
HAL Id: hal-00620399
https://hal.science/hal-00620399

Submitted on 19 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Laxity-Based Restricted-Migration Scheduling
Frédéric Fauberteau, Serge Midonnet, Laurent George

To cite this version:
Frédéric Fauberteau, Serge Midonnet, Laurent George. Laxity-Based Restricted-Migration Scheduling.
16th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA’11),
2011, United States. pp.1-8, �10.1109/ETFA.2011.6059012�. �hal-00620399�

https://hal.science/hal-00620399
https://hal.archives-ouvertes.fr


Laxity-Based Restricted-Migration Scheduling

Frédéric Fauberteau, Serge Midonnet
Université Paris-Est

LIGM, UMR CNRS 8049
5, bd Descartes – Champs-sur-Marne

77454 Marne-la-Vallée CEDEX 2, France
{frederic.fauberteau,serge.midonnet}@univ-paris-est.fr

Laurent George
ECE

LACSC
37, quai de Grenelle
75015, Paris, France

lgeorge@ieee.org

Abstract

We focus on the real-time multiprocessor scheduling
of periodic tasksets. We propose a new static priority
scheduling algorithm based on the restricted-migration
approach. Restricted-migration approach is a global
scheduling approach for which the number of migra-
tions is bounded just by one migration per job at most.
Our algorithm uses the laxity of already admitted jobs
to decide the admission of newly arrived jobs. We
prove that this algorithm is predictable. We give a
feasible interval and we propose a utilization bound
for this algorithm. We also compare our algorithm to
other global algorithms in terms of schedulability by
simulations.

1. Introduction

One of the most studied model of recurring real-
time tasks is the periodic task model of Liu and
Layland [1]. In the periodic model, a periodic task
is characterized by a Worst Case Execution Time
(WCET) and a period. Each job of a recurring task
must be completed before its absolute deadline which
is equal to its activation time plus the relative deadline
of the task. Three levels of constraint on the deadline of
tasks are studied in the literature: (i) implicit deadlines
for which the deadline of a task is equal to its period,
(ii) constrained deadlines for which the deadline of a
task is less than or equal to its period and (iii) arbitrary
deadlines for which there are no relations between the
deadline of a task and its period. A recurring task is
also characterized by an offset. The offset of a task
corresponds to the time before which the first job
of this task is activated. This research focus on the
scheduling of periodic tasks with constrained deadlines
and offsets.

A priority-driven preemptive scheduler schedules a
set of tasks by executing the highest priority active
job and by preempting the actual executed job if the
processor is not idle. There are three main classes of
priority algorithms: (i) static priority algorithms (or
fixed tasks priority algorithms), (ii) fixed job priority
algorithms and (iii) dynamic priority algorithms. Static
priority algorithms assign a priority to each task and
each job of a task inherits the priority of this task. A job
keeps the same priority during its lifetime (e.g. Rate
Monotonic [1], Deadline Monotonic [2]). Fixed job
priority algorithms assign a priority to each job and it
keeps it during its lifetime (e.g. Earliest Deadline First
(EDF) [1]). Dynamic priority algorithms update the
priority of jobs during their lifetimes (e.g. Least Laxity
First [3]). In this paper, we consider static priority
scheduling of a set of periodic tasks.

In multiprocessor scheduling, there are two main
approaches: (i) partitioned scheduling and (ii) global
scheduling. In partitioned scheduling, the tasks are
statically assigned to a processor and each job of a task
is scheduled on the processor on which this task has
been assigned. The interprocessor migrations are not
allowed with this approach. In global scheduling, there
is no assignment of task and unrestricted migrations
of the jobs are allowed. In uniprocessor scheduling,
EDF is an optimal algorithm for the implicit deadlines
case. With this algorithm, a processor can schedule
as many tasks as its capacity enables it (i.e. the sum
of the utilization of tasks can be equal to 1). But
in the multiprocessor case, EDF is not an optimal
priority algorithm for global scheduling. There are
global algorithms with dynamic priority which are op-
timal (e.g. PF [4], PD2 [5]). But these algorithms can
lead to many context switches (i.e. preemptions and
migrations). Consequently, the scheduling approaches
with static priority and fixed job priority are still



actively studied.
Global and partitioned scheduling approaches are

incomparable in static priority and fixed job priority [6]
(i.e. there are tasksets that are schedulable using global
algorithms that partitioned algorithms cannot schedule,
and vice versa). Although global scheduling does not
outperform partitioned scheduling, a global scheduler
is more suitable for taking good scheduling decisions.
While the scheduling decisions of a partitioned sched-
uler are taken a priori, a global scheduler decides to
assign tasks dynamically and can therefore take into
account the state of all the processors. But this behavior
can lead to an important number of migrations (e.g.
DP-Wrap algorithm produces at most m−1 migrations
by time slice [7]). The cost of migrations can represent
a considerable overhead. Therefore we focus on a third
approach for multiprocessor scheduling. This approach
is the restricted-migration scheduling approach for
which the tasks are allowed to migrate just one time
per job at most. For instance, a job of a task τ2 can not
migrate at job of τ1 arrival time (with τ1 more priority
than τ2).

In this paper, we have proposed a new schedul-
ing algorithm for the restricted-migration approach.
This approach is known to have scheduling anoma-
lies associated to WCETs (a scheduling valid when
tasks experience their WCET can become non feasible
when the execution duration of a task is less than its
WCET). Our scheduler makes scheduling decisions by
considering the laxity of already assigned jobs. The
laxity of a job is the duration between its finish time
and its absolute deadline. By taking into account the
laxity of the jobs, our algorithm assigns the newly
activated jobs to a processor with the guaranty that
no already assigned jobs miss their deadline on this
processor. We show that our algorithm is predictable
and does not lead to scheduling anomalies associated
to WCETs. We propose a feasibility condition for our
algorithm that we compare to a well known global EDF
feasibility condition. We then study by simulations the
performances of our scheduling algorithm.

1.1. Related work

Baruah and Carpenter have proposed a restricted-
migration with fixed job priority algorithm to schedule
periodic tasksets (r-EDF) [8]. This algorithm has been
designed to deal with hard real-time task systems
(no deadline miss is allowed). Anderson, Bud and
Devi have proposed the EDF-fm algorithm [9]. This
algorithm has been designed to schedule soft real-time
task systems (some deadlines can be missed). To the

best of our knowledge, this scheduling approach has
not been very studied in static priority.

For a long time, the laxity is a parameter used for
scheduling decisions. One of the well-known example
is LLF [3], which gives the highest priority to the task
with the lowest value of laxity. But LLF suffers from
high context switching overhead and Lee has proposed
the scheduling algorithm Earliest Deadline until Zero
Laxity (EDZL) [10]. EDZL is based on EDF but short-
circuits it when a task has no laxity to give the highest
priority to this task. Recently, Davis and Burns have
proposed a similar algorithm called Fixed Priority until
Zero Laxity (FPZL) [11]. This algorithm uses a fixed
task priority instead of EDF.

1.2. Remainder

The remainder of this paper is organized as follows:
in Section 2, we describe the notations used in this
paper. In Section 3, we present our restricted-migration
scheduling algorithm. In Section 4, we discuss the
predictability of our proposed algorithm. In Section 5,
we give a sufficient feasibility condition based on
the load(τ ) function. In Section 6, we compare our
proposed algorithm with a global and a restricted-
migration scheduler, and finally, we conclude in Sec-
tion 7.

2. Terminology

We consider a taskset τ composed of n periodic
tasks (i.e. τ = {τ1, . . . , τn}). The tasks are considered
in decreasing order of their priorities (i.e. τ1 is the
highest priority task and τn is the lowest priority task).
Each task τi is characterized by:
• the activation time of its first job (i.e. its offset)

denoted Oi,
• its WCET denoted Ci,
• its relative deadline denoted Di,
• its period denoted Ti.

We denote Ui the utilization of the task τi defined by
Ui = Ci

Ti
. A periodic task is a recurrence of jobs and

the kth job Ji,k of the task τi is characterized by:
• its activation time denoted ri,k and defined by
ri,k = Oi + kTi,

• its execution requirement denoted ei,k,
• its absolute deadline denoted di,k and defined by
di,k = ri,k +Di.

By definition, ei,k = Ci. We denote ei,k(t) the
remaining execution time of job Ji,k at time t and
by definition ei,k = ei,k(ri,k). To improve readability,
we denote Ji a job of τi when we do not refer to a



particular job of τi. Ji is characterized by (ri, ei, di).
The priorities are indexed from 1 to n. We denote
hp(Ji, πj) the set of higher priority jobs than Ji on
the processor πj and lp(Ji, πj) the set of lower priority
jobs than Ji on the processor πj .

We consider that τ is scheduled on a set Π of
m identical processors (i.e. Π = {πi, . . . , πm}). We
denote J(πm) the set of jobs which has been assigned
on the processor πm.

3. Scheduling algorithm

Contrary to LLF, EDZL or FPZL, our algorithm is
a pure static-priority algorithm. The priority of a task
(and by extension of all the jobs of this task) is decided
just one time. The laxity is used to take the scheduling
decisions at jobs arrival times.

We now describe the behavior of a restricted-
migration scheduler on a system consisting of m pro-
cessors. The activated jobs are put in a global queue.
When a processor πj becomes idle respectively to the
highest priority job Ji of the global queue, Ji is started
on πj . The processor πj is idle respectively to the job
Ji if either no jobs are executed on πj or a job of
lower priority than Ji is executed on πj . If Jk (k > i)
is executed on πj before the activation of Ji, Jk is
preempted and moved to the local queue of πj . Jk can
be restarted only if πj becomes idle respectively to this
job.

π
2

π
1

J1

J2J3 J3

0 5 10 15 20

Figure 1. Restricted-migration scheduling.

In Figure 1, we represent an example taskset com-
posed of 3 jobs: J1 (0, 3, 5), J2 (2, 4, 8) and J3
(0, 10, 12). At time 0, J1 is assigned on the idle
processor π1 and J3 is assigned on the idle processor
π2. At time 2, J2 is activated and the only idle
processor respectively to J2 is π2. Then J2 preempts
J3 and is executed for 4 time on π2. Unfortunately,
J3 misses its deadline at time 12 with 2 remaining
execution time.

π
2

π
1

J1 J2

J3

0 5 10 15 20


Figure 2. Laxity-aware restricted-migration
scheduling.

We notice that these 3 jobs can be successfully
scheduled as shown in Figure 2. Actually, J2 must

be assigned at time 2 on the non-idle processor π1.
From this observation, we have designed a restricted-
migration scheduling algorithm (r-SP_wl) using the
laxity to decide the admission of jobs.

Definition 1 (Laxity). The laxity Lji,k(t) of the job Ji,k
on the processor πj at time t is the duration between
the job ending and its deadline. Lji,k(t) is defined on
the time interval [ri,k, di,k].

The laxity of the job Ji on the processor πj is
defined at time ri by:

Lji (ri) = di − ei −
∑

Jj∈hp(Ji,πj)

ej(ri) (1)

Contrary to the original restricted-migration
scheduling algorithm, our algorithm does not use
global queue. Only a local queue per processor is
needed to maintain the pending preempted jobs. The
jobs are assigned on a processor at time of their
activations. A job Ji,k can be assigned on a processor
πj at time ri,k if and only if these 2 conditions are
verified:

1) the laxity of the job Ji,k on πj is greater than or
equal to 0: Lji,k(ri,k) ≥ 0 with Lji,k(ri,k) given
by Equation (1),

2) the laxity of the lower priority jobs than Ji,k is
greater than or equal to 0.

The Condition 2) is given by:

∀Jl ∈ lp(Ji,k, πj), Ljl (ri,k)− ei,k ≥ 0 (2)

The condition given by Equation (2) insures that no
lower priority jobs previously assigned on the pro-
cessor πj miss their deadlines. Therefore the scenario
depicted in Figure 1 can not occur.

Our scheduling algorithm must maintain the values
of jobs laxity in order to take scheduling decision at
activation time of jobs. A data structure per processor
is needed to store these values of laxity. We define the
concept of processor laxity. The laxity of the processor
πj is defined as the laxity of the job which has the
minimum value of laxity on πj . Our algorithm works
as follow:

1) when a job Ji is activated, the remaining time
of all the current running jobs is updated,

2) we consider the processors of Π taken in decreas-
ing order of their laxity. Ji is assigned on the first
processor πj for which the Conditions 1) and 2)
are verified (the processor with the maximum
value of processor laxity on which Ji can be
assigned),

3) a new entry in the structure is added to store its
value of laxity computed by Equation (1),



4) the laxity of jobs of lp(Ji, πj) is decreased by
ei,

5) when Ji finishes at time t, its corresponding
entry in the structure is removed. If Ji finishes
prior to ei execution time, the value of laxity
of all lower priority jobs is increased by the
remaining execution time ei(t) of Ji.

Our algorithm runs with a linear time complexity since
there are just one activated job per task at most.
Likewise the space complexity is also linear for the
same reason.

4. Predictability

In this section, we consider the schedulability of a
set J of jobs (i.e. J = {J1, . . . , Jl}). We consider
this set of jobs ordered by decreasing priorities (i.e.
J1 > . . . > Jl). The execution time ei of a job Ji is
a value in the time interval [e−i , e

+
i ]. We denote J−i

the job characterized by (ri, e
−
i , di) and J+

i the job
characterized by (ri, e

+
i , di). We denote J (k) the set

{J1, . . . , Jk}. We also denote J
(k)
− = {J−1 , . . . , J

−
k }

and J (k)
+ = {J+

1 , . . . , J
+
k }. S(J) denotes the start time

of the lowest priority jobs of the set J . F (J) denotes
the ending time of the lowest priority jobs of the set
J .

Definition 2 (Predictable algorithm). An scheduling
algorithm is predictable if and only if both the start
times and ending times are predictable.

The start times are predictable implies S(J
(k)
− ) ≤

S(J (k)) ≤ S(J
(k)
+ ) such that 1 ≤ k ≤ l. The ending

times are predictable implies F (J
(k)
− ) ≤ F (J (k)) ≤

F (J
(k)
+ ) such that 1 ≤ k ≤ l.

Ha and Liu have shown that a restricted-migration
scheduler is not predictable in static-priority [12]. In
Figure 3, we show the example they presented to
illustrate this property. In Figure 3(a) and 3(b), the
schedules arise when the execution time of J2 has the
maximum value 6 and the minimum value 2. We would
conclude that these jobs always meet their deadlines.
Unfortunately, this assumption is false as shown in
Figure 3(c). We can then suspect r-SP_wl of being
prone to anomalies of WCET reduction. In the example
of the Figure 3, we notice that the standard restricted-
migration scheduler take decisions independently of
the already allocated jobs. The scenario depicted in the
Figure 3(c) can not occur with our algorithm because
r-SP_wl does not allow J3 to be assigned on π2. In Fig-
ure 4, we represent the schedule obtained from r-SP_wl
for the jobs from the previous example. Contrary to the
standard restricted-migration scheduler which keeps J4

job ri di [e−i , e
+
i ]

J1 0 10 [5, 5]
J2 0 10 [2, 6]
J3 4 15 [8, 8]
J4 0 20 [10, 10]
J5 5 200 [100, 100]
J6 7 25 [2, 2]

π
2

π
1

J1 J3 J5

J2 J4 J6

0 5 10 15 20


(a) e2 = 6

π
2

π
1

J1

J2 J4 J3 J6J4

J5

0 5 10 15 20


(b) e2 = 2

π
2

π
1

J1

J2 J3 J6J4 J4

J5

0 5 10 15 20


(c) e2 = 3

Figure 3. Example from Ha and Liu [12]

π
2

π
1

J1

J2 J4 J6

J3 J5

0 5 10 15 20


Figure 4. Jobs scheduled with r-SP_wl

in the global queue until a processor becomes idle, our
scheduler assigns J4 on the processor π1 at time of
its activation (π1 has the highest processor laxity at
time 0). Then, J3 can not be assigned on π1 anymore
because J4 has not enough laxity. Our algorithm does
not suffer from the anomalies presented by Ha and Liu.

However, our algorithm is not predictable as shown
in Figure 5. The Figure 5(a) represents 3 periodic

job [e−i , e
+
i ] Di Ti

J1 [2, 3] 3 3
J2 [2, 2] 4 4
J3 [2, 2] 4 4

π
2

π
1

J3 J2 J3J2

J1 J1

J3J2

J1 J1 J1 J1

J2 J3 J2 J2

J1

J3

J1

J3

0 5 10 15 20


(a) e1 = 3

π
2

π
1

J3 J2 J3

J2

J3

J1

J2

J1 J1

0 5 10 15 20


(b) e1 = 3, e1,3 = 2

Figure 5. Anomalies for r-SP_wl



tasks which are executed for their maximum execution
time. No deadlines are missed for this scenario. But in
Figure 5(b), the job J1,3 is executed for its minimum
execution time. Then at time 8, the processor π1
becomes idle and J2 can be assigned on it. J3 is always
assigned on π2 and is started at time 8. At time 9, J1
is reactivated but can be assigned neither on π1 nor π2
unless the deadline of either J1 or J2 be missed.

In order to avoid these anomalies, we propose an
extension for r-SP_wl by adding a second data struc-
ture to maintain the laxity values. This second data is
used in parallel of the first one and the execution time
ei is replaced by the WCET Ci in Equation (1). If a
job finishes prior to Ci, the laxity value of the lower
priority jobs is not increased in the second structure.
Thus, our scheduler maintains “virtual” value of laxity
in parallel of the exact values. These virtual values of
laxity depend of the WCET of tasks and do not suffer
from variations of the execution time.

Proposition 1. The algorithm r-SP_wl is a predictable
algorithm.

Proof: It is sufficient to notice that the scheduler
makes the assignment decision independently of the
actual execution time of jobs but dependently of the
WCET of tasks.

5. Schedulability conditions

5.1. Necessary and sufficient condition

In order to decide if a taskset is schedulable, we pro-
pose a necessary and sufficient schedulability condition
for r-SP_wl. This condition consists in scheduling the
taskset over a feasibility interval.

Definition 3 (Feasibility interval). Let τ be a taskset
and Π be a set of processors. A feasibility interval is
a finite time interval such that if no deadline is missed
in this time interval, then τ is schedulable on Π.

An asynchronous activation scenario for a periodic
taskset τ is the set {O1, . . . , On} such that ∃i, 1 ≤ i ≤
n, Oi 6= 0. In [13], Cucu and Goossens have given
a feasibility interval for a taskset with asynchronous
activation scenario. This time interval is built from
the hypothesis that the scheduling of a taskset with
asynchronous scenario is periodic from time Sn with
the period P . The period P is equal to least common
multiple of the task periods of τ . Sn is the time from
which at least one job of all tasks has been activated.
It is recursively defined by:
• S1 = 01 ;

• Si = max(Oi, Oi + dSi−1−Oi

Ti
eTi).

The time interval starts from X1. [X1, Sn] includes the
activations of the jobs which have their deadline after
time Sn. X1 is recursively defined by:
• Xn = Sn ;
• Xi = Oi + bXi+1−Oi

Ti
cTi.

Theorem 1 (Corollary 10 [13]). For any schedulable
taskset τ on m processors, [X1, Sn+P ] is a feasibility
interval.

The schedule produced by our algorithm r-SP_wl must
be periodic if we want to use this feasibility interval
given by Theorem 1.

Proposition 2. The scheduling of any taskset τ pro-
duced by algorithm r-SP_wl is periodic from Sn with
period P .

Proof: The proof is the same as the one given for
the Theorem 9 in [13].

Proposition 3. The time interval [X1, Sn + P ] is a
feasibility interval to decide the schedulability of a
taskset scheduled by r-SP_wl.

Proof: The proof follows from Theorem 1 and
Proposition 2.

We must identify the worst case activation scenario
to decide the schedulability of a taskset τ on a set of
processor Π.

Definition 4 (Worst case activation scenario). An ac-
tivation scenario characterized by {O1, . . . , On} for a
taskset τ of n tasks is the worst case activation sce-
nario if and only if τ is schedulable (resp. unschedu-
lable) implies τ is schedulable (resp. unschedulable)
for any activation scenario.

In static-priority uniprocessor scheduling, the worst
case activation scenario is the synchronous scenario.
The synchronous scenario is the scenario for which
∀i ∈ 1 ≤ i ≤ n, Oi = 0. In the multiprocessor
case, the worst case scenario is not necessarily the
synchronous scenario.

Proposition 4. The worst case activation scenario for
a taskset τ is not necessarily the synchronous scenario.

Proof: We consider the taskset τ consisting of 6
tasks: τ1 (0, 6, 6, 14), τ2 (0, 7, 7, 12), τ3 (0, 1, 11, 16),
τ4 (0, 7, 27, 57), τ5 (0, 1, 62, 67) and τ6 (0, 21, 81, 88).
This synchronous taskset is schedulable with r-SP_wl
since no deadline has been missed during the simula-
tion of this scheduling over the interval [0, 4705008].
However, the taskset obtained from τ with 03 = 1
is not schedulable and τ6 misses its deadline at time
3329384.



Hence all possible scenarios have to be considered
to identify the worst case activation scenario. Goossens
has shown that just

∏n
i=1 Ti

P are non-equivalent acti-
vation scenarios [14]. To decide the schedulability of
a taskset τ on a set of Π processors, all the non-
equivalent scenarios must be studied on their time
interval [X1, Sn + P ].

5.2. Utilization Bound

The necessary and sufficient schedulability condition
for the algorithm r-SP_wl is exponential regarding
the number of tasks. In the worst case, periods with
different prime number values exponentially increase
the least common multiple P . Therefore we propose
a utilization bound to decide the schedulability of a
taskset τ with this algorithm.

This bound is based on LOAD and is inspired by the
bound proposed by Baruah and Fisher [15].

Definition 5 (DBF). For any time interval of length t,
the DBF (τi, t) of a task τi bound the execution time
of the jobs of τi which both are activated and have
their deadline in this interval.

Baruah, Mok and Rosier have shown that
DBF (τi, t) = max

(
0, (
⌊
t−Di

Ti

⌋
+ 1)Ci

)
.

Definition 6 (LOAD). For any k, the parameter
LOAD is defined by:

LOAD(k) = max
t>0

(∑k
j=1DBF (τj , t)

t

)
We consider a taskset τ for which the priorities are

assigned by a static-priority algorithm. We consider a
scenario where a job of the task τk misses its deadline.
We denote ta the activation time of this job and td the
time of the deadline miss. We notice that:

td − ta = Dk (3)

We consider W (ta) the execution time of the jobs
which have a deadline ≤ td and are executed over
the time interval [ta, td). Our algorithm assigns the
job τk on a processor πj because it had sufficiently
laxity to be executed. But a higher priority job has
been activated prior to td which implies a deadline
miss for job Jk. This processor has executed jobs for
a duration td − ta (it has not been idle). The only
hypothesis we can do on the other processors is these
processors were not idle when jobs have been admitted
on πj . If a processor is idle, its minimum laxity value
is considered as infinite and a job might have been
admitted on it. We make the worst hypothesis that other

processors than πj run the jobs which have the lowest
utilization. We obtain:

W (ta) > (td − ta) + (m− 1)(td − ta)Umin(k) (4)

where Umin(k) = minkj=1 Uj .
Since W (ta) is the execution demand on the time in-

terval [ta, td), all jobs which contribute to W (ta) must
have a scheduling window which intersects [ta, td).
Then we consider the jobs which are activated af-
ter ta − Dmax(k) and have their deadline prior to
td + Dmax(k) where Dmax(k) = maxkj=1Dj . All
these jobs have their activation and their deadline in
the time interval of length (2Dmax(k)+(td− ta)). By
definition of the LOAD parameter, we have:

W (ta) ≤ (td − ta + 2Dmax(k))× LOAD(k)

By Inequality 4, we have:

(td − ta) + (m− 1)(td − ta)Umin(k) <

(td − ta + 2Dmax(k))× LOAD(k)

≡(td − ta)(1 + (m− 1)Umin(k)) <

(td − ta + 2Dmax(k))× LOAD(k)

≡1 + (m− 1)Umin(k) <(
1 + 2

Dmax(k)

td − ta

)
× LOAD(k)

By Inequality 3, we have:

1+(m−1)Umin(k) <

(
1 + 2

Dmax(k)

Dk

)
×LOAD(k)

This condition is a necessarily condition for a job
missing its deadline. The negation of this condition
produces a sufficient condition of schedulability.

Proposition 5. A sufficient schedulability condition for
a taskset τ of n tasks such that τ is schedulable with
r-SP_wl is given by:

∀k : 1 ≤ k ≤ n :

[
LOAD(k) ≤ 1 + (m− 1)Umin(k)

1 + 2(Dmax(k)/Dk)

]
6. Evaluation

In order to compare our proposed algorithm with
existing approaches, we performed some simulations.
The simulation protocol we use is extracted from
the literature [16]. For each utilization value Ui =
i×m where i ∈ [0.025, 0.05, . . . , 0.975], we randomly
generate a set of tasksets for which the utilization
U(τ) = Ui. The generation of the taskset is based
on the algorithm UUnifast [17]. This algorithm has
been initially proposed in order to randomly generate



0 %

20 %

40 %

60 %

80 %

100 %

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

S
ch

ed
ul

ab
le

 ta
sk

se
ts

CPU utilization

g-SP

r-SP

r-SP_wl

Figure 6. Comparison of schedulability.

taskset for uniprocessor systems. It has been extended
to UUniFast-Discard [16] for the multiprocessor case.

We show in Figure 6 a comparison of schedulability
for three different algorithms in static priority. The
first one is a global scheduler, the second one is a
standard restricted-migration scheduler and finally, the
last one is our modified restricted-migration scheduler.
The standard static-priority restricted-migration has
been implemented as follows. The set of processors
is sorted (using a priority queue) in increasing order
of the priority of the active job (idle processors are put
in head of the list). A job is put in a priority queue at
its arrival time. A processor πj is free relative to job
Ji if πj is idle or its active job is lower priority than
Ji. The highest priority jobs are dequeued and put on
the first free processor of the processors queue while
there are ready active job and free processors.

In order to get a good intuition about the schedula-
bility of these algorithms, we simulated the execution
of the randomly generated tasksets over their feasibility
intervals. Since the size of the feasibility intervals is
exponential in the number of tasks, we bounded to
6 the number of tasks per taskset and to 1000 the
number of tasksets per value of utilization. For the
same reasons, we restrict the number of processors to
2. We notice that our proposed algorithm gives results
which are much closer to those of a global scheduler
than those of a standard restricted-migration scheduler.
This result is interesting in the sense that the number
of interprocessor migrations is bounded by just one per
job at most.

We show in Figure 7 the comparison between
the utilization bound presented in [15] and the one
we proposed in Section 5.2. These two utilization
bounds are based on the load bound function. Our
implementation of this function is based on the one
described in [18]. Unfortunately, the computation of
the exact load bound function is done in exponential

0 %

20 %

40 %

60 %

80 %

100 %

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

S
ch

ed
ul

ab
le

 ta
sk

se
ts

CPU utilization

g-SP

r-SP_wl

Figure 7. Comparison of utilization bound.

global
restricted-migration this research
partitioned

static fixed job dynamic

Table 1. Classification of algorithms for
multiprocessor scheduling of periodic tasks.

time and chose the computation based on the pseudo-
polynomial approximation scheme with a precision
given by ε = 10−6. We notice that the utilization bound
of our algorithm is not as good as the one of global
scheduler. As we can see in [19], in the current state-
of-the-art of schedulability conditions, no utilization
bounds give efficient results.

7. Conclusion

We distinguish among three different categories
of priority algorithms. We also distinguish among
three different scheduling approaches concerning the
amount of interprocessor migration allowed. There
are 3 × 3 = 9 categories of scheduling algorithms
which we represent in Table 1. We have focused on
the restricted-migration approach in the static priority
case and we have proposed a new algorithm based on
the laxity. This algorithm is predictable and we have
proposed a necessary and sufficient schedulability con-
dition as well as a utilization bound. We have shown
by simulation that our algorithm can schedule almost
tasksets as much as a global scheduling algorithm.
In order to extend this work, we intend to improve
the proposed utilization bound. Since our scheduler
dynamically maintains the value of laxity, we also
intend to propose a slack-stealer algorithm which can
be used in conjunction with r-SP_wl.



References

[1] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,”
Journal of the ACM, vol. 20, no. 1, pp. 46–61, January
1973.

[2] J. Y. T. Leung and J. Whitehead, “On the complexity of
fixed-priority scheduling of periodic, real-time tasks,”
Performance Evaluation, vol. 2, no. 4, pp. 237–250,
December 1982.

[3] A. K.-L. Mok, “Fundamental design problems of
distributed systems for hard-real-time environments,”
Ph.D. dissertation, Massachusetts Institute of Technol-
ogy, Cambridge, MA, USA, May 1983.

[4] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A.
Varvel, “Proportionate progress: A notion of fairness in
resource allocation,” Algorithmica, vol. 15, no. 6, pp.
600–625, June 1996.

[5] J. H. Anderson and A. Srinivasan, “Early-release fair
scheduling,” in Proceedings of the 12th Euromicro Con-
ference on Real-time Systems (ECRTS). Stockholm,
Sweden: IEEE Computer Society, June 2000, p. 35–43.

[6] S. K. Baruah, “Techniques for multiprocessor global
schedulability analysis,” in Proceedings of the 28th
IEEE International Real-Time Systems Symposium
(RTSS). Tucson, Arizona, USA: IEEE Computer
Society, December 2007, pp. 119–128.

[7] G. Levin, S. H. Funk, I. Pye, and S. Brandt, “Dp-fair: A
simple model for understanding optimal multiprocessor
scheduling,” in Proceedings of the 22nd Euromicro
Conference on Real-time Systems (ECRTS). Brussels,
Belgium: IEEE Computer Society, July 2010, pp. 3–13.

[8] S. K. Baruah and J. Carpenter, “Multiprocessor fixed-
priority scheduling with restricted interprocessor migra-
tions,” in Proceedings of the 15th Euromicro Confer-
ence on Real-time Systems (ECRTS). Porto, Portugal:
IEEE Computer Society, July 2003, pp. 195–202.

[9] J. H. Anderson, V. Bud, and U. C. Devi, “An EDF-
based restricted-migration scheduling algorithm for
multiprocessor soft real-time systems,” Real-Time Sys-
tems, vol. 38, no. 2, pp. 85–131, 2008.

[10] S. K. Lee, “On-line multiprocessor scheduling algo-
rithms for real-time tasks,” in Proceedings of the IEEE
Region 10’s Ninth Annual International Conference
(TENCON), vol. 2. IEEE Computer Society, August
1994, pp. 607–611.

[11] R. I. Davis and A. Burns, “Fpzl schedulability analy-
sis,” in Proceedings of the 17th IEEE Real-Time and
Embedded Technology and Applications Symposium
(RTAS). Chicago, IL, USA: IEEE Computer Society,
April 2011, pp. 245–256.

[12] R. Ha and J. W. S. Liu, “Validating timing constraints
in multiprocessor and distributed real-time systems,” in
Proceedings of the 14th International Conference on
Distributed Computing Systems (ICDCS). Pozman,
Poland: IEEE Computer Society, June 1994, pp. 162–
171.

[13] L. Cucu and J. Goossens, “Feasibility intervals for
fixed-priority real-time scheduling on uniform multi-
processors,” in Proceedings of the 11th IEEE Interna-
tional Conference on Emerging Technologies and Fac-
tory Automation, Prague, Czech Republic, September
2006, pp. 397–405.

[14] J. Goossens and R. Devillers, “The non-optimality of
the monotonic priority assignments for hard real-time
offset free systems,” Real-Time Systems, vol. 13, no. 2,
pp. 107–126, September 1997.

[15] S. K. Baruah and N. W. Fisher, “Global fixed-priority
scheduling of arbitrary-deadline sporadic task systems,”
in Proceedings of the 9th International Conference
on Distributed Computing and Networking (ICDCN),
S. Rao, M. Chatterjee, P. Jayanti, C. S. R. Murthy,
and S. K. Saha, Eds., vol. 4904/2008. Kolkota, India:
Springer, January 2008, pp. 215–226.

[16] R. I. Davis and A. Burns, “Improved priority assign-
ment for global fixed priority pre-emptive scheduling in
multiprocessor real-time systems,” Real-Time Systems,
vol. 47, no. 1, pp. 1–40, 2010.

[17] E. Bini and G. C. Buttazzo, “Biasing effects in schedu-
lability measures,” in Proceedings of the 16th Eu-
romicro Conference on Real-time Systems (ECRTS).
Catania, Sicily, Italy: IEEE Computer Society, June -
July 2004, pp. 196–203.

[18] N. W. Fisher, T. P. Baker, and S. K. Baruah, “Al-
gorithms for determining the demand-based load of
a sporadic task system,” in Proceedings of the 12th
IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA).
Sydney, Australia: IEEE Computer Society, August
2006, pp. 135–146.

[19] M. Bertogna, “Evaluation of existing schedulability
tests for global EDF,” in Proceedings of the 38th Inter-
national Conference on Parallel Processing Workshops
(ICPPW). Vienna, Austria: IEEE Computer Society,
September 2009, pp. 11–18, first International Work-
shop on Real-time Systems on Multicore Platforms:
Theory and Practice (XRTS).


