q1 q1

a : q0

qb, q1 qb, q1

b : qb

qb, q1 qb, q1

The proofs of the following proposition is similar to the one for shifts of
infinite or bi-infinite sequences (see [12], [10]).

Proposition 1. A tree-shift is sofic if and only if it is accepted by a tree au-
tomaton.

3.2 Irreducible tree-shifts

In this section, we define a notion of irreducibility which is suitable for tree-shifts.
A finite complete prefix code of Σ∗ is a prefix set 2 P of finite words in Σ∗

such that each word of Σ∗ longer than the words of P has a prefix in P .
A tree-shift X is irreducible if for each pair of blocks u, v ∈ B(X), there is a

tree t in X and a finite complete prefix code P ⊂ Σ≥height(u), such that u is a
subtree of t rooted at ε, and v is a subtree of t rooted at x for all x ∈ P .

q

q

q q

p

Fig. 2. (left) An irreducible tree-shift. Let t denotes the tree pictured. If u denotes the
black block and v the white one, u is a subtree of t rooted at ε, and v is a subtree of t

rooted at each x ∈ P , where P is the complete prefix code {00, 010, 011, 1}. (right) An
hyperpath from q to p in a tree automaton.

A tree automaton is irreducible if for each pair of states p, q, there is a finite
complete prefix code P of Σ∗ and a finite computation C of the automaton on
a pattern u such that Cε = p and Cx = q for each x ∈ P . We say in this case
that there is an hyperpath from q to p labeled by u. For two states p, q of a tree
automaton, we say that p is accessible from q if there is a hyperpath from q to p.

Proposition 2. An irreducible automaton accepts an irreducible sofic tree-shift.
Conversely, for any irreducible sofic tree-shift, there is an irreducible automaton
accepting it.

Proposition 3. Let S and T be two conjugate tree-shifts. Then S is irreducible
if and only if T is irreducible.

2 i.e. no word is prefix of another one.



3.3 Synchronizing blocks

We define below the notion of synchronizing block3 of a deterministic tree au-
tomaton.

Let A = (V,A,∆) be a deterministic tree automaton accepting a sofic tree-
shift X, and u be a block (resp. pattern). We say that u is a synchronizing block
(resp. pattern) of A if all computations of A on u terminate at the same state
q ∈ Q. We say that u focuses to the state q. A deterministic tree automaton
which has a synchronizing block is called synchronized.

3.4 Minimal deterministic tree automata

Let X be a tree-shift. A context c is a finite pattern with a marked leaf. If u

is a pattern, c(u) is the pattern c where the marked leaf is replaced by u. If
c(u) ∈ L(X), we say that c is a context of u in X. Given a block u, we denote
by contX(u) the set of all the contexts of u in X.

Given a tree automaton A = (V,A,∆) accepting a sofic tree-shift X, the
context of a state q ∈ V in A is the set of patterns u with a marked leaf x on
which there exists a finite computation C of A with Cx = q and x is a leaf of
C. We denote it by contA(q). Note that the context of a pattern u of X is the
union of the contexts of the states p such that there is a computation of A on
u ending in p. As a consequence, a sofic tree-shift has only a finite number of
distinct contexts.

Let A = (V,A,∆) be a deterministic automaton accepting a sofic tree-shift
X. We denote by δ(p, q, a) the unique state r such that (p, q), a → r ∈ ∆ when
such a transition exists. We define a deterministic automaton MA accepting X

called the minimization of the automaton A as follows. The states of MA are the
classes of the coarsest partition of V such that if p, q belong to the same class,
then for each letter a and each state r, δ(p, r, a) and δ(q, r, a) (resp. δ(r, p, a)
and δ(r, q, a)) belong to the same class, and δ(p, r, a) (resp. δ(r, p, a)) is defined
if and only if δ(q, r, a) (resp. δ(r, q, a)) is defined. Let [p] denotes the class of the
state p. The transition ([p], [q]), a → [δ(p, q, a)] is a transition of MA if and only
if δ(p, q, a) is defined. It can be shown that this definition is consistent, i.e. does
not depend on the choice of the leader in each class. A deterministic automaton
is minimal if it is equal to its minimization.

For any deterministic tree automaton, two states in a same class have the
same context. If A is moreover irreducible and synchronized, it is minimal if and
only if any two states have distinct contexts.

The minimization algorithm for deterministic tree automata accepting lan-
guages of finite trees, which is for instance described in [5, Section 1.5], can be
applied to the tree automata accepting tree-shifts. Remember that all states in
tree automata accepting tree-shifts are both initial and final.

In the framework of shifts of bi-infinite words, irreducible sofic shifts have
a unique minimal deterministic automaton (i.e. all minimal deterministic au-
tomata accepting the shift are equal up to a renaming of the states), see [12].

3 also called a homing pattern or a magic pattern.



The situation is quite different for trees since, as is shown below in Example 3, ir-
reducible sofic tree-shifts may have several minimal deterministic tree automata.
Indeed, contrary to the situation that we have for shifts of infinite or bi-infinite
sequences, an irreducible minimal deterministic tree automaton may not have a
synchronizing block.

Example 3. Let X be the full tree-shift on the alphabet A = {a, b}. It is ac-
cepted by a trivial one-state automaton. It is also accepted by the deterministic
irreducible tree automaton A = (V,A, δ) described by the following transitions
and which is minimal.

a : p1

p0 p0

a : q1

q0 q0

b : p1

p0 p0

b : p1

p1 p1

b : q1

p1 q1

a : q0

p1 p1

a : p1

p1 q1

a : q1

q1 p1

a : p0

q1 q1

One can overcome this difficulty with the notion of Shannon cover for irre-
ducible tree-shifts.

Let X be a sofic tree-shift. The context tree automaton of X is the determin-
istic automaton S = (V,A,∆), where V is set of contexts of finite blocks of X.
Since X is sofic, V is finite. The transitions of S are (contX(u), contX(v)), a →
contX(a, u, v), where u, v ∈ B(X).

Proposition 4. The context tree automaton of a sofic tree-shift is synchronized.

Proof. Let S be the context tree automaton of a sofic shift X. There is a finite
computation C1 in S on some block u1 ending in contX(u1). Let us assume that
u1 is not a synchronizing block of S. Hence there is another computation C2

of S on u1 ending in contX(u2) for some block u2 6= u1. We get contX(u2) (

contX(u1) since contX(u2) 6= contX(u1). If u2 is not a synchronizing block of
S, there is another computation C2 of S on u2 ending in contX(u3). We get
contX(u3) ( contX(u2). By iterating this process, we either get a synchronizing
block for S or an infinite strictly decreasing sequence of contexts. Hence, since
the number of contexts is finite, there is a synchronizing block.

We define the Shannon cover of an irreducible sofic tree-shift X as the unique
irreducible component S of its context tree automaton C obtained by keeping
the states accessible from contC(z), where z is a synchronizing block of C. Since
z is synchronizing and C is deterministic, each state in this component is the
context of some synchronizing block.

Let us show that the states accessible from contC(z) form an irreducible
component and that it is the unique irreducible component of S. It is enough to
prove that there is a hyperpath from any state to contC(z). Let p = contC(u) be
a state. Since X is irreducible, there is a pattern w of X and a finite complete
prefix code P of Σ≥height(z), such that z is a subtree of w rooted at ε, and u is
a subtree of w rooted at x for all x ∈ P . Let C be a computation of C on w.



We have Cε = contC(z), and for all x ∈ P , Cx = p. Hence there is an hyperpath
from p to contC(z). Finally, it is easy to check that the automaton S accepts X

by using the irreducibility of X.

We now prove that the Shannon cover is the unique minimal deterministic
irreducible and synchronized tree automaton accepting an irreducible sofic tree-
shift.

Proposition 5. Two minimal deterministic irreducible and synchronized tree
automata accepting the same irreducible sofic tree-shift are equal up to a renam-
ing of the states.

4 Almost of finite type tree-shifts

The following notion of almost of finite type tree-shift extends to trees the notion
of almost of finite type shift of bi-infinite sequences. The class contains strictly
the class of irreducible tree-shifts of finite type and is strictly contained in the
class of irreducible sofic tree-shifts.

Let X,Y be two tree-shifts. A block map Φ : X → Y is left closing if there
are non negative integers m,a (m for memory and a for anticipation) such that,
whenever Φ(s) = s′, Φ(t) = t′ with s′x = t′x for all x ∈ Σi with 0 ≤ i ≤ (a+1+m),
and sx = tx for all x ∈ Σi with 0 ≤ i ≤ a, then sx = tx for any x ∈ Σ(a+1). The
map Φ is left resolving if m can be chosen equal to 0.

A tree automaton A = (V,A,∆) is left closing if any two computations of
A on a same tree and ending in a same state are equal. Equivalently, there is a
nonnegative integer m such any two finite computations C,C ′ of A on a same
block u ∈ Bm+1(X) such that Cε = C ′

ε satisfy Cx = C ′
x for all x ∈ {0, 1}. Hence

a deterministic and left closing tree automaton corresponds, for trees, to the
notion of automata of words which are both deterministic and co-deterministic
with a finite delay.

A block map Φ : X → Y is right closing if there are non negative integers
m,a such that, whenever Φ(s) = s′, Φ(t) = t′ with s′x = t′x for all x ∈ Σi with
0 ≤ i ≤ (a + 1 + m), and sx = tx for all x ∈ Σi with a + 1 ≤ i ≤ (a + 1 + m),
then sx = tx for all x ∈ Σa. The map Φ is right resolving if a can be chosen
equal to 0.

Let X be a tree-shift. Let u be a block in Bm(X). A cylinder C[u] of X with
basis u is the set of trees t in X such that tx = ux for all x ∈ Σ∗ of length at
most m.

A sofic tree-shift is almost of finite type (AFT) if it is the image of an ir-
reducible tree-shift of finite type via a block map which is right resolving, left
closing, and is one-to-one on a cylinder (equivalently, the map is one-to-one on
a non trivial open set).

Proposition 6. Let S and T be two conjugate irreducible sofic tree-shifts. Then
S is AFT if and only if T is AFT.



Proof. (sketch) It is easy to check that the composition of a right resolving map
with a conjugacy is still right resolving. The composition of a left closing map
with a conjugacy is still left closing. A conjugacy also keeps the property of being
one-to-one on a cylinder.

We say that an automaton is an almost of finite type automaton (AFT au-
tomaton) if it is deterministic, irreducible, left closing and synchronized.

Proposition 7. A tree-shift is AFT if and only if it is accepted by an AFT
automaton.

Proof. Let S be an AFT tree-shift on the alphabet A. Let Φ : X → S be
a block map from an irreducible tree-shift of finite type X onto S which is
right resolving, left closing and one-to-one on a cylinder of S. Without loss of
generality (by changing X into a higher block presentation of X), we can assume
that X is an edge tree-shift and that Φ is a one-block map. Again by changing
X into a higher block presentation of X, we can assume that Φ is left closing
with parameters a′ = 1,m′.

Let A = (V,E,∆) be an irreducible edge tree automaton accepting X. Let
B = (V,A,∆′) where (p, q, φ(e), r) ∈ ∆′ if and only if (p, q, e, r) ∈ ∆.

Since Φ is a one-block right-resolving map (with some parameter m), B is a
deterministic automaton.

We now prove that B has a synchronizing block. Since Φ is one-to-one on
a cylinder C[z0] of S, for any tree t ∈ C[z0], any two computations of B on t

are equal and thus end in a same state p. As a consequence, and by compacity
arguments, there is a finite subtree z such that z0 is a subtree of z at ε and
such that each finite computation of B on z ends in the same state pz, i.e. z is
a synchronizing block of B. Let us keep in B only the states accessible from pz.
Since S is irreducible, B remains irreducible and still accepts S.

Let us now show that B is left closing. If B were not left closing, there would
be two distinct computations C,C ′ of B on a same tree t ending in a same state
p. Let (p, q, e, r) ∈ ∆ a transition going out of (p, q) for some states p, r ∈ V (if
there is none, there is a transition going out of (q, p) since A is irreducible). We
get two distinct computations (r, C,D), (r, C ′,D) of B ending in r on a same
tree u = (φ(e), t, t′) for some tree t′. These two distinct computations of B are
also two distinct computations of A on two trees s, s′ of X with sε = s′ε = e and
such that Φ(s) = Φ(s′) = u. Since Φ is left closing with parameters a′ = 1,m′,
we get s = s′ and thus C = C ′.

Conversely, if S is accepted by an AFT automaton A = (V,A,∆), let X be the
edge tree-shift accepted by T = (V,∆,∆′), whose transitions are (p, q, (p, q, a, r))
→ r for (p, q, a, r) ∈ ∆. Let Φ be the one-block map from X onto S defined by
φ(p, q, a, r) = a. This map is right resolving since A is deterministic. It is left clos-
ing since A is left closing. It is one-to-one on a cylinder since A is synchronized.
As a consequence, S is AFT.

Corollary 1. An irreducible sofic tree-shift is AFT if and only if its Shannon
cover is AFT.



Proof. Let X be an irreducible sofic tree-shift. By Proposition 5, any irreducible
sofic tree-shift is accepted by an irreducible deterministic synchronized automa-
ton S equal to the Shannon cover of X.

Let us assume that X is AFT. By Proposition 7, S is equal to the minimiza-
tion of an AFT automaton A. Let us show that S is left closing. If it is not
left closing, then there is a tree t ∈ X and two distinct computations of S on t

ending in a same state. As a consequence, there are two distinct computations
of A on t ending in two states p, p′ which have the same context.

Let z be a synchronizing pattern of A focusing to the state qz. Since A is
irreducible, there is an hyperpath from p to qz labeled by some pattern w such
that z is a subtree of w rooted at ε. Since p and p′ have the same context, there
is also a hyperpath from p′ to q labeled by w. Since z is synchronizing, q = qz.
This gives two distinct computations of A on a same tree ending in the same
state qz, which contradicts the fact that A is left closing. This proves that the
Shannon cover of an AFT is left closing.

Conversely, if S is AFT, then X is AFT by Proposition 7.

Corollary 2. Let S be an irreducible sofic shift accepted by a deterministic tree
automaton. It is decidable whether S is AFT.

Proof. One can compute the Shannon cover of the sofic tree-shift and check
whether it is AFT as explained in Section 5.

5 The algorithmic issue

In this section, we design algorithms to check whether a deterministic tree au-
tomaton is synchronized, and whether it is left closing. We also describe an
algorithm to compute the Shannon cover of an irreducible sofic tree-shift given
by a deterministic tree automaton that accepts it.

5.1 Computation of the Shannon cover

Let A = (V,A, δ) be a deterministic automaton. We define the deterministic tree
automaton D(A) as the accessible part from the state V of the tree automaton
(P(V ), A, δ′), where for, P,Q ∈ P(V ), δ′(P,Q, a) = {δ(p, q, a) | p ∈ P, q ∈ Q} if
this set is nonempty, and is not defined otherwise.

Proposition 8. It can be checked in polynomial time whether a tree automaton
is irreducible.

Proposition 9. It is decidable whether a deterministic tree automaton is syn-
chronized.

Proof. The automaton A is synchronized if and only if D(A) contains a singleton
state. The time and space complexity of this algorithm is exponential in the
number of states of A.



Proposition 10. Let A = (V,A, δ) be a deterministic automaton accepting an
irreducible sofic tree-shift X. The Shannon cover of X is computable from A.

Proof. Let D(A) = (P(V ), A, δ′) and R be a minimal state of D(A) for the
inclusion. Let u the label of a hyperpath from V to R. Then u a synchronizing
pattern of D(A). Indeed, any finite computation of D(A) ends in R by minimality
of R. We keep in D(A) only the states accessible from R and get an irreducible
and synchronized automaton accepting X. Its minimization gives the Shannon
cover of X by Proposition 5.

We now describe algorithms to check whether an irreducible deterministic
automaton is left closing.

5.2 The pair graph of a tree automaton

Given a deterministic tree automaton A = (V,A,∆), we define the square au-
tomaton of A, denoted by A×A = (V ×V,A,∆′), as the deterministic automa-
ton whose transitions are (p, p′), (q, q′), a → (r, r′) if and only if (p, q), a → r and
(p′, q′), a → r′ are transitions of A. A diagonal state of A × A is a state (p, p)
for some p ∈ V .

Square automata of finite words (see for instance [16, p. 647]) are used to
check properties of pairs of paths. We extend this notion, together with a notion
a pair graph, to trees, to check properties of pairs of computations. Seidl [17] used
branch automata to check the degree of unambiguity of finite tree automata.

Proposition 11. A deterministic tree automaton is not left closing if and only
if there is a computation in the square automaton ending in a diagonal state and
containing a non diagonal one.

Proof. By definition of A×A, the existence of a computation in A×A ending
in a state (p, p) and containing a state (r, s) with r 6= s is equivalent to the
existence of two distinct computations of A on a same tree.

In order to check the above property, we build the pair graph GA = (VG, EG)
of A, where VG ⊆ (V 2×V 2)∪V 2 is the set of vertices, EG ⊆ VG×{0, 1}×A×VG

is the set of edges labeled by 0 or 1 and a letter from A. For more convenience,
an edge labeled by 1 is noted by a plain arrow −→ and is called a plain edge,
and an edge labeled by 0 is noted by a dashed arrow 99K and is called a dashed
edge. For each pair of transitions (p, q), a → r and (p′, q′), a → r′ of A,

((r, r′), (s, s′))
0,a
−−→ ((p, p′), (q, q′)),

((s, s′), (r, r′))
1,a
−−→ ((p, p′), (q, q′)),

(r, r′)
0,a
−−→ ((p, p′), (q, q′)),

(r, r′)
1,a
−−→ ((p, p′), (q, q′)),

are edges of GA, for each pair (s, s′).



A vertex of GA is useful if it has at least one outgoing plain edge and at least
one outgoing dashed edge. We keep the essential part of the pair graph obtained
by discarding vertices which are not useful, and their incoming and outgoing
edges. A vertex ((p, q), (r, s)) of GA is called non diagnonal if either p 6= q or
r 6= s.

Proposition 12. A deterministic tree automaton is not left closing if and only
its there is a path in its pair graph starting at a vertex (p, p) and ending in a
non diagonal vertex.

(qb, qb)(qb, qb) (q0, q0)(q0, q0) (q1, q1)(q1, q1)

(qb, qb)(q1, q1)

(q1, qb)(q1, q1); (qb, q1)(q1, q1)

(q1, qb)(qb, qb); (qb, q1)(qb, qb

(q1, qb)(q1, qb); (qb, q1)(q1, qb); (qb, q1)(q,q1)

b

a

a

a

b

a

b

b

b
b

bb
b a

a

a

Fig. 3. The pair graph for the tree automaton of Example 1. A thick edge represents a plain
edge and a dashed edge with the same label. The non useful edges and vertices are drawn in grey.
Each vertex (p, q) is identified with the vertex (p, q)(p, q). For the test, the pair ((p, q), (r, s)) may
not be represented if ((r, s), (p, q)) does. The tree-shift X accepted by A satisfies the property of
Proposition 12 since there is no path from a diagonal state to a non diagonal one. Then A is a left
closing automaton and as a consequence the tree-shift X is AFT.

The number of vertices of GA is at most O(|V |4) and its number of edges
of GA is at most O(|V |6). The property of Proposition 12 can be checked in a
linear time in the size of GA. As a consequence, it can be checked in polynomial
time whether the Shannon cover of an irreducible sofic tree-shift is AFT. Note
that Seidl’s check of the finite degree of ambiguity of tree automata in [17] has a
similar complexity (the cube of the size of the transitions of the tree automaton).
The pair graph for the tree automaton A of Example 1 is given in Figure 3.

Conclusion

In this article, we have shown that tree-shifts differ from one-sided shifts of
infinite sequences at least concerning the following property: there may be more
than one minimal deterministic irreducible tree automata accepting the same
irreducible sofic tree-shift. The reason is that such automata do not always have
a synchronizing block. For irreducible sofic tree-shifts, the Shannon cover remedy
for this lack and allows us to define the class of almost finite type tree-shifts.
In further work we will focus on topological and syntactic properties of AFT
tree-shifts.
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