
HAL Id: hal-00620382
https://hal.science/hal-00620382v1

Submitted on 30 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Average Analysis of Glushkov Automata under a
BST-Like Model

Cyril Nicaud, Carine Pivoteau, Benoît Razet

To cite this version:
Cyril Nicaud, Carine Pivoteau, Benoît Razet. Average Analysis of Glushkov Automata under a
BST-Like Model. 30th Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’10), 2010, India. pp.388-399. �hal-00620382�

https://hal.science/hal-00620382v1
https://hal.archives-ouvertes.fr

Average Analysis of Glushkov Automata under a

BST-Like Model

Cyril Nicaud1, Carine Pivoteau1, and Benoît Razet2

1 LIGM, Univ. Paris-Est, CNRS UMR 8049, France

{cyril.nicaud,carine.pivoteau}@univ-mlv.fr

2 Tata Institute of Fundamental Research, Mumbai, India

benoit.razet@gmail.com

Abstract

We study the average number of transitions in Glushkov automata built from random regular

expressions. This statistic highly depends on the probabilistic distribution set on the expressions.

A recent work shows that, under the uniform distribution, regular expressions lead to automata

with a linear number of transitions. However, uniform regular expressions are not necessarily a

satisfying model. Therefore, we rather focus on an other model, inspired from random binary

search trees (BST), which is widely used, in particular for testing. We establish that, in this

case, the average number of transitions becomes quadratic according to the size of the regular

expression.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.388

1 Introduction

Finite state automata are an essential data structure in computer science, which have been

extensively studied since the fifties. Kleene, in his seminal paper [14], introduced regular

expressions to describe the behavior of automata and showed a fundamental result: automata

and regular expressions define the same objects, regular languages. Regular expressions are

widely used in string searching programs and scripting languages such as grep, sed, awk,

Perl, Python and Ruby. And most often, programs involving regular expressions are more

efficient when the expressions are compiled into automata instead of interpreting them on

the fly. The study of algorithms compiling (or one can say translating) regular expressions

into automata is therefore a prolific area, which is still very active, in particular because of

the large variety of automata and compilation techniques. A classical method to compare

the resulting algorithms, besides time and space complexities, is to study the size of the

output automaton, defined either as its number of states or of transitions.

In this article we study the average number of transitions of the automaton computed

by a famous algorithm proposed by Glushkov [12] and independently by McNaughton and

Yamada [16]. The automaton produced is now called Glushkov automaton or position

automaton. The position automaton refers to the work of Berry and Sethi [3], who have

provided a fast algorithm for compilation that associates to each position symbol of an

expression, a state in the resulting automaton. This algorithm is also described in the

standard textbook on compilers by Aho, Sethi and Ullman [1]. The worst-case complexity

analysis on Berry-Sethi’s algorithm shows that it produces an automaton with at most a

quadratic number of transitions with respect to the size of the input regular expression (its

number of symbols). But one may wonder what is the behavior of the algorithm in practice,

which naturally leads to consider its average complexity.

© authors;
licensed under Creative Commons License NC-ND

IARCS Annual International Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 388–399

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.388
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Cyril Nicaud, Carine Pivoteau, and Benoît Razet 389

Figure 1 Random unary-binary tree (1000 nodes) according to the BST-like distribution.

Figure 2 Uniform

random unary-binary

tree (1021 nodes).

A recent work [17] has shown that, considering the uniform dis-

tribution on regular expressions, the average number of transitions

of Glushkov automaton is in fact linear, when the worst case is

quadratic. Since a distribution which is uniform seems to be a pri-

ori natural, one may conclude that, in practice, the average num-

ber of transitions should be linear and not quadratic. Nevertheless,

one can argue that this model may not be that relevant. For in-

stance, the number of nested stars in a typical random expression

is in Θ(
√

n), which is much larger than expected. For testing pur-

poses, an other natural distribution appears, inspired from random

binary search trees (for short, we call it the BST-like distribution).

In particular, this distribution has been used to generate random

formulas of Linear Temporal Logic in order to validate algorithms

in [6, 19]. To highlight the difference with the uniform model,

Figures 1 and 2 display two random trees according to the two

distributions: one shall be struck by their contrasting profiles, in

particular looking at their height.

The main result of this paper is that the average number of

transitions of Glushkov automaton is quadratic with respect to the

size of the regular expression under a BST-like distribution. In this

process, we also analyze in details the probability that a random

regular expression recognizes the empty word.

This article is organized as follows. In Section 2, we define

the BST-like distribution on regular expressions and recall some

basic facts on Glushkov automata. The main theorem is given in

Section 3. Intermediate results and their proofs are presented in

Section 4. Finally, in the concluding section, we give experimental

data to illustrate these results. Due to a lack of space, most of the

proofs are sketched or omitted in this extended abstract.

2 Definitions

2.1 The BST-like distribution

We devote this section to the presentation of the trees corresponding to regular expressions,

focusing on the fact that a BST-like distribution on such trees is not uniform. Recall that

the uniform distribution on a finite set S is achieved by giving the same probability 1/|S|
to all the elements of S.

FSTTCS 2010

390 Average Analysis of Glushkov Automata under a BST-Like Model

2.1.0.1 Unary-binary plane trees

We first consider the classical model of unary-binary trees that are defined inductively as

either single nodes (leaves) or nodes having exactly one child or two ordered children that

are themselves unary-binary trees. The regular expressions considered in the sequel are a

specialization of these trees. The number of nodes of a tree T is called its size, denoted by

|T |. Following the recursive definition, one has a quite natural and simple algorithm UB(n)

to produce a unary-binary tree of size n:

UB(n) ---

if n=1 then return a node (denoted by �)

if n=2 then return
�

|
�

else, choose if the root is unary or binary

if unary then return
�

|

UB(n−1)

else choose k between 1 and n − 2 and return
�

/\

UB(k) UB(n−k−1)

--

To transform this procedure into a random sampler, the (unspecified) choices are ran-

domized in order to obey probabilistic laws that dictate the random distribution on the

whole set of trees of size n. In this study, we consider the case where a unary node is chosen

with probability q ∈]0, 1[and a binary node with probability 1 − q. The size of the left child

of a binary node is drawn uniformly at random. All the choices are independent, thus, in

this model, the probability p of a tree is defined inductively by:

p (�) = 1,

p
(
�
|
T

)
= q · p(T),

p

(
�
/\

T1 T2

)
= 1−q

n−2 p(T1)p(T2), if |T1| + |T2| + 1 = n.

(1)

For any n ≥ 1, p is a discrete probability measure on the set of unary-binary trees of size n,

but one can notice that, for any value of q in]0, 1[, the probability distribution induced by

this definition is not uniform. This is readily checked, observing that the probabilities of the

two following unary-binary trees of size 5 cannot match: the equation p(T1) = p(T2) has no

solution for q in]0, 1[when p(T1) = (1 − q)2/3 and p(T2) = (1 − q)/3.

T1 = T2 =

Actually, this probabilistic model is a natural extension of what is obtained for binary trees

by choosing recursively the sizes of the two subtrees of a node uniformly at random; this

corresponds exactly to the common random distribution on binary search trees (see [15]):

to build a random BST of size n, nodes are inserted one at a time (using the standard

insertion procedure for BST [5]), according to a uniform random permutation of {1, . . . , n}.

Therefore, from now on, we call this model the BST-like distribution.

Cyril Nicaud, Carine Pivoteau, and Benoît Razet 391

•
∗
b

∗
∪

a •
b b

Figure 3 Unary-binary tree of size 9 representing the regular expression b∗ • (a ∪ b • b)∗.

2.1.0.2 Height of a random tree

To emphasize this dissimilarity, one can remark that the asymptotic profiles of the trees

according to these two distributions highly differ. This is observable on different parameters,

one of the most commonly studied being the height. According to [10], the average height

of a large uniform unary-binary tree with n nodes is in Θ(
√

n), when we show here that

it is in Θ(log n), according to our distribution. The later result was expectable, since this

corresponds to the average height of binary search trees [18, 7, 8]. This explains the difference

between the shapes of the two unary-binary trees of Figures 1 and 2, even though they are

about the same size.

◮ Proposition 1. The average height of a unary-binary tree of size n according to the

BST-like distribution is in Θ(log n).

Proof. (Sketch) This proof is adapted from the second edition of Introduction to Algo-

rithms [5, p. 265–268]. Let Xn be the random variable associated to the height of the

unary-binary trees of size n and let Yn = λXn , with λ = 3
2+q . Using the fact that the height

of a tree that is not reduced to a single node is bounded from above by the sum of the

heights of its children plus one, we get that for all positive integer n, E[Yn] ≤ yn, where

(yn)n∈N∗ is defined by: y1 = 1, y2 = λ, and for all n ≥ 3,

yn = λqyn−1 +
2λ(1 − q)

n − 2

n−2∑

ℓ=1

yℓ.

Since λ = 3
2+q , one can prove by direct induction that yn ≤

(
n+1

2

)
, for any positive integer n.

We conclude by Jensen’s inequality, since λE[Xn] ≤ E[λXn] ≤ yn. ◭

2.2 Random regular expressions

We consider non-empty regular expressions on an alphabet A, represented as unary-binary

plane trees. The internal nodes are either the unary star operator ∗ or one of the two binary

operators: union ∪ and concatenation •. The leaves (external nodes) are either letters

of A or the empty word ε (see example of Figure 3). Let Tn denote the set of all regular

expressions with n nodes (both internal and external), and T = ∪n∈NTn be the set of all

regular expressions. The size of an expression T ∈ T corresponds to the number of nodes

of the tree, that is the number of symbols in the expression (excluding parentheses). A

language defined on A is denoted by a regular expression when it is exactly the set of words

obtained by interpreting each symbol ∗, • or ∪ as the associated regular operation on sets

of words. Let L(T) be the language denoted by T ∈ T .

We extend the probabilistic model of the unary-binary trees defined in Section 2.1.0.1

to regular expressions as follows. Let pε ∈]0, 1[be the probability associated to ε and p

FSTTCS 2010

392 Average Analysis of Glushkov Automata under a BST-Like Model

be a mapping from A to]0, 1[such that
∑

a∈A p(a) = 1 − pε. The mapping p is extended

inductively to regular expressions by:

p
(∗

|
T

)
= p(T) if |T | = 1,

p
(∗

|
T

)
= q · p(T) if |T | ≥ 2,

p
(∪

/\
T1 T2

)
= 1−q

2(n−2) p(T1)p(T2) if |T1| + |T2| + 1 = n,

p
(•

/\
T1 T2

)
= 1−q

2(n−2) p(T1)p(T2) if |T1| + |T2| + 1 = n,

(2)

where q in]0, 1[is the probability for an internal node to be the star operator. One can

check by induction on n ≥ 1 that p is a discrete probability measure on Tn, i.e.,

∑

T ∈Tn

p(T) = 1. (3)

Note that the ∪-nodes and the •-nodes have the same probability to be generated in this

distribution (mostly to keep the following computations trackable).

According to this model, the algorithm UB(n) producing unary-binary trees transforms

into a random sampler RE(n) for regular expressions. This sampler has been used to generate

the random tree displayed by Figure 1, forgetting the labels, with q = 1/3. As for the uniform

tree of Figure 2, it has been produced by a Boltzmann sampler [9].

RE(n) ---

if n=1 then return ε with proba pε or a letter ℓ with proba p(ℓ)

if n=2 then return (RE(1))∗

else, choose "unary" with proba q or "binary" with proba 1 − q

if "unary" then return (RE(n − 1))∗

else choose k uniformly at random between 1 and n − 2

return RE(k) ∪ RE(n − k − 1) with proba 1/2

or return RE(k) • RE(n − k − 1) with proba 1/2

Note that to choose a random element in a set S = {s1, . . . , sn}, each with probability p(si),

one simply needs to pick a random value in the interval I = [0, 1[and return the element

corresponding to the subinterval of I where it belongs, when I is divided according to p:

I = [0, p(s1)[∪ [p(s1), p(s1) + p(s2)[∪ · · · ∪ [1 − p(sn), 1[.

2.3 Glushkov automaton

We give here the formal construction to compute the Glushkov automaton [12, 16, 3] of any

regular expression and introduce the notations used in the sequel.

Let m be the number of letter symbols in T , for T ∈ T . We consider the expression T̃

obtained from T by distinguishing the letters with subscripts in {1, . . . , m}, marking them

from left to right on its string representation, or equivalently using depth-first order on its

tree representation. For instance T0 = b∗ • (a∪ b• b)∗ is changed into T̃0 = b∗
1 • (a2 ∪ b3 • b4)∗.

We denote by Pos (T) the set of subscripted letters in T̃ : Pos (T0) = {b1, a2, b3, b4} in the

example. We also denote by ν the function from Pos (T) to A that removes the subscripts;

for instance, ν(a2) = a.

Cyril Nicaud, Carine Pivoteau, and Benoît Razet 393

istart b1

b3

a2

b4

a

b

b

a

b

a

b

b
b

b

a

Figure 4 Glushkov automaton for the expression T̃0 = b∗
1 • (a2 ∪ b3 • b4)∗.

The automaton construction we study relies on the relative positions of letters in the

words recognized by this automaton; thus we introduce the three following sets of distin-

guished letters that are used to describe these positions. For any regular expression T , let

First (T) and Last (T) be the sets defined by

First (T) = {α ∈ Pos (T) | ∃u ∈ L(T̃), u starts with the letter α},

and Last (T) = {α ∈ Pos (T) | ∃u ∈ L(T̃), u ends with the letter α}.

For instance, First (T0) = {b1, a2, b3} and Last (T0) = {b1, a2, b4}. And for any letter α in

Pos (T), the set Follow (T, α) is defined by

Follow (T, α) = {β ∈ Pos (T) | ∃u ∈ L(T̃), α and β are consecutive letters in u}.

The Glushkov automaton of T , also called the position automaton, is the automaton AT

defined by AT = (A, Q, R, {i}, F) with Q = Pos (T) ∪ {i}, F = Last (T) ∪ {i} if ε ∈ L(T)

and F = Last (T) otherwise, and

R = {i
ν(α)−−−→ α | α ∈ First (T)} ∪ {α

ν(β)−−−→ β | β ∈ Follow (T, α)}.

This classical construction provides an automaton that recognizes L(T). As an example,

the Glushkov automaton of T0 is depicted by Figure 4.

3 Main result

◮ Theorem 2. In the BST-like model, the average number of transitions in the Glushkov

automaton of a size n regular expression is quadratic, i.e., in Θ(n2).

Proof. First, assume that the expected size fn of First (its cardinality) is linear with

respect to the size n of the regular expression, i.e., that fn satisfies the asymptotic equivalent

fn ∼ Kn, for some positive real K that only depends on pε and q. The proof of this result

(Theorem 7), which is technical, is given in the next section.

Recall that Markov inequality states that if X is a non-negative random variable with

expectation E[X], then for any positive real number a,

P (X ≥ a) ≤ E[X]

a
.

For n ≥ 1, let Xn : Tn → R be the random variable that associates n − |First (T) | to

any T ∈ Tn. This random variable is non-negative, since |First (T) | is at most n for any

FSTTCS 2010

394 Average Analysis of Glushkov Automata under a BST-Like Model

element of Tn. Therefore, setting a = αn in Markov inequality, with 1 − K < α < 1, we

obtain that

P (Xn ≥ αn) ≤ E[Xn]

αn
,

and thus

P (|First (T) | ≤ (1 − α)n) ≤ n − fn

αn
.

The right quantity is asymptotically equivalent to 1−K
α < 1, then there exists two real

numbers β and γ in]0, 1[, with β < (1 − α) and 0 < γ < 1 − 1−K
α , such that for n large

enough,

P (|First (T) | ≥ βn) ≥ γ.

By symmetry, this result also holds for Last (T). Moreover, the probability that a regular

expression T of size n + 2 satisfies the following conditions:

T =
•

/\
T1 T2

, |T1| ∈
[
⌊ n

3 ⌋, ⌈ 2n
3 ⌉

]
, |Last (T1) | ≥ β|T1| and |First (T2) | ≥ β|T2|,

is at least, for n large enough,

1 − q

2︸ ︷︷ ︸
root=•

1

3︸︷︷︸
|T1|

γ︸︷︷︸
|Last(T1)|

γ︸︷︷︸
|First(T2)|

=
(1 − q)γ2

6
> 0.

Note that for any a in Last (T1) and any b in First (T2), the transition a
ν(b)−−→ b is in

the automaton, since the letter b is in Follow (T1 • T2, a). Therefore, any tree satisfying

the above conditions yields to an automaton with at least |Last (T1) | · |First (T2) | ≥ β2n2

transitions. Therefore, the expected number of transitions is bounded below by

(1 − q)γ2

6
β2n2 = Ω

(
(n + 2)2

)
,

in the Glushkov automaton of a size n + 2 expression. The O(n2) bound being obvious, the

result follows. ◭

The next section is devoted to the exposition of some intermediate results to complete

this proof. Among them, the key point is given by Theorem 7, which states that the

average size of First (resp. Last) is linear with respect to the size of the regular expression;

considering only the sub-expressions of the form T1 • T2, one can observe that the number

of new transitions they imply in the automata is |Last (T1) | · |First (T2) |, which justify the

quadratic number of transitions in the whole automata. The other point is that the size of

First (resp. Last) is highly related to the probability of recognizing the empty word, given

by Theorem 3 which states that a large expression recognizes ε with high probability.

4 Some properties of random expressions in the BST-like model

4.1 Analytic tools

In the sequel, the proofs mostly rely on techniques of analytic combinatorics. To study

the asymptotic behavior of a sequence (an)n∈N, the idea is to consider its generating func-

tion A(z), which is the formal power series defined by

A(z) =
∑

n∈N

anzn.

Cyril Nicaud, Carine Pivoteau, and Benoît Razet 395

From a recursive specification of (an)n∈N, one can often get a functional equation satisfied

by A(z). At this point, several theorems exist to compute asymptotic estimates of its Taylor

coefficients, which are exactly the an’s. These theorems mainly use the theory of complex

analysis, seeing generating functions as analytic functions from C to C. The main idea is

that asymptotic equivalents for the coefficients of a generating function can be obtained by

studying it around its dominant singularities (its singularities of smallest moduli).

In this article, the recursive descriptions of sequences lead to ordinary differential equa-

tions for their generating functions. These equations can be solved using the well-known

variation-of-constants method, and the solutions have similar properties: they have a unique

dominant singularity at 1 and satisfy the required analytic conditions. Therefore, provided

the expansion of A(z) near 1 is of the form

A(z) = C(1 − z)α + O
(
(1 − z)β

)
with α ∈ R \ N, α < β and C 6= 0,

Transfer Theorem [11] gives that an ∼ C
Γ(−α) n−α−1, where Γ is Euler’s Gamma function,

the analytic continuation of s 7→
∫ ∞

0
ts−1e−tdt.

For more information on analytic combinatorics techniques, the reader is referred to the

comprehensive book by Flajolet and Sedgewick [11].

4.2 Recognizing the empty word

This section is devoted to the proof of Theorem 3 which gives the probability that a regular

expression of a given size recognizes the empty word.

Let rn denote the probability that a size n regular expression does not recognize ε, with

the convention r0 = 0:

rn =
∑

T ∈Tn

ε/∈L(T)

p(T).

◮ Theorem 3. A large random regular expression recognizes the empty word with high prob-

ability. More precisely, in the BST-like model, the probability that a size n regular expression

does not recognize ε is asymptotically equivalent to

rn ∼ C

nq
with C =

(1 − pε)

e1−qΓ(1 − q)

(
1 −

∫ 1

0

e(1−q)t(1 − t)1−q − 1

t2
dt

)
.

Using basic computations, one can establish the following lemma from Equation (2):

◮ Lemma 4. The sequence (rn)n∈N satisfies r1 = 1 − pε, r2 = 0 and for any n ≥ 1,

rn+2 =
1 − q

n

n∑

ℓ=1

rℓ.

Let R(z) =
∑

n∈N
rnzn, with r0 = 0, denote the generating function associated to the

sequence (rn)n∈N. For all n ∈ N, since it is as a probability, rn is in [0, 1]; then R(z) is

analytic at 0 and its radius of convergence is at least 1.

◮ Lemma 5. The generating function R(z) satisfies the following differential equation

z
d

dz
R(z) − (1 − q)z2 − 2z + 2

1 − z
R(z) + (1 − pε)z = 0.

FSTTCS 2010

396 Average Analysis of Glushkov Automata under a BST-Like Model

Proof. (Sketch) Multiply the general formula of Lemma 4 by nzn+2 and sum for n ≥ 1.

Then identify the expressions of the power series R(z) and d
dz R(z). ◭

◮ Proposition 6. Let g be the function defined by

g(z) =
e(1−q)z(1 − z)1−q − 1

z2
.

The function g(z) has a false pole at zero, that can be removed, and one has

R(z) = (1 − pε)

(
1 − z

∫ z

0

g(t)dt

)
ze(q−1)z(1 − z)q−1.

Proof. The formula is obtained by the variation-of-constants method. Once stated, one can

also directly verify that it satisfies the differential equation of Lemma 5 with the same initial

conditions as R(z). ◭

of Theorem 3. The proof is an application of analytic combinatorics techniques, and more

precisely of singularity analysis of generating functions (see [11, Ch. VI]).

The function g(z) = z−2(e(1−q)z(1 − z)1−q − 1) has its unique dominant singularity at 1

where we have:

g(z) = −1 + e1−q(1 − z)1−q + O((1 − z)).

Hence, by Singular Integration Theorem [11, p. 420], the antiderivative of g satisfies near 1

the following development:
∫ z

0

g(t)dt = −1 + O(1 − z) − e1−q

2 − q
(1 − z)2−q +

∫ 1

0

(g(t) + 1)dt + O((1 − z)2)

=

∫ 1

0

g(t)dt + O(1 − z).

Hence, R(z) has its unique dominant singularity at 1 too, and near 1 one has

R(z) = (1 − pε)eq−1

(
1 −

∫ 1

0

g(t)

)
(1 − z)q−1 + O((1 − z)q).

Using Transfer Theorem [11, p. 393], we obtain

rn ∼
(1 − pε)eq−1

(
1 −

∫ 1

0
g(t)

)

Γ(1 − q)
n−q,

concluding the proof.

◭

4.3 The average size of First is linear

In this section, we establish the following theorem. Some of the proofs are omitted, since

they are similar to those of Theorem 3.

◮ Theorem 7. The average size of First for a size n regular expression, according to the

BST-like model, is asymptotically equivalent to K n, for some real constant K ∈]0, 1[.

Let fn be the average cardinality of First for regular expressions of size n:

fn =
∑

T ∈Tn

| First (T) | · p(T).

Note that, by symmetry, fn is also the average size of Last for regular expressions in Tn.

Cyril Nicaud, Carine Pivoteau, and Benoît Razet 397

◮ Lemma 8. The sequence (fn)n∈N satisfies f1 = f2 = 1 − pε and for any n ≥ 1,

fn+2 = qfn+1 +
2(1 − q)

n

n∑

ℓ=1

fℓ − 1 − q

2n

n∑

ℓ=1

rℓfn+1−ℓ.

Let F (z) =
∑

n∈N
fnzn, with f0 = 0, be the generating function associated to the

sequence (fn)n∈N.

◮ Lemma 9. The generating function F (z) satisfies the following differential equation

z(1 − qz)
d

dz
F (z) −

(
2 − qz +

2(1 − q)z2

1 − z
− 1 − q

2
zR(z)

)
F (z) + (1 − pε)z = 0.

Solving this equation, we obtain the following proposition.

◮ Proposition 10. Let h be the function defined by

h(z) =
(1 − z)2

z2(1 − qz)2/q
− 1

z2
.

The function h(z) has a false pole at zero, which can be removed, and one has

F (z) =
z(1 − qz)2/q−1

(1 − z)2
(1 − pε) exp

(
−1 − q

2

∫ z

0

R(t)

1 − qt
dt

) (
1 + (1 − q)z − z

∫ z

0

h(t)dt

)
.

The proof of Theorem 7 is an analysis of F (z) near its unique dominant singularity 1,

using our result on R(z). We obtain that

F (z) =
K

(1 − z)2
(1 + O ((1 − z)q)) and fn ∼ K n,

with

K = (1 − pε)(1 − q)2/q−1 exp

(
−1 − q

2

∫ 1

0

R(t)

1 − qt
dt

) (
2 − q −

∫ 1

0

h(t)dt

)
.

5 Conclusion and perspectives

In this article, we analyzed the average size of Glushkov automata associated to random

regular expressions, in the BST-like model. Using analytic combinatorics techniques, we

proved that, unlike in the uniform case, the average number of transitions in an automaton

is quadratic with respect to the size of the expression.

We implemented the procedure RE(n) given in Section 2.2 in order to confirm empirically

our theoretical results. One of these experiments is displayed by Figure 5 (plain line). The

x-axis represents the size of the regular expressions and the y-axis represents the number of

transitions in the corresponding Glushkov automata. The dotted line corresponds to an other

bench of experiments, involving a different kind of regular expressions, where the Kleene

Star operator ∗ (reflexive and transitive closure of the concatenation) has been replaced

by a + operator (only transitive closure of the concatenation). Considering the classical

regular expressions, the quadratic behavior clearly appears on Figure 5, whereas it seems to

be linear for expressions using only the + operator.

One can reasonably expect to prove the linear behavior observed in Figure 5b, using the

techniques of the present paper combined with those of [17]. This seems to be confirmed by

the calculations we have already performed. A natural extension of this work is therefore

to complete this proof. In a different direction, the average analysis of other constructions

related to Glushkov automata, could be considered. Among them are the Follow automaton

by Ilie and Yu [13] and Antimirov automaton [2], which are both quotients of Glushkov

automaton (see [4]).

FSTTCS 2010

398 Average Analysis of Glushkov Automata under a BST-Like Model

0

4e+06

8e+06

1.2e+07

1.6e+07

0 10000 20000 30000 40000

nu
m

be
r

of
 tr

an
si

tio
ns

size of expression

Number of transtitions for Glushkov automata

regular expressions
plus expressions

(a)

0

100000

200000

300000

400000

0 10000 20000 30000 40000

nu
m

be
r

of
 tr

an
si

tio
ns

size of expression

Number of transtitions for Glushkov automata

regular expressions
plus expressions

(b)

Figure 5 Number of transitions of Glushkov automata with respect to the size of expressions

defined on the alphabet A = {a, b}, with parameters q = 1
3
, pε = 1

100
and p(a) = p(b). Note that

(a) and (b) display the same data, but with different scales.

References

1 Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, techniques, and

tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

2 Valentin Antimirov. Partial derivatives of regular expressions and finite automaton con-

structions. Theoretical Computer Science, 155(2):291–319, 1996.

3 Gérard Berry and Ravi Sethi. From regular expressions to deterministic automata. Theo-

retical Computer Science, 48(1):117–126, 1986.

4 Jean-Marc Champarnaud and Djelloul Ziadi. Canonical derivatives, partial derivatives and

finite automaton constructions. Theoretical Computer Science, 289(1):137 – 163, 2002.

5 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction

to Algorithms. MIT Press, Cambridge, MA, second edition, 2001.

6 Marco Daniele, Fausto Giunchiglia, and Moshe Y. Vardi. Improved automata generation

for Linear Temporal Logic. In Nicolas Halbwachs and Doron Peled, editors, CAV, volume

1633 of Lecture Notes in Computer Science, pages 249–260. Springer, 1999.

7 Luc Devroye. A note on the height of binary search trees. Journal of the ACM, 33(3):489–

498, 1986.

8 Michael Drmota. An analytic approach to the height of binary search trees. Journal of the

ACM, 50:89–119, 2001.

9 Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer. Boltzmann sam-

plers for the random generation of combinatorial structures. Combinatorics, Probability

and Computing, 13(4–5):577–625, 2004.

10 Philippe Flajolet and Andrew Odlyzko. The average height of binary trees and other simple

trees. The Journal of Computer and System Sciences, 25(2):171–213, 1982.

11 Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University

Press, 2009.

12 Victor Glushkov. The abstract theory of automata. Russian Mathematical Surveys, 16:1–

53, 1961.

13 Lucian Ilie and Sheng Yu. Follow automata. Information and Computation, 186(1):140–162,

2003.

14 Stephen Cole Kleene. Representation of events in nerve nets and finite automata. Automata

Studies, Annals of Mathematics Studies, 36, 1956.

Cyril Nicaud, Carine Pivoteau, and Benoît Razet 399

15 Conrado Martínez. Statistics Under the BST Model. PhD thesis, UPC, Spain, 1992.

16 Robert McNaughton and Hisao Yamada. Regular expressions and state graphs for au-

tomata. IRE Transactions on Electronic Computers, 9:39–47, 1960.

17 Cyril Nicaud. On the average size of Glushkov’s automata. In Adrian Horia Dediu, Armand-

Mihai Ionescu, and Carlos Martín-Vide, editors, LATA, volume 5457 of Lecture Notes in

Computer Science, pages 626–637. Springer, 2009.

18 John M. Robson. The height of binary search trees. Australian Computer Journal,

11(4):151–153, 1979.

19 Heikki Tauriainen and Keijo Heljanko. Testing SPIN’s LTL formula conversion into Büchi

automata with randomly generated input. In Klaus Havelund, John Penix, and Willem

Visser, editors, SPIN, volume 1885 of Lecture Notes in Computer Science, pages 54–72.

Springer, 2000.

FSTTCS 2010

	Introduction
	Definitions
	The BST-like distribution
	Random regular expressions
	Glushkov automaton

	Main result
	Some properties of random expressions in the BST-like model
	Analytic tools
	Recognizing the empty word
	The average size of First is linear

	Conclusion and perspectives

