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Abstract. A binary matrix has the Consecutive Ones Property (C1P)
if there exists a permutation of its columns (i.e. a sequence of column
swappings) such that in the resulting matrix the 1s are consecutive in
every row. A Minimal Conflicting Set (MCS) of rows is a set of rows R
that does not have the C1P, but such that any proper subset of R has
the C1P. In [5], Chauve et al. gave a O(∆2mmax(4,∆+1)(n+m+ e)) time
algorithm to decide if a row of a m × n binary matrix with at most ∆
1s per row belongs to at least one MCS of rows. Answering a question
raised in [2], [5] and [25], we present the first polynomial-time algorithm
to decide if a row of a m× n binary matrix belongs to at least one MCS
of rows.

1 Introduction

A binary matrix has the Consecutive Ones Property (C1P) if its columns can be
ordered in such a way that all 1s on each rows are consecutive. Both deciding if
a given binary matrix has the C1P and finding the corresponding columns per-
mutation can be done in linear-time [4, 11, 12, 15–17, 19, 22]. A characterization
of matrices having the C1P is given in [23]. The C1P of matrices has a long
history and it plays an important role in combinatorial optimization, including
application fields such as scheduling [1, 13, 14, 28], information retrieval [18], and
railway optimization [20, 21, 24] (see [8] for a recent survey).

This paper is devoted to Minimal Conflicting Sets (MCS), i.e., minimal sets
of rows or columns that prevent the matrix from having the C1P. A Minimal
Conflicting Sets of Rows (MCSR) (resp. Minimal Conflicting Sets of Columns
(MCSC)) is a set of rows R (resp. columns C) of a matrix that does not have the
C1P but such that any proper subset of R (resp. C) has the C1P. Dom [9] has
given an algorithm to find a minimum conflicting set in a given matrix. Recent
research in comparative genomics has proved MCS to be of particular interest.
Indeed, Bergeron et al. [2] and Stoye et al. [25] have shown how to compute
parsimonious evolution scenarios of gene clusters by ranking rows according to
their Conflicting Index (CI), i.e., the number of MCSR involving a row. In both
papers, the problems of efficiently computing the CI of a row and of generating
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all the MCS of a matrix problems were explicitly raised. Chauve et al. [5] gave the
first results for those two problems by presenting a O(∆2mmax(4,∆+1)(n+m+e))
time algorithm to decide if a row of m × n binary matrix with at most ∆ 1s
per row has a positive CI. Note that this algorithm is practical only for small ∆
and Chauve et al. left as an open problem the question of whether there exists
a polynomial-time algorithm to decide if a row has a positive CI. In this paper
we give a positive answer to this open problem by combining characterization of
matrices having the C1P with graph pruning techniques.

This paper is organized as follows. In Section 2, we recall basic definitions
and formally introduce the problem we are interested in. We give in Section 3
a polynomial-time algorithm to decide if a row has a positive CI, and propose
in Section 4 some natural extensions. Due to space constraint, most proofs are
omitted.

2 Preliminaries

We assume readers have basic knowledge about graph theory [7] and we shall
thus use most conventional terms of graph theory without defining them (we
only recall basic definitions). Let G = (V,E) be a graph. The neighborhood of a
vertex v ∈ V is the set N(v) = {u : {u, v} ∈ E}. Two distinct vertices u, v ∈ V
are called twins if they have the same neighborhood, i.e., N(u) = N(v). For any
V ′ ⊆ V , we denote by G[V ′] the subgraph of G induced by V ′ with the addi-
tional property that all isolated vertices have been deleted (whereas the latter
requirement is non-standard it will prove useful to simplify the presentation). A
path from vertex u to vertex v is abbreviated to a uv-path. Finally, for any path
p in G, we let V (p) ⊆ V stand for the set of all vertices involved in p.

A matrix M is simple if it does not contain two identical columns or rows,
and simplifying a matrix is the (polynomial-time) process of deleting identical
rows and columns. In the sequel, we assume any matrix to be simplified. A (0, 1)-
matrix is a matrix in which each entry is either zero or one. Let M be a m× n
(0, 1)-matrix. Its corresponding vertex-colored bipartite graph G(M) = (R, C, E)
is defined as follows: for every row (resp. column) of M there is a black (resp.
white) vertex in R (resp. C), and there is an edge between a black vertex vi and
a white vertex vj , i.e., an edge between the vertices that correspond to the ith

row and the jthth column of M , if and only if M [i, j] = 1. Equivalently, M is
the reduced adjacency matrix of G(M). We shall usually write R = {ri : 1 ≤
i ≤ m} and C = {cj : 1 ≤ j ≤ n}. In the sequel, we shall speak indistinctly
about binary matrices and their corresponding vertex-colored bipartite graphs.
An asteroidal triple is an independent set of three vertices such that each pair
is joined by a path that avoids the neighborhood of the third. Tucker [27] has
proved that if a (0, 1)-matrix contains an asteroidal triple then it does not have
the C1P. Furthermore, Tucker has given a complete characterization of matrices
containing asteroidal triples.
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Theorem 1 ([27], Theorem 9). A (0, 1)-matrix has the C1P if and only if it
contains none of the matrices MIk , MIIk , MIIIk (k ≥ 1), MIV and MV depicted
in Figure 1.

Write T = {MIk ,MIIk ,MIIIk ,MIV ,MV }. Let M be a (0, 1)-matrix. Ac-
cording to Theorem 1, for any MCSR RT of M , G(M)[RT ∪ C] contains at
least one Tucker configuration T = (RT , CT , E′) ∈ T , and for any R′

T ( RT ,
G(M)[R′

T ∪ C] has the C1P, i.e., it does not contain a Tucker configuration. A
similar observation can be done for MCSC. For the sake of brevity, any Tucker
configuration contained in an MCSR (or MCSC) will be said to be responsible
for this MCSR (or MCSC).

Fig. 1. Forbidden bipartite graphs [27]. Black (resp. white) vertices correspond to rows
(resp. columns) of the corresponding matrices. Gray vertices and light edges are not
part of the Tucker configurations but represent the extra columns that our algorithm
will report. For G(MIk ), any triple of white vertices forms an asteroidal triple. For all
other forbidden structures, there are exactly one asteroidal triple (cx, cy, cz).

Following our previous work on Tucker forbidden structures [3], our algo-
rithm is based on shortest paths and two graph pruning techniques (graph prun-
ing techniques were introduced by Conforti et al. [6]). Let us define the clean
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and anticlean pruning operations. Let M be a binary matrix and G(M) =
(R, C, E) be the corresponding vertex-colored bipartite graph. For any vertex
v ∈ R (resp. v ∈ C), clean(v) results in the graph G(M)[R ∪ (C \ N(v))]
(resp. G(M)[(R \ N(v)) ∪ C]). In other words, clean(v) results in a graph
where any neighbor of v has been deleted. For any node v ∈ R (resp. v ∈ C),
anticlean(v) results in the graph G(M)[R ∪ (C \ {u : u 6∈ N(v)})] (resp.
G(M)[(R\{u : u 6∈ N(v)})∪C]). In other words, anticlean(v) results in a graph
where any node that does not belong to the same partition nor the neighborhood
of v has been deleted. By abuse of notation, we shall write clean(u1, u2, . . . , uk)
for the sequence clean(u1), clean(u2), . . . , clean(uk) (a similar abuse will be
used for anticlean).

Remark 1. It is of particular importance to note that we shall always consider
that vertices given as inputs to our algorithms will never be affected (i.e., deleted)
by the clean and anticlean operations.

3 Finding an MCSR involving a given row

We present in this section a polynomial-time algorithm for reporting (if it exists)
an MCSR involving a given row. Our main result can be stated as follows.

Proposition 1. Let M be m × n (0, 1)-matrix. For any row r of M , decid-
ing whether there exists an MCSR involving row r is solvable in O(m6n5(m +
n)2 log(m+ n)) time.

To prove Proposition 1, we provide a sequence of polynomial-time algo-
rithms for finding a minimal Tucker configuration of a given type T ∈ T =
{MIk ,MIIIk ,MIIk ,MIV ,MV } (in this particular order) responsible for an MCSR
involving a given row (if it exists). The following easy lemma will prove to be
extremely useful in the sequel.

Lemma 1. Let T = (RT , CT , ET ) be a Tucker configuration responsible for an
MCSR involving a given row r in G(M) = (R, C, E). Then RT is an MCSR
involving r and there is no smaller Tucker configuration – in terms of number
of rows (or black nodes) – in G(M)[RT ∪ C].

3.1 MIk Tucker configurations

Proposition 2. Let M be a (0, 1)-matrix with corresponding vertex-colored bi-
partite graph G(M) = (R, C, E), and r be any row of M . Finding (if it exists)
a minimum cardinality RT ⊆ R responsible for an MCSR involving row r such
that G(M)[RT , CT ] = G(MIk) for some CT ⊆ C and some k ≥ 1 is a O(m4n4)
time procedure.

Observe that MIk is a hole (a chordless cycle of length at least 6), and hence
without loss of generality we associate r to rA in G(MIk) (see Figure 1). We
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Algorithm 1 Check-MIk(cx, cy, rA, rB , rC)

Require: A bipartite graph G(M) = (R, C, E), three black vertices rA, rB , rC ∈ R (r
identified to rA) and two white vertices cx, cy ∈ C such that (rC , cy, rA, cx, rB) is a
path in G(M). It is assumed that G(M) does not contain any G(MI1) or G(MI2)
involving row r.

Ensure: Return RT ⊆ R such that G(MIk ) = (RT , CT , E′) for some CT ⊆ C is an
MCSR involving row r, or return the failure message ”NO” if such a configuration
does not exist.

1: if N(rA) ∩N(rB) ∩N(rC) 6= ∅ then
2: return ”NO”
3: end if
4: clean(c) for all c ∈ N(rA) \N(rB)
5: clean(c) for all c ∈ N(rA) \N(rC)
6: clean(rA, cx, cy)
7: delete vertex rA
8: if there exists a rBrC-path in the pruned graph then
9: let P be a shortest rBrC-path in the pruned graph

10: return return {rA} ∪ {ri : ri ∈ V (P ) ∩R}
11: else
12: return ”NO”
13: end if

need to consider three cases: k = 1, k = 2 and k > 2. We first try to find
some G(MI1) = (RT , CT , E′) involving row r using any brute-force algorithm.
If we succeed, we are done since any proper subset of RT – of size at most 2 –
cannot contain any other Tucker configuration. Otherwise, using any brute-force
algorithm, we try to find some G(MI2) = (RT , CT , E′) involving row r with the
additional property that there do not exist R′

T ( RT and C′T ⊆ C such that
G(MIII1) = G(M)[R′

T ∪ C′T ]. This latter additional constraint is necessary and
sufficient since G(MIII1) is the only smaller Tucker configuration involving row
r that could occur in G(M). If both tries failed, we turn to k > 2 and apply
Algorithm 1 for every tuple of parameters (cx, cy, r, rB , rC), where cx, cy ∈ C,
rB , rC ∈ R, and (rC , cy, r, cx, rB) is a path in G(M). Among the non-failure
answers (if any), we return the smallest one.

Lemma 2. If there exist an MCSR RT ⊆ R with {rA = r, rB , rC} ⊆ RT
such that G(M)[RT , CT ] = G(MIk) for some k > 2 and some CT ⊆ C with
{cx, cy} ⊆ CT , then Algorithm 1 for parameters (cx, cy, rA = r, rB , rC) finds it.

We now turn to evaluating the time complexity of one call to Algorithm 1.
Checking thatN(ri)∩N(rB)∩N(rC) is empty is aO(n) time procedure. Cleaning
any white vertex can be done in O(m) time and cleaning rA can be done in O(n)
time. Using a BFS search, finding a shortest rBrC-path is O(n+m+mn) time.
Summing up, the total time complexity of Algorithm 1 is O(mn).

Correctness of Proposition 2 follows from Lemma 2. What is left is to prove
the total time complexity. According to Lemma 2, for any row r, we can call
Algorithm 1 for parameters (cx, cy, rA = r, rB , rC) to find an MCSR (if it exists)
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involving row r. There are O(m2n2) such tuples, and hence we have a O(m3n3)
time procedure for k > 2. As for k = 1 and k = 2, a brute-force algorithm yields a
O(m4n4) time procedure, the dominant term in our approach for G(MIk) Tucker
configurations.

3.2 MIIIk Tucker configurations

We assume in this subsection that there does not exist a G(MIk) Tucker config-
uration in G(M) responsible for an MCSR involving a given row r.

Proposition 3. Let M be a (0, 1)-matrix with corresponding vertex-colored bi-
partite graph G(M) = (R, C, E), and r be any row of M . Assuming that there
does not exist a G(MIk) in G(M) responsible for an MCSR involving row r,
finding (if it exists) a minimum cardinality RT ⊆ R responsible for an MCSR
involving row r such that G(M)[RT , CT ] = G(MIIIk) for some CT ⊆ C and some
k ≥ 1 is a O(m5n5(m+ n)2 log(m+ n)) time procedure.

If such a G(MIIIk) Tucker configuration exists and is responsible for an
MCSR involving row r, then r can be any of the black vertices of G(MIIIk).
However, thanks to symmetries, it is enough to suppose that row r is identified
to rA, rD or rF in G(MIIIk).

Our algorithm is as follows. If we don’t succeed in finding some G(MIk)
Tucker configuration responsible for an MCSR involving row r (see Subsec-
tion 3.1), we look for some T = G(MIII1) = (RT , CT , ET ) Tucker configuration
involving row r (brute-force algorithm). If such a G(MIII1) Tucker configura-
tion exists, RT is certainly an MCSR (involving row r). If we fail, we call Al-
gorithm 2 for every tuple of arguments (cx, cy, cz, r, rB , rF ) with rB , rF ∈ R
and cx, cy, cz ∈ C, and next call Algorithm 3 for every tuple of arguments
(cv, cw, cx, cy, cz, rA, rB , rC , r, rE , rF ) with rA, rB , rC , rE , rF ∈ R and cv, cw, cx, cy, cz ∈
C. Among the non-failure solutions, we return the smallest one.

Lemma 3. If there exists an MCSR RT ⊆ R involving row r (identified to rA
or rB) such that {rA, rB , rF } ⊆ RT and {cx, cy, cz} ∈ CT , and G(M)[RT , CT ] =
G(MIIIk) for some k > 1 and some CT ⊆ C, then Algorithm 2 for arguments
(cx, cy, cz, rA, rB , rF ) finds it.

Lemma 4. If there exists an MCSR RT ⊆ R involving row r (identified to
rD) such that {rA, rB , rC , rD, rE , rF } ⊆ RT and {cv, cw, cx, cy, cz} ∈ CT , and
G(M)[RT , CT ] = G(MIIIk) for some k > 1 and some CT ⊆ C, then Algorithm 3
for arguments (cv, cw, cx, cy, cz, rA, rB , rC , r, rE , rF ) finds it.

We now turn to evaluating the time complexity of Algorithm 3 (the time
complexity of Algorithm 2 is clearly negligible with that of Algorithm 3). There
are O(m5n5) calls to Algorithm 3, and hence the whole procedure (summing up
all calls to Algorithm 3) is O(m5n5(m+n)2 log(m+n)) time. As for the exhaus-
tive search for G(MIII1) Tucker configurations, it is O(m3n4) time. Therefore,
the algorithm, as a whole, is O(m5n5(m + n)2 log(m + n)) time. Proposition 3
is proved.
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Algorithm 2 Check-MIIIk(cx, cy, cz, rA, rB , rF )

Require: A bipartite graph G(M) = (R, C, E), three black vertices rA, rB , rF ∈ R
and three white vertices cx, cy, cz ∈ C such that rA ⊆ N(cx), rB ⊆ N(cy), and
rF ⊆ N(cz). Row r is identified to rA or rB . It is assumed that G(M) does not
contain any G(MIk ) or G(MIII1) Tucker configuration involving row r.

Ensure: Return RT ⊆ R such that where G(MIIIk ) = (RT , CT , E′) for some CT ⊆ C
is a (row-) minimal MCSR involving row r if it exists, or the failure message ”NO”
if such a configuration does not exist.

1: clean(cx, cy, cz)
2: clean(c) for all c /∈ N(rA)
3: anticlean(rA)
4: remove vertex rA
5: if there exists a rBrF -path in the pruned graph then
6: let P be a shortest rBrF -path in the pruned graph
7: return return {rA} ∪ {r : r ∈ V (P ) ∩R}
8: else
9: return ”NO”

10: end if

Algorithm 3 Check-MIIIk(cv, cw, cx, cy, cz, rA, rB , rC , rD, rE , rF )

Require: A bipartite graph G(M) = (R, C, E), six black vertices
rA, rB , rC , rD, rE , rF ∈ R and five white vertices cv, cw, cx, cy, cz ∈ C such
that rA ⊆ N(cx) ∩ N(cv) ∩ N(cw), rB ⊆ N(cy), rF ⊆ N(cz), rC ⊆ N(cv),
rD ⊆ N(cv) ∩ N(cw), and rE ⊆ N(cw). Row r is identified to rD. It is assumed
that G(M) does not contain any G(MIk ) or G(MIII1) Tucker configuration
involving row r.

Ensure: Return RT ⊆ R such that G(MIIIk ) = (RT , CT , E′) for some CT ⊆ C is
a (row-) minimal MCSR involving row r, or the failure message ”NO” if such a
configuration does not exist.

1: if N(rC) ∩N(rD) ∩N(rE) 6= ∅ or (N(rC) ∪N(rD) ∪N(rE)) \N(rA) 6= ∅ then
2: return ”NO”
3: end if
4: clean(c) for all c ∈ N(rD)
5: clean(cv, cw, cx, cy, cz)
6: clean(c) for all c /∈ N(rA)
7: anticlean(rA)
8: remove the node rA
9: if there exists a rBrF -path using rD in the pruned graph then

10: let P be a shortest such rBrF -path in the pruned graph
11: return return {rA} ∪ {r|r ∈ V (P ) ∩R}
12: else
13: return ”NO”
14: end if

3.3 MIIk Tucker configurations

We assume in this subsection that there does not exist a G(MIk) nor a G(MIIIk)
Tucker configuration in G(M) responsible for an MCSR involving a given row r.
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Proposition 4. Let M be a (0, 1)-matrix with corresponding vertex-colored bi-
partite graph G(M) = (R, C, E), and r be any row of M . Assuming that there
does not exist a G(MIk) in G(M) responsible for an MCSR involving row r,
finding (if it exists) a minimum cardinality RT ⊆ R responsible for an MCSR
involving row r such that G(M)[RT , CT ] = G(MIIk) for some CT ⊆ C and some
k ≥ 1 is a O(m6n5(m+ n)2 log(m+ n)) time procedure.

Notice that if such a G(MIIk) Tucker configuration does exist and is respon-
sible for an MCSR involving row r then r can be any of the black vertices of
G(MIIk) (see Figure 1). However, thanks to symmetries, it is enough to suppose
that row r is identified to rA, rC or rE in G(MIIk) (all other possibilities are
equivalent up to a straightforward renaming). Although at first odd, it is also
crucial for correctness to assume that no G(MIk) is responsible in G(M) for an
MCSR involving row r.

Our algorithm is as follows. If we don’t succeed in finding some G(MIk)
Tucker configuration responsible for an MCSR involving row r (see Subsec-
tion 3.1), we next look for some G(MII1) = (RT , CT , E′) Tucker configuration
involving row r using any brute-force algorithm. If we succeed, we are done
since any proper subset of RT – of size at most 3 – cannot contain any other
Tucker configuration. Otherwise, we use a three-step procedure. We first call
Algorithm 4 for every tuple (cx, cy, cz, rA, rB , rC , rH) with rA = r, rB , rC , rH ∈
R and cx, cy, cz ∈ C, and next for every tuple (cx, cy, cz, rA, rB , rC , rH) with
rA, rB , rC = r, rH ∈ R and cx, cy, cz ∈ C. Finally, we call Algorithm 5 for every
tuple (cv, cw, cx, cy, cz, rA, rB , rC , rH , rD, r, rF ), rA, rB , rC , rD, rF , rH ∈ R and
cv, cw, cx, cy, cz ∈ C. Among the non-failure solutions, we return the smallest
one.

Lemma 5. If there exists an MCSR RT ⊆ R involving row r (either identified
to rA or rC) such that {rA, rB , rC , rH} ⊆ RT , {cx, cy, cz} ⊆ CT for some
CT ⊆ C, and G(M)[RT , CT ] = G(MIIk) for some k > 1, then Algorithm 4 for
arguments (cx, cy, cz, rA, rB , rC , rH) finds it.

Lemma 6. If there exists an MCSR RT ⊆ R involving row r (identified to rE)
such that {rA, rB , rC , rD, rE , rF , rH} ⊆ RT , {cv, cw, cx, cy, cz} ⊆ CT for some
CT ⊆ C, and G(M)[RT , CT ] = G(MIIk) for some k > 1, then Algorithm 5 for
arguments (cv, cw, cx, cy, cz, rA, rB , rC , rD, r, rF , rH) finds it.

We now turn to evaluating the time complexity of Algorithm 5 (the time
complexity of Algorithm 4 is clearly negligible with that of Algorithm 5). We
first observe that, in a graph of order n, one can find a shortest uv-path that
goes through a given node w in O(n2 log n) time [26]. Indeed, it is enough to add
a new vertex x, N(x) = {u, v}, and use the algorithm of Suurballe to find two
vertex-disjoint paths between a source (i.e., w) and a sink (i.e., x) with minimum
sum length. Testing emptiness of N(rH)∩N(rA)\N(rB), N(rC)∩N(rB)\N(rA),
N(rD) ∩N(rE) ∩N(rF ), and (N(rD) ∪N(rE) ∪N(rF )) \ (N(rA) ∩N(rB))) is
a simple O(n) time procedure. Cleaning any white node can be done in O(m)
time, and cleaning rA and rB in O(n) time. Moreover, according to the above,
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Algorithm 4 Check-MIIk(cx, cy, cz, rA, rB , rC , rH)

Require: A bipartite graph G(M) = (R, C, E), four black vertices rA, rB , rC , rH ∈ R
and three white vertices cx, cy, cz ∈ C such that (rC , cy, rA, cx, rB , cz, rH) is a path
in G(M). Row r is identified either to rA or rC . Furthermore, it is assumed that
G(M) does not contain any G(MIk ) or G(MII1) Tucker configuration involving
row r.

Ensure: Return RT ⊆ R such that G(MIIk ) = (RT , CT , E′) for some CT ⊆ C is an
MCSR involving row r, or the failure message ”NO” if such a configuration does
not exist.

1: if N(rH) ∩ (N(rA) \N(rB)) 6= ∅ or N(rC) ∩ (N(rB) \N(rA)) 6= ∅ then
2: return ”NO”
3: end if
4: clean(c) for all c /∈ N(A) ∩N(B)
5: clean(cx, cy, cz)
6: anticlean(rA, rB)
7: remove the vertices rA and rB
8: if there exists a rCrH -path in the pruned graph then
9: let P be a shortest rCrH -path in the pruned graph

10: return {rA, rB , rC , rH} ∪ {r : r ∈ V (P ) ∩R}
11: else
12: return ”NO”
13: end if

finding a shortest rCrH -path that goes through rE in the pruned graph (after
having removed rA and rB) is a in O((m+n)2 log(m+n)) procedure. Therefore,
the time complexity of one call to Algorithm 5 is O((m+ n)2 log(m+ n)) time.

According to Lemma 6, for a given row r, we have to call Algorithm 5 for
any tuple (cv, cw, cx, cy, cz, rA, rB , rC , rD, r, rF , rH), rA, rB , rC , rD, r, rF , rH ∈ R
and cv, cw, cx, cy, cz ∈ C, and return the smallest MCSR involving row r (if such
a Tucker configuration exists). There are O(m6n5) such tuples for a given row
r, and hence trying all tuples results in a O(m6 < n5(m+ n)2 log(m+ n)) time
procedure. The exhaustive search for G(MII1) is a simple O(m4n4) time proce-
dure. Therefore, one can find the smallest RT ⊆ R such that G(M)[RT , CT ] =
G(MIIk) for some CT ⊆ C that is responsible for an MCSR involving row r in
O(m6n5(m+ n)2 log(m+ n)) time (if it exists). Proposition 4 is proved.

3.4 MIV and MV Tucker configurations

Proposition 5. Let M be a (0, 1)-matrix with corresponding vertex-colored bi-
partite graph G(M) = (R, C, E), and r be any row of M . Finding (if it exists)
a minimum cardinality RT ⊆ R responsible for an MCSR involving row r such
that G(M)[RT , CT ] = G(MIV ) (resp. G(MV )) for some CT ⊆ C and some k ≥ 1
is a O(m3n6) (resp. O(m3n5)) time procedure.

Proof. The proof is by brute-force searching for a G(M)[RT , CT ] = G(MIV )
(resp.G(MV ))) Tucker configuration involving row r (identified to rA, see Fig. 1).
The running time for both cases follows easily.
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Algorithm 5 Check-MIIk(cv, cw, cx, cy, cz, rA, rB , rC , rD, rE , rF , rH)

Require: A bipartite graph G(M) = (R, C, E), seven black vertices
rA, rB , rC , rD, rE , rF , rH ∈ R and five white vertices cv, cw, cx, cy, cz ∈ C
such that both (rC , cy, rA, cx, rB , cz, rH) and (rD, cv, rE , cw, rF ) are paths in G(M)
and {cv, cw} ⊆ N(rA)∩N(rB). Row r is identified to rE . It is assumed that G(M)
contains neither a G(MIk ) or a G(MII1) Tucker configuration involving row r.

Ensure: Return RT ⊆ R such that G(MIIk ) = (RT , CT , E′) for some CT ⊆ C is row-
minimal MCSR involving row r if it exists, or the failure message ”NO” is such a
configuration does not exist.

1: if N(rH)∩N(rA)\N(rB) 6= ∅ or N(rC)∩N(rB)\N(rA) 6= ∅ or N(rD)∩N(rE)∩
N(rF ) 6= ∅ or (N(rD) ∪N(rE) ∪N(rF )) \ (N(rA) ∩N(rB) then

2: return ”NO”
3: end if
4: clean(c) for all c ∈ N(rE)
5: clean(c) for all c /∈ N(A) ∩N(B)
6: clean(cx, cy, cz, cv, cw)
7: anticlean(rA, rB)
8: remove the black vertices rA and rB
9: if there exists a rCrH -path that goes though rE in the pruned graph then

10: let P be a shortest rCrH -path that goes though rE in the pruned graph
11: return return {rA, rB , rC , rD, rE , rF , rH} ∪ {r : r ∈ V (P ) ∩R}
12: else
13: return ”NO”
14: end if

What is left is to prove that G(M)[RT , C] does not contain any smaller
Tucker configuration. We first prove correctness for G(M)[RT , CT ] = G(MIV ).
Indeed, focus on G(M)[RT , C] and suppose that there exists some white vertex
cs ∈ C \ CT that is not a clone of some white vertex in CT . Then it follows that
N(cs) = {rA, rB}, N(cs) = {rA, rD}, N(cs) = {rB , rD}, or N(cs) = {rc}. If
N(cs) = {rc) we are done. Otherwise, G(M)[RT , C] contains a (smaller) G(MI1)
Tucker configuration. A contradiction since G(M) is assumed not to contain a
MIk Tucker configuration involving row r. We now turn to prove correctness for
G(M)[RT , CT ] = G(MV ). Focus on G(M)[RT , C] and suppose that there exists
some white vertex cs ∈ C \ CT that is not a clone of some white vertex in CT .
Then it follows that N(cs) = {rA, rB}, N(cs) = {rA, rC}, N(cs) = {rA, rD}, or
N(cs) = {rB , rD}. If N(cs) = {rA, rC} we are done. Otherwise, G(M)[RT , C]
contains a (smaller) G(MI1) Tucker configuration. A contradiction since G(M)
is assumed not to contain a MIk Tucker configuration involving row r. ut

3.5 Summing up

Table 1 summarizes our results.
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Tucker configuration Running time

MIk O(m3n4)

MIIk O(m6n5(m+ n)2 log(m+ n))

MIIIk O(m5n5(m+ n)2 log(m+ n))

MIV O(m2n6)

MV O(m3n5)

Total O(m6n5(m+ n)2 log(m+ n))

Table 1.

4 Applying our framework to related problems

Our graph pruning techniques can be used for solving related combinatorial
problems. We briefly discuss these related points.

First, the property we have considered was C1P, where a matrix has C1P
when the columns can be sorted in such a way that on each row the 1s are
consecutive. It is simple to check that our framework can also consider the case
when the property is the transpose, i.e., the rows can be sorted in such a way
that on each column the 1s are consecutive.

More interestingly, let us point out that our framework also implies an
polynomial-time algorithm for the Circular Ones Property (Circ1P) studied in
[10]. A matrix has the Circ1P if its columns can be ordered in such a way that all
1s or all 0s (possibly both) on each row are consecutive (it may help to consider
the matrix as being wrapped around a vertical cylinder). Indeed, according to
[10], Corollary 2.2, given an m×n matrix M and an arbitrary integer 1 ≤ j ≤ n,
one can compute a matrix M ′ such that M has the Circ1P if and only if M ′ as
the C1P. Therefore, we can check in polynomial-time if a given row is involved
in an MCSR for both C1P and Circ1P.
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