
HAL Id: hal-00620371
https://hal.science/hal-00620371

Submitted on 22 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minimum Mosaic Inference of a Set of Recombinants
Guillaume Blin, Romeo Rizzi, Florian Sikora, Stéphane Vialette

To cite this version:
Guillaume Blin, Romeo Rizzi, Florian Sikora, Stéphane Vialette. Minimum Mosaic Inference of a Set
of Recombinants. 17th Computing: the Australasian Theory Symposium (CATS’11), Jan 2011, Perth,
Australia. pp.23-30. �hal-00620371�

https://hal.science/hal-00620371
https://hal.archives-ouvertes.fr

Minimum Mosaic Inference of a Set of Recombinants

Guillaume Blin1 Romeo Rizzi2 Florian Sikora1 Stéphane Vialette1

1Université Paris-Est, LIGM - UMR CNRS 8049, France.
Email: {gblin,sikora,vialette}@univ-mlv.fr

2DIM, Università di Udine, Italy.
Email: romeo.rizzi@uniud.it

Abstract

In this paper, we investigate the central problem of
finding recombination events (Kececioglu & Gusfield
1998, Ukkonen 2002, Schwartz et al. 2002, Koivisto
et al. 2004, Rastas & Ukkonen 2007, Wu & Gusfield
2007). It is commonly assumed that a present pop-
ulation is a descendent of a small number of specific
sequences called founders. Due to recombination, a
present sequence (called a recombinant) is thus com-
posed of blocks from the founders. A major question
related to founder sequences is the so-called Minimum
Mosaic problem: using the natural parsimony crite-
rion for the number of recombinations, find the “best”
founders. In this article, we prove that the Minimum
Mosaic problem given haplotype recombinants with
no missing values is hard for an unbounded number
of founders and propose some exact exponential-time
algorithms for the problem. Notice that, in (Ras-
tas & Ukkonen 2007), Rastas et al. proved that the
Minimum Mosaic problem is hard using a somewhat
unrealistic mutation cost function (details provided
afterwards). The aim of this paper is to provide a
better complexity insight of the problem.

Keywords: Minimum Mosaic problem, SNP, Haplo-
type

1 Introduction

Given any two unrelated people, their DNA sequences
will only differ on about 0.1%. This small genetic
variability is of particular importance since it influ-
ences how people differ in their risk of disease or their
response to drugs. A main challenge is to discover
the DNA variants that contribute to common dis-
ease risk. These variations mostly arise on specific
single positions called Single Nucleotide Polymor-
phisms (SNPs) where the corresponding nucleotides,
called alleles, differ. For example, given three DNA
fragments . . .GGACCTG . . ., . . .GGACATG . . . and
. . .GGACTTG . . . from different individuals of a pop-
ulation, the SNP is composed of the three alleles
C, A and T. Furthermore, each person has two al-
most identical copies of all chromosomes except the
sex chromosomes. Given a population, an haplotype
refers to a combination of alleles at different positions
on a chromosome. Therefore, each individual has two
haplotypes (one maternal and one paternal) for each
chromosome. The genotype corresponds to the set of
alleles that a person has thereby defining at each SNP
the alleles of the two haplotypes. Unfortunately, the
current methods of data acquirement do not provide
inheritance information.

As a simple illustration, consider the following two
partial haplotypes (a chromosome region where only

the SNPs are shown)

. . .A . . .C . . .C . . .T . . .G . . .T . . .

. . .A . . .C . . .A . . .G . . .C . . .T . . .

The corresponding genotype is

. . .A/A . . .C/C . . .A/C . . .G/T . . .C/G . . .T/T . . .

Alleles of an SNP are called heterozygous if they
differ (e.g. A/C), and homozygous otherwise (e.g.
A/A). Since most SNPs are composed of only two
alleles (among the 16 possibilities) – that occur in a
large percentage of the population – haplotypes are
usually represented by binary sequences (one char-
acter for each of the two possible alleles per SNP)
whereas genotypes are usually represented by ternary
sequences (0 and 1 denote the two homozygote alle-
les and 2 denotes the heterozygote one). Notice that
it is common to denote missing values by the extra
symbol “−”. Therefore, the sequences are built on the
alphabet {0, 1, 2,−}.

Genetic variation within species is mostly induced
by a process called recombination. Given two equal
length sequences, a recombination generates a third
sequence of the same length by concatening the prefix
of one sequence with the suffix of the other sequence
(Koivisto et al. 2004). In the resulting sequence, the
assembly point is referred as a breakpoint. An illus-
tration is given in Figure 1.

Figure 1: Recombination of S1 and S2 leading to T .

Finding recombination events has become a cen-
tral problem in computational biology (Kececioglu &
Gusfield 1998, Ukkonen 2002, Schwartz et al. 2002,
Koivisto et al. 2004, Rastas & Ukkonen 2007, Wu
& Gusfield 2007). In most combinatorial models, a
present population is assumed to be a descendent of
a small number of specific sequences called founders.
Due to recombination, a present sequence, called a
recombinant, is thus composed of blocks from the
founders. The term mosaic is often used to denote
the mosaic-like structure of DNA induced by the re-
combinations (Ukkonen 2002) (c.f. Figure 2).

A major question related to founder sequences is
the so-called Minimum Mosaic problem: using the
natural parsimony criterion for the number of recom-
binations, find the “best” founders. More formally,
the Minimum Mosaic problem, in its natural deci-
sional form, is defined as follows: Given a set D of m

ha
l-0

05
12

45
8,

 v
er

si
on

 2
 -

14
 O

ct
 2

01
0

http://hal.archives-ouvertes.fr/hal-00512458/fr/
http://hal.archives-ouvertes.fr

Figure 2: A Mosaic issued from a set of founders

equal n-length haplotype or genotype sequences (the
current population) and a given number of founders
K, find a set F of K founders that induce a minimum
number of breakpoints. There exists a dual problem,
called the Minimum Segmentation problem, where
we are given a set of founders F and a recombinant
r ∈ D and the goal is to find a minimal segmenta-
tion of r, where each segment of r is inherited from
the corresponding (i.e. same location) region of some
founder.

This paper is organized as follows. In Section 2 we
present the related state-of-the-art, and we introduce
in Section 3 the needed material. Section 4 is devoted
to computational complexity. In Section 5, we pro-
pose some exact exponential-time algorithms for the
Minimum Mosaic problem.

2 Related works and known results

Ukkonen first formulated an optimization form of the
problem based on the mosaic model and parsimony
(Ukkonen 2002). He considered two criteria: the
number of founders and the number of recombinations
in a solution. Ukkonen gave two polynomial-time al-
gorithms: an O(n(m + K3)) time algorithm for the
Minimum Segmentation problem and an O(mn)
time algorithm for the Minimum Mosaic problem for
K = 2 (Wu et al. gave a similar result (Wu & Gus-
field 2007)). Also, Ukkonen designed an O(nKO(m))
time dynamic programming algorithm for the general
(i.e. K ≥ 2) Minimum Mosaic problem (the time
complexity was guessed from the description given in
the paper and will be justified in Section 5). Accord-
ing to the authors, this latter algorithm does not per-
form well for a moderate number of founders and/or
recombinants.

A different (no restriction on the number of
founders) but related problem was introduced by Gus-
field (Gusfield 2002). In the Haplotype Inference
problem, we are given a set of n genotype sequences
and the goal is to find a set of n pairs of haplotype
sequences (one pair per genotype) that is a good “ex-
planation” of the given genotype sequences. For bio-
logical pertinence, a solution must be compatible with
(or guided by) a given perfect phylogeny. Rastas et
al. (Rastas & Ukkonen 2007) observed that this latter
problem is equivalent for K >

√
2m to the Minimum

Mosaic for genotype recombinants without missing
values (i.e., D ⊂ {0, 1, 2}n), that was proved to be
NP-complete in (Lancia et al. 2004).

In (Rastas & Ukkonen 2007), Rastas et al. consid-
ered the Minimum Mosaic problem with missing val-
ues and mutations (i.e. mismatches between founders
and recombinants) leading to a different parsimony
criterion. More precisely, for each recombinant r ∈ D,
a score k+k′c is computed where (1) k is the number
of breakpoints of a recombinant r′ such that the Ham-
ming distance between r and r′ is k′ (i.e. the number
of mutations) and (2) c is the relative weight for a
mutation compared to recombinations. Rastas et al.
improved the complexity of Minimum Segmenta-
tion problem by providing an O(nmK) algorithm.

They also proved that the Minimum Mosaic prob-
lem for haplotype recombinants with possible missing
values (i.e. D ⊂ {0, 1,−}n) is NP-complete. Fi-
nally, they proved that even when missing values are
forbidden, the Minimum Mosaic problem for haplo-
type recombinants (i.e. D ⊂ {0, 1}n) is NP-complete
even for K = 2 since it becomes equivalent to the
NP-complete Hypercube Segmentation problem
(Kleinberg et al. 1998). One has to notice that this
latter result is a bit “artificial”, in the sense that the
extra condition that the mutation cost c = 1

nm (nec-
essary in the proof) roughly corresponds to forbid
(and thus ignore) recombinations. Indeed, nm mu-
tations becomes less expensive than a single recombi-
nation event. This is precisely the reason why Ukko-
nen (Ukkonen 2002) and Wu et al. (Wu & Gusfield
2007) have been able to find a polynomial-time al-
gorithm for the problem without mutation. One of
the purpose of our contribution is to provide a bet-
ter complexity insight of the problem by proving its
complexity without relying on a somewhat unrealistic
prohibitive mutation cost function.

Several heuristics and lower bounds have been pro-
posed (Roli & Blum 2009, Wu 2010). Wu et al.
(Wu & Gusfield 2007) designed an O(nm) time al-
gorithm for the Minimum Mosaic problem for geno-
type recombinants without missing values (i.e. D ⊂
{0, 1, 2}n) and K = 2. Furthermore, they gave an
exact algorithm for the general case (haplotype re-
combinants without missing values). Notice that the
time complexity of this latter algorithm is not given
in the paper and the authors claim it to be practical
for moderate n and m.

Finally, in (Zhang et al. 2008), Zhang et al. in-
vestigated the Minimum Segmentation problem
for genotype recombinants and provided two dy-
namic programming algorithms with time complexity
O(nK4) and O(nK + PK4), where P is the number
of rows of the dynamic table.

3 Notations

In the rest of the paper, we do not consider miss-
ing values (i.e., haplotype are defined on {0, 1}n).
Given any string s = s1s2 . . . sn, and two integers
i and j, 1 ≤ i ≤ j ≤ n, we denote by s[i, j] the
substring sisi+1 . . . sj of s. Given a set of haplo-
type founders f1, f2, . . . , fK , each in {0, 1}n, and an
haplotype recombinant r of size n, a segmentation
of r out from f1, f2, . . . , fK is a partition of the in-
terval [1 . . . n] = {1, 2, . . . , n} into consecutive inter-
vals I1, I2, . . . , Ik such that, for each 1 ≤ i ≤ k,
we have r[Ii] = fj [Ii] for some j ∈ {1, 2, . . . ,K}.
The cost of the segmentation is k − 1. For exam-
ple, for r = 001011, f1 = 000000 and f2 = 111111,
{I1 = f1[1 . . . 2], I2 = f2[3 . . . 3], I3 = f1[4 . . . 4], I4 =
f2[5 . . . 6]} is a segmentation of r out from f1 and
f2 of cost 3. The cost of segmenting r out from
f1, f2, . . . , fK is denoted cost(r; f1, f2, . . . , fK). (the
cost of a best segmentation can be found in O(nK)
time (Rastas & Ukkonen 2007)).

The Minimum Mosaic problem can be defined
as follows: Given a set of m recombinants D =
{r1, r2, . . . , rm}, ri ∈ {0, 1}n for 1 ≤ i ≤ m,
and an integer K, find a set of K founders F =
{f1, f2, . . . , fK}, fi ∈ {0, 1}n for 1 ≤ i ≤ K, such
that

∑m
i=1 cost(ri; f1, f2, . . . , fK) is minimized.

4 Hardness result for the Minimum Mosaic
problem

In this section, we prove the Minimum Mosaic prob-
lem for an unbounded K to be NP-complete without

ha
l-0

05
12

45
8,

 v
er

si
on

 2
 -

14
 O

ct
 2

01
0

relying on unrealistic prohibitive mutation costs (as
done in (Rastas & Ukkonen 2007)). For the sake of
presentation, we first generalize the problem to arbi-
trary strings. The following lemma proves that this
can be done safely.

Lemma 1 If the Minimum Mosaic problem on ar-
bitrary strings is NP-hard, then so is the Minimum
Mosaic problem on binary strings.

Proof: Assume to be given a natural K and a set
of m recombinants D = {r1, r2 . . . rm} ⊂ Σn where
Σ = {σ1, σ2 . . . σk} is any alphabet on k symbols.
Then, take any encoding of the symbols in Σ by
binary strings of length blog2 kc. In other words,
let δ : Σ 7→ {0, 1}k′

be any injection from Σ to
{0, 1}k′

with k′ = blog2 kc. Once such an encoding
has been fixed, we can extend δ to get an injective
function which maps every string ri over Σ into a bi-
nary string δ(ri) of length |δ(ri)| = k′ |ri|. Notice
that any feasible solution 〈f1, f2 . . . fK〉 for the in-
stance 〈K, r1, r2 . . . rm〉 naturally maps into the feasi-
ble solution 〈δ(f1), δ(f2), . . . , δ(fK)〉 for the instance
〈K, δ(r1), δ(r2) . . . δ(rm)〉, and the cost remains unaf-
fected.

Let us show that the converse is also true.
To do so, we claim that, given any feasible solu-
tion 〈f ′1, f ′2 . . . f ′K〉 for the instance 〈K, δ(r1), δ(r2)
. . . δ(rn)〉, we can always modify it, without in-
creasing its cost, in such a way that each of the
f ′i is actually the binary encoding of some string
over Σ. In other words, we can assume that
f ′1 = δ(f1), f ′2 = δ(f2) . . . f ′K = δ(fK). In this way,
the converse would directly follow. In order to prove
our claim, we can actually act on the f ′i ’s and “clean”
them out one by one. Assume f ′i is not cleaned,
that is, f ′i does not belong to the image of map
δ. Then there exists some 1 ≤ j ≤ n such that
f ′i [k

′(j−1)+1, k′j] does not belong to the codewords
set ∆(Σ) := {δ(σ) : σ ∈ Σ }. In this case, where σ is
any symbol in Σ such that δ(σ) has a longest suffix
in common with f ′i [k

′(j − 1) + 1, k′j], we modify f ′i
precisely on the interval [k′(j−1) + 1, k′j], and, more
precisely, by replacing it by the string δ(σ). Consid-
ering the way the procedure for finding a minimum
cost segmentation operates (e.g. Algorithm 1), it is
easy to see that this modification does not increase
the cost. �

Algorithm 1 Algorithm for finding a minimum cost
segmentation : FS(r; f1, f2, ..., fK)

1: Let i = |r|
2: if i = 0 then
3: return
4: end if
5: Let j be the smallest positive natural such that
r[j..i] = fk[j..i] for some k

6: if j > i then
7: return "No production exists"
8: end if
9: return FS(r[1, j − 1]; f1[1, j − 1], f2[1, j −

1], . . . , fK [1, j − 1]) + [j..i]

In order to facilitate the understanding of the
proof, let us further strengthen the formulation of
our problem: consider the more general formulation
where K ′ of the K founders comprising the solution
(and to be given in output) are actually given as spec-
ified in advance in the input. We will refer to those
specific founders as forced founders and will first show
how one can force a part of the founders.

Let us first remark that it is easy to provide a
polynomial-time reduction from any instance contain-
ning forced founders to an instance without ones. In-
deed, for each forced founder ff , add nm copies of
ff in the recombinants set D. It is clear that in a so-
lution, one has to include ff in the founder set, oth-
erwise, it will induce at least nm breakpoints which
is the maximal number of breakpoints one can get in
the original instance. Note that given an objective of
at most B breakpoints, it suffices to add B copies of
ff to get this property.

Thus, for the purpose of the reduction, we can
without loss of generality assume to have instances of
the form 〈K,D,F f 〉 such that D = {r1, r2 . . . rm′′} ⊂
Σn, F f = {ff1 , f

f
2 . . . f

f
m′} ⊂ Σn and m = m′ + m′′.

Let us now provide a reduction from the NP-complete
Vertex-Cover problem: Given a graph G = (V,E)
such that |V | = nG, |E| = mG and an integer kG,
decide whether there exists a subset V ′ of V such
that each edge of G is incident to at least one vertex
of V ′ and |V ′| ≤ kG. Our reduction begins by giving
an arbitrary orientation to each edge of G, that is, for
each ej ∈ E, let tj and hj be indices such that vtj is
the tail and vhj is the head of the arbitrary oriented
edge ej .

We consider the alphabet Σ := {W,Z} ∪ {Xi :
i = 1, 2, . . . nG}. Informally, there is one letter for
each vertex of V , while W and Z act like separators
letters. We define m = C nG + 3 recombinants, each
of length n = 6mG built as follows (C is a constant
defined later):

• r1 = (WWZZWW)mG ,

• r2 =
∏mG

j=1(ZZXtjXtjZZ) and r3 =∏mG

j=1(ZZXhj
Xhj

ZZ),

• rji = (XiXiXiXiXiXi)
mG , for each 1 ≤ i ≤ nG,

1 ≤ j ≤ C.

We then define a set F f of K ′ = 1+2mGnG forced
founders as follows.

• F f
1 = (ZZZZZZ)mG ,

• F f
i,t = Z3 tXiXiXiZ

3 (2mG−t−1), for each 0 ≤ t ≤
2mG − 1, and 1 ≤ i ≤ nG.

Finally, we setK = 2mGnG+kG+2; that is asking
for K ′′ = kG + 1 founders.

Lemma 2 If the graph G = (V,E) admits a vertex
cover of size at most kG then the corresponding built
instance of our problem admits a solution of cost at
most C(nG − kG)(2mG − 1) + 6mG.

Proof: Let V ′ ⊂ V be a vertex cover of size kG
of G. For each 1 ≤ j ≤ mG, we let cj be an index
such that vcj ∈ V ′ ∩ ej (such an index exists since V ′
is a vertex cover). By definition, cj ∈ {tj , hj}. Let
cj = {tj , hj}\cj . We construct our solution with the
following set F ′ of K ′′ = kG + 1 founders:

• F ′0 =
∏mG

j=1(WWXcjXcjWW),

• F ′i = (XiXiXiXiXiXi)
mG , for each vi ∈ V ′.

Let us now compute the corresponding cost:

• cost(r1;F ′∪F f) = 2mG since we have to switch
from F ′0 to F f

1 and from F f
1 to F ′0 for each mG

blocks of length 6,

ha
l-0

05
12

45
8,

 v
er

si
on

 2
 -

14
 O

ct
 2

01
0

• cost(r2;F ′∪F f) = 2mG and cost(r3;F ′∪F f) =
2mG. For each 1 ≤ j ≤ mG, since V ′ is a ver-
tex cover, F ′cj and F ′0 will prevent a breakpoint
between the Xtj ’s (and between the Xhj ’s) since
cj ∈ {tj , hj} and cj = {tj , hj}\cj . Therefore, by
switching from F f

1 to F ′cj or F ′0 and back to F f
1

for each mG blocks of length 6, it only induces 2
breakpoints for each block,

• for 1 ≤ j ≤ C, cost(rji ;F ′ ∪ F f) = 0 for each
vi ∈ V ′ whereas cost(rji′ ;F ′∪F f) = C(2mG−1)
for each vi′ /∈ V ′. Considering each recombinants
rji′ such that vi′ /∈ V ′, by switching from F f

i′,2t−2

to F f
i′,2t−1 for the tth block of length 6, it will

only induce 2 breakpoints for each block (except
the last one). Since |V ′| = kG, there are nG−kG
recombinants which costs (2mG − 1) each.

On the whole,
∑2

i=1 cost(ri;F
′ ∪ F f) +∑nG

i=1

∑C
j=1 cost(r

j
i ;F ′ ∪ F f) = 2mG + (2 × 2mG) +

C(nG−kG)(2mG−1) = C(nG−kG)(2mG−1) +6mG.
�

We now turn to considering the reverse direction.
Lemma 3 Given a graph G = (V,E) and the cor-
responding built instance of our problem, if the lat-
ter one admits a solution of cost at most C(nG −
kG)(2mG − 1) + 6mG, for any C > 6m, then G ad-
mits a vertex cover of size at most kG.
Proof: Let us prove that the cost of recombinants
rji , 1 ≤ i ≤ nG, 1 ≤ j ≤ C, for any solution is
greater than C((nG−kG)(2mG−1)). Note first that,
only considering the set of forced founders F f , each
rji , 1 ≤ i ≤ nG, 1 ≤ j ≤ C, has a cost(rji , F

f) =

C(nG(2mG−1)). Indeed, given a recombinant rji , one
has to switch from F f

i,t to F
f
i,t+1 for 0 ≤ t ≤ 2mG− 2.

Considering now both F f and F , if the set ofK ′′ =
kG+1 founders is composed of exact copies of K ′′ dif-
ferent recombinants {rj1i1 , r

j2
i2
. . . r

jkG+1

ikG+1
} (for some 1 ≤

i1, i2 . . . ikG+1 ≤ nG and 1 ≤ j1, j2 . . . jkG+1 ≤ C),
then

∑nG

i=1

∑C
j=1 cost(r

j
i ;F ′ ∪ F f) = C(nG − (kG +

1))(2mG − 1). However, r1 is built over some W let-
ters; which does not belong to any forced founders.
Therefore, there should be founders among the K ′′
including a W in positions 6t+ 1, 6t+ 2, 6t+ 5, 6t+ 6,
for each 0 ≤ t ≤ mG − 1. Then, for any 0 ≤ t ≤
mG − 1, there will exist among the recombinants
{rj1i1 , r

j2
i2
. . . r

jk+1

ik+1
} one recombinant – say rj1i1 – that

will induce a switch (for each of its C copies) from a
founder of F to F f

i1,t+1 (resp. F
f
i1,t+2) due to theWW

at positions 6t+1, 6t+2 (resp. 6t+5, 6t+6) in the cor-
responding founder. Therefore, on the whole, one will
end-up with an extra cost of 2CmG. In the best case,
one should only “sacrifice“ one of the K ′′ founders
(which was only allowing a gain of 2C(mG − 1)

breakpoints). On the whole,
∑nG

i=1

∑C
j=1 cost(r

j
i ;F ′∪

F f) ≥ C(nG − kG)(2mG − 1). Moreover, considering
the objective cost (i.e. C(nG−kG)(2mG−1) + 6mG)
and that C > 6m, the following is enforced:
1. Considering any position, each of the K ′′

founders has a different letter,
2. A founder with a letter Xu in a given position

contains only letters Xu in the next positions un-
til a letterW or the end of the founder is encoun-
tered,

3. All the W letters occur in the same founder.
Let us now prove each of these points.
Point 1. By contradiction, suppose there are two

founders with the same letter in a given position.
Then, there is at least one more breakpoint for each
copy of a given recombinant of {rj1i1 , r

j2
i2
. . . r

jkG+1

ikG+1
}

which leads to a cost above the objective.
Point 2. By contradiction, in an optimal solution,

suppose there is a founder with a letterXu at position
k followed by a letter Xv. Then, due to Point 1, there
should not exist another founder such that Xu is at
position k nor Xv at position k + 1. Therefore, there
is a breakpoint between positions k and k + 1 in all
rju (resp. rjv); that is 2C breakpoints. Consider now
changing Xv into Xu in the corresponding founder.
Then it will induce at least C less breakpoints, leading
to a better solution; a contradiction.

Point 3. Let us first prove that W letters at posi-
tion 6t+ 1 and 6t+ 2 belong to the same founder. By
contradiction, suppose it is not the case; e.g. there
is a W letter at position 6t + 1 in founder Fi and a
W letter at position 6t + 2 in founder Fj , i 6= j. By
Point 1, there is no W letter at position 6t+ 2 (resp.
6t + 1) in founder Fi (resp. Fj). Thus, there is a
breakpoint in the recombinant r1 between positions
6t+1 and 6t+2. Consider now swapping Fi[1..6t+1]
and Fj [1..6t + 1]. This will decrease the number of
breakpoints at least by one since it only changes the
cost due to positions 6t+1 and 6t+2. Same argument
holds for the other W positions.

We now know that the W letters appears by block
of size 4 (except for the first and last blocks; which
are of size 2). It also appears that if the blocks of let-
tersW are not on the same founder, it creates at least
C more breakpoints. Figure 3 illustrates this config-
uration. Indeed, in an optimal solution, consider two
founders Fi and Fj such that there are W letters at
positions 6t+1 and 6t+2 (resp. 6t+5 and 6t+6) in Fi
(resp. Fj). Assume, moreover, that a Xu (resp. Xv)
appears in position 6t + 3 (resp. 6t + 4) in Fi (resp.
Fj). Then considering the forced founders, Fi and Fj ,
there will be one breakpoint between positions 6t+ 3
and 6t + 4 in all rxu and rxv , for 1 ≤ x ≤ C and one
breakpoint between positions 6t+6 and 6t+7 in all rxv ,
for 1 ≤ x ≤ C. Consider now swapping Fi[1..6t + 4]
and Fj [1..6t+4] and replacing the Xi’s of Fj by Xj ’s.
It will induce at least C less breakpoints, leading to
a better solution; a contradiction.

In the following, let us assume that F0 denote the
founder containning theW letters; the other founders
are referred as F1, F2, ..., FK′′ . Now that we know
the precise topology of the founders of any optimal
solution, we can now prove that {F1, F2 . . . FK′′}
corresponds to a vertex cover in G. Let V ′ ⊆ V be
defined as follows. For each founder Fi, 1 ≤ i ≤ K ′′,
if Fi is the exact copy of the recombinant ryx, then
add vx in V ′. Let us prove that V ′ is a vertex cover
of G. By contradiction, suppose it is not. Then, it
exists at least one y such that (vhy

, vty) ∈ E and
both {vhy

, vty} ∩ V ′ = ∅. Therefore, there is at least
a breakpoint between Xty and Xty in r2 or between
Xhy

and Xhy
in r3 since neither hy nor ty appears

in {F1, F2 . . . FK′′}, and F0 can contain at most
one of the two in the corresponding positions. It is
worth noting that none of the forced founders cannot
prevent theses breakpoints since there never have the
same letters at position 6t+ 3 and 6t+ 4. �

Combining Lemma 2 and Lemma 3 we obtain the
following result.
Proposition 4 Minimum Mosaic given haplotype
recombinants with no missing values is NP-Complete.

ha
l-0

05
12

45
8,

 v
er

si
on

 2
 -

14
 O

ct
 2

01
0

W not on the same founder

a) ...(XuXuX
#
u XuXuXu)(Xu...

...(XvXvX
#
v XvXvX

#
v)(Xv...

b) ...(WWXuXuXuXu)(Xu...
...(XvXvXvXvWW)(W...

c) ...(XuXuXuZZZ)(Z...
...(ZZZXuXuXu)(Z...
...(XvXvXvZZZ)(Z...
...(ZZZXvXvXv)(Z...

W on the same founder

a) ...(XuXuX
#
u XuXuX

#
u)(Xu...

...(XvXvXvXvXvXv)(Xv...

b) ...(WWXuXuWW)(W...
...(XvXvXvXvXvXv)(Xv...

c) ...(XuXuXuZZZ)(Z...
...(ZZZXuXuXu)(Z...
...(XvXvXvZZZ)(Z...
...(ZZZXvXvXv)(Z...

Figure 3: a) The recombinants rxu and ryv . b) Two
founders involving Xu and Xv. c) Forced founders.
The created breakpoints in the recombinants induced
by b) and c) are denoted by #.

5 Exact algorithms for Minimum Mosaic

In this section, we will provide exact algo-
rithms considering a variant of the Minimum Mo-
saic/Segmentation problems where extra informa-
tions (e.g. position, number, . . .) on the breakpoints
are given.

Let us first give a complexity study of the gen-
eral solution (Section 4) proposed by Ukkonen in
(Ukkonen 2002). Indeed, the corresponding solution
shows that, once the number of founders (i.e. K)
is bounded, then the minimum mosaic problem is
FPT. The main idea of the dynamic programming
solution of Ukkonen is to compute all the partition
of size K of the m input recombinants for each col-
umn. The central recurrence is based on the fact that
the “best“ K-partitions for the i first columns can be
computed using one of all the ”best“ K-partitions of
the i − 1 first columns and any K-partition of the
ith column; the parsimony criterion being the num-
ber of breakpoints induced. One has to store in a
dynamic table, the minimal cost of any K-partition
of the i first columns for all the K-partitions of the
ith column. On the whole, since (1) there are Km K-
partitions of any column i and (2) one has to compute
the minimum number of breakpoints considering all
the K-partitions of column i− 1 for each K-partition
of column i, the time complexity is O(nK2m); which
leads to a polynomial solution when the number of
recombinants (i.e. m) is bounded. It also provides a
practical solution when the number of founders (i.e.
K) is bounded.

Let us now design exact algorithms for a variant
of the Minimum Mosaic/Segmentation problems
that considers that extra informations on the break-
points are given. Let us first consider a kind of reverse
problem of Minimum Segmentation problem where
given a set of m recombinants D = {r1, r2, . . . , rm} ⊂

{0, 1}n and a set of B identified breakpoints on D –
i.e. an overall cost B segmentation of the recom-
binants S = {I11 , I12 . . . I1k1

, . . . Im1 , I
m
2 . . . Imkm

} such
that (

∑m
i=1 ki) − m = B and Ixy is the yth seg-

ment of recombinant rx – find a set of K founders
F = {f1, f2, . . . , fK} ⊂ {0, 1}n such that the B cost
segmentation can be derived from F . We propose a
polynomial-time algorithm (Algorithm 2) that solves
this problem. For any Ixy , let Lx

y (resp. Rx
y) denote

the leftmost (resp. rightmost) position of Ixy in [1..n].

Algorithm 2 Find K founders according to a seg-
mentation S

1: Let L be a sorted list – according to the leftmost
position – of elements of S

2: F = {F1, F2 . . . FK} such that Fi =
[””, ””, . . . , ””], 1 ≤ i ≤ K

3: while L is not empty do
4: Ixy ← pop(L) //remove and return head ele-

ment of L
5: LCP = 0, F ′ = null
6: for each Fi in F do
7: Z ← the leftmost empty position in Fi

greater than Lx
y

8: if Fi[L
x
y ..Z] and Ixy share a common prefix

then
9: if LCP< Z − Lx

y then
10: F ′ = Fi
11: LCP = Z − Lx

y

12: end if
13: end if
14: end for
15: if F ′! = null then
16: F ′[Lx

y , R
x
y]← Ixy

17: goto _end;
18: end if
19: //No common prefix found
20: //Find the first empty position
21: for each Fi in F do
22: if Fi[L

x
y] is empty then

23: Fi[L
x
y , R

x
y]← Ixy

24: goto _end;
25: end if
26: end for
27: Exit with error
28: //This case is only reachable
29: //if no solution can be found
30: _end :
31: end while
32: return F

Let us now prove that this algorithm indeed find a
solution if one exists. Roughly, the algorithm tries to
reassemble the segments in order to produce at most
K founders. To do so, the algorithm computes the
founders from left to right using the available seg-
ments in L. For each available segment Ixy , the algo-
rithm tries first to detect if there is a founder that has
the longest common prefix with Ixy at the given po-
sition Lx

y . If there exist one then the corresponding
founder is ”merged” with Ixy for the positions from
Lx
y to Rx

y . Otherwise, the algorithm tries to find a
founder such that the position Lx

y is empty and then
merge the founder and Ixy .

Let us prove that, if there exist a solution then the
algorithm will find it. First, notice that if there ex-
ist such a solution then any segments can be placed
entirely in one of the K founders. Thus when con-
sidering all the segments starting at a given position,
one should be able to find a distribution of the seg-

ha
l-0

05
12

45
8,

 v
er

si
on

 2
 -

14
 O

ct
 2

01
0

ments among theK founders. This ensures that when
considering Ixy , the choice of the founder for Ixy will
not interfere with placement of I ′x

′

y . Indeed, either in
the solution (1) they were on the same founder and
thus will have a common prefix or (2) were not in
the same founder. This leads to an overall O(BKL)
time-complexity algorithm where L is the length of
the longest segment.

Let us now consider the case where only the num-
ber of breakpoints for each recombinant is known (i.e.
without the positions of those last). Then, one can
test all the possible positions for each recombinant
and apply the previously proposed algorithm. On
the whole, since given a recombinant ri with bi break-
points, there are at most nbi possibilities of placement
of the breakpoints, the corresponding algorithm runs
in O(nb1 .nb2nbm .BKL) = O(nB .BKL).

Finally, we give an algorithm with a lower com-
plexity in the case one only knows the number B
of allowed breakpoints. Let first give the maximum
number of different strings in D, that is the number
md of different recombinants among the m recom-
binants of D. In the worst case, there is only one
breakpoint on each recombinant, that is B different
recombinants. Moreover, there is a maximum number
of K different recombinants with no breakpoint in D
(they are copies of the founders). Thus, we can give
the following upperbound for the number of different
recombinants in D : md ≤ K + B. We also have
K ≤ md ≤ m.

Let now decide which recombinants in D will have
some breakpoints. Therefore, we have to choose B re-
combinants among the md recombinants with at least
one breakpoint. We will try all different possibilities.
There are

(
md

B

)
=
(
K+B
B

)
= (K+B)B different config-

urations. For each one, run the exact O(nK2m) algo-
rithm of Ukkonen to find the best possible founders.
This algorithm is ran among a set of only B chosen
recombinants. Thus, the running time of the exact al-
gorithm is O(nK2B). On the whole, the total running
time of the algorithm when only the number of break-
points is known is O((K + B)B × nK2B). This last
result demonstrates that once the number of break-
points is bounded the problem becomes polynomial.

6 Open problems

In this article, we showed that the Minimum Mo-
saic problem given haplotypes with no missing val-
ues is hard for an unbounded number K of founders.
When K is bounded but the number m of recombi-
nants is not, the problem is still widely open. Indeed,
there is an ocean between the linear complexity of
the problem when m (and thus K) is bounded, the
polynomial-time complexity when K = 2, and the
NP-Completeness when K is unbounded. It is also
widely open whether the problem admits some PTAS.

References

Gusfield, D. (2002), Haplotyping as perfect phy-
logeny: conceptual framework and efficient solu-
tions, in ‘RECOMB’, pp. 166–175.

Kececioglu, J. D. & Gusfield, D. (1998), ‘Recon-
structing a history of recombinations from a set
of sequences’, Discrete Applied Mathematics 88(1-
3), 239–260.

Kleinberg, J. M., Papadimitriou, C. H. & Ragha-
van, P. (1998), Segmentation problems, in ‘STOC’,
pp. 473–482.

Koivisto, M., Rastas, P. & Ukkonen, E. (2004), Re-
combination systems, in J. Karhumäki, H. A. Mau-
rer, G. Paun & G. Rozenberg, eds, ‘Theory Is For-
ever’, Vol. 3113 of Lecture Notes in Computer Sci-
ence, Springer, pp. 159–169.

Lancia, G., Pinotti, M. C. & Rizzi, R. (2004), ‘Haplo-
typing populations by pure parsimony: Complexity
of exact and approximation algorithms’, INFORMS
Journal on Computing 16(4), 348–359.

Rastas, P. & Ukkonen, E. (2007), Haplotype inference
via hierarchical genotype parsing, in R. Giancarlo
& S. Hannenhalli, eds, ‘WABI’, Vol. 4645 of Lecture
Notes in Computer Science, Springer, pp. 85–97.

Roli, A. & Blum, C. (2009), Tabu search for the
founder sequence reconstruction problem: A pre-
liminary study, in S. Omatu, M. Rocha, J. Bravo,
F. F. Riverola, E. Corchado, A. Bustillo & J. M.
Corchado, eds, ‘IWANN (2)’, Vol. 5518 of Lecture
Notes in Computer Science, Springer, pp. 1035–
1042.

Schwartz, R., Clark, A. G. & Istrail, S. (2002), In-
ferring piecewise ancestral history from haploid se-
quences, in S. Istrail, M. S. Waterman & A. G.
Clark, eds, ‘Computational Methods for SNPs and
Haplotype Inference’, Vol. 2983 of Lecture Notes in
Computer Science, Springer, pp. 62–73.

Ukkonen, E. (2002), Finding founder sequences from
a set of recombinants, in R. Guigó & D. Gusfield,
eds, ‘WABI’, Vol. 2452 of Lecture Notes in Com-
puter Science, Springer, pp. 277–286.

Wu, Y. (2010), Bounds on the minimum mosaic
of population sequences under recombination, in
A. Amir & L. Parida, eds, ‘CPM’, Vol. 6129 of Lec-
ture Notes in Computer Science, Springer, pp. 152–
163.

Wu, Y. & Gusfield, D. (2007), Improved algorithms
for inferring the minimum mosaic of a set of re-
combinants, in B. Ma & K. Zhang, eds, ‘CPM’,
Vol. 4580 of Lecture Notes in Computer Science,
Springer, pp. 150–161.

Zhang, Q., Wang, W., McMillan, L., Prins, J., de Vil-
lena, F. P.-M. & Threadgill, D. (2008), Geno-
type sequence segmentation: Handling constraints
and noise, in K. A. Crandall & J. Lagergren, eds,
‘WABI’, Vol. 5251 of Lecture Notes in Computer
Science, Springer, pp. 271–283.

ha
l-0

05
12

45
8,

 v
er

si
on

 2
 -

14
 O

ct
 2

01
0

