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Introduction

Given any two unrelated people, their DNA sequences will only differ on about 0.1%. This small genetic variability is of particular importance since it influences how people differ in their risk of disease or their response to drugs. A main challenge is to discover the DNA variants that contribute to common disease risk. These variations mostly arise on specific single positions called Single Nucleotide Polymorphisms (SNPs) where the corresponding nucleotides, called alleles, differ. For example, given three DNA fragments . . . GGACCTG . . ., . . . GGACATG . . . and . . . GGACTTG . . . from different individuals of a population, the SNP is composed of the three alleles C, A and T. Furthermore, each person has two almost identical copies of all chromosomes except the sex chromosomes. Given a population, an haplotype refers to a combination of alleles at different positions on a chromosome. Therefore, each individual has two haplotypes (one maternal and one paternal) for each chromosome. The genotype corresponds to the set of alleles that a person has thereby defining at each SNP the alleles of the two haplotypes. Unfortunately, the current methods of data acquirement do not provide inheritance information.

As a simple illustration, consider the following two partial haplotypes (a chromosome region where only Alleles of an SNP are called heterozygous if they differ (e.g. A/C), and homozygous otherwise (e.g. A/A). Since most SNPs are composed of only two alleles (among the 16 possibilities) -that occur in a large percentage of the population -haplotypes are usually represented by binary sequences (one character for each of the two possible alleles per SNP) whereas genotypes are usually represented by ternary sequences (0 and 1 denote the two homozygote alleles and 2 denotes the heterozygote one). Notice that it is common to denote missing values by the extra symbol "-". Therefore, the sequences are built on the alphabet {0, 1, 2, -}.

Genetic variation within species is mostly induced by a process called recombination. Given two equal length sequences, a recombination generates a third sequence of the same length by concatening the prefix of one sequence with the suffix of the other sequence [START_REF] Koivisto | Recombination systems[END_REF]). In the resulting sequence, the assembly point is referred as a breakpoint. An illustration is given in Figure 1. Finding recombination events has become a central problem in computational biology [START_REF] Kececioglu | Reconstructing a history of recombinations from a set of sequences[END_REF][START_REF] Ukkonen | Finding founder sequences from a set of recombinants[END_REF][START_REF] Schwartz | Inferring piecewise ancestral history from haploid sequences[END_REF][START_REF] Koivisto | Recombination systems[END_REF][START_REF] Rastas | Haplotype inference via hierarchical genotype parsing[END_REF][START_REF] Wu | Improved algorithms for inferring the minimum mosaic of a set of recombinants[END_REF]. In most combinatorial models, a present population is assumed to be a descendent of a small number of specific sequences called founders. Due to recombination, a present sequence, called a recombinant, is thus composed of blocks from the founders. The term mosaic is often used to denote the mosaic-like structure of DNA induced by the recombinations (Ukkonen 2002) (c.f. Figure 2).

A major question related to founder sequences is the so-called Minimum Mosaic problem: using the natural parsimony criterion for the number of recombinations, find the "best" founders. More formally, the Minimum Mosaic problem, in its natural decisional form, is defined as follows: Given a set D of m This paper is organized as follows. In Section 2 we present the related state-of-the-art, and we introduce in Section 3 the needed material. Section 4 is devoted to computational complexity. In Section 5, we propose some exact exponential-time algorithms for the Minimum Mosaic problem.

Related works and known results

Ukkonen first formulated an optimization form of the problem based on the mosaic model and parsimony [START_REF] Ukkonen | Finding founder sequences from a set of recombinants[END_REF]. He considered two criteria: the number of founders and the number of recombinations in a solution. Ukkonen gave two polynomial-time algorithms: an O(n(m + K 3 )) time algorithm for the Minimum Segmentation problem and an O(mn) time algorithm for the Minimum Mosaic problem for K = 2 (Wu et al. gave a similar result [START_REF] Wu | Improved algorithms for inferring the minimum mosaic of a set of recombinants[END_REF]). Also, Ukkonen designed an O(nK O(m) ) time dynamic programming algorithm for the general (i.e. K ≥ 2) Minimum Mosaic problem (the time complexity was guessed from the description given in the paper and will be justified in Section 5). According to the authors, this latter algorithm does not perform well for a moderate number of founders and/or recombinants.

A different (no restriction on the number of founders) but related problem was introduced by Gusfield [START_REF] Gusfield | Haplotyping as perfect phylogeny: conceptual framework and efficient solutions[END_REF]. In the Haplotype Inference problem, we are given a set of n genotype sequences and the goal is to find a set of n pairs of haplotype sequences (one pair per genotype) that is a good "explanation" of the given genotype sequences. For biological pertinence, a solution must be compatible with (or guided by) a given perfect phylogeny. Rastas et al. [START_REF] Rastas | Haplotype inference via hierarchical genotype parsing[END_REF] observed that this latter problem is equivalent for K > √ 2m to the Minimum Mosaic for genotype recombinants without missing values (i.e., D ⊂ {0, 1, 2} n ), that was proved to be NP-complete in [START_REF] Lancia | Haplotyping populations by pure parsimony: Complexity of exact and approximation algorithms[END_REF].

In [START_REF] Rastas | Haplotype inference via hierarchical genotype parsing[END_REF]), Rastas et al. considered the Minimum Mosaic problem with missing values and mutations (i.e. mismatches between founders and recombinants) leading to a different parsimony criterion. More precisely, for each recombinant r ∈ D, a score k + k c is computed where (1) k is the number of breakpoints of a recombinant r such that the Hamming distance between r and r is k (i.e. the number of mutations) and (2) c is the relative weight for a mutation compared to recombinations. Rastas et al. improved the complexity of Minimum Segmentation problem by providing an O(nmK) algorithm.

They also proved that the Minimum Mosaic problem for haplotype recombinants with possible missing values (i.e. D ⊂ {0, 1, -} n ) is NP-complete. Finally, they proved that even when missing values are forbidden, the Minimum Mosaic problem for haplotype recombinants (i.e. D ⊂ {0, 1} n ) is NP-complete even for K = 2 since it becomes equivalent to the NP-complete Hypercube Segmentation problem [START_REF] Kleinberg | Segmentation problems[END_REF]. One has to notice that this latter result is a bit "artificial", in the sense that the extra condition that the mutation cost c = 1 nm (necessary in the proof) roughly corresponds to forbid (and thus ignore) recombinations. Indeed, nm mutations becomes less expensive than a single recombination event. This is precisely the reason why Ukkonen [START_REF] Ukkonen | Finding founder sequences from a set of recombinants[END_REF] and Wu et al. [START_REF] Wu | Improved algorithms for inferring the minimum mosaic of a set of recombinants[END_REF]) have been able to find a polynomial-time algorithm for the problem without mutation. One of the purpose of our contribution is to provide a better complexity insight of the problem by proving its complexity without relying on a somewhat unrealistic prohibitive mutation cost function.

Several heuristics and lower bounds have been proposed [START_REF] Roli | Tabu search for the founder sequence reconstruction problem: A preliminary study[END_REF][START_REF] Wu | Bounds on the minimum mosaic of population sequences under recombination[END_REF]). Wu et al. [START_REF] Wu | Improved algorithms for inferring the minimum mosaic of a set of recombinants[END_REF]) designed an O(nm) time algorithm for the Minimum Mosaic problem for genotype recombinants without missing values (i.e. D ⊂ {0, 1, 2} n ) and K = 2. Furthermore, they gave an exact algorithm for the general case (haplotype recombinants without missing values). Notice that the time complexity of this latter algorithm is not given in the paper and the authors claim it to be practical for moderate n and m.

Finally, in [START_REF] Zhang | Genotype sequence segmentation: Handling constraints and noise[END_REF]), Zhang et al. investigated the Minimum Segmentation problem for genotype recombinants and provided two dynamic programming algorithms with time complexity O(nK 4 ) and O(nK + P K 4 ), where P is the number of rows of the dynamic table.

Notations

In the rest of the paper, we do not consider missing values (i.e., haplotype are defined on {0, 1} n ). Given any string s = s 1 s 2 . . . s n , and two integers i and j, 1 ≤ i ≤ j ≤ n, we denote by s[i, j] the substring s i s i+1 . . . s j of s. Given a set of haplotype founders f 1 , f 2 , . . . , f K , each in {0, 1} n , and an haplotype recombinant r of size n, a segmentation of r out from

f 1 , f 2 , . . . , f K is a partition of the in- terval [1 . . . n] = {1, 2, . . . , n} into consecutive inter- vals I 1 , I 2 , . . . , I k such that, for each 1 ≤ i ≤ k, we have r[I i ] = f j [I i ] for some j ∈ {1, 2, . . . , K}. The cost of the segmentation is k -1. For exam- ple, for r = 001011, f 1 = 000000 and f 2 = 111111, {I 1 = f 1 [1 . . . 2], I 2 = f 2 [3 . . . 3], I 3 = f 1 [4 . . . 4], I 4 = f 2 [5 . . . 6]} is a segmentation of r out from f 1 and f 2 of cost 3. The cost of segmenting r out from f 1 , f 2 , . . . , f K is denoted cost(r; f 1 , f 2 , . . . , f K ).
(the cost of a best segmentation can be found in O(nK) time [START_REF] Rastas | Haplotype inference via hierarchical genotype parsing[END_REF]).

The Minimum Mosaic problem can be defined as follows: Given a set of m recombinants D = {r 1 , r 2 , . . . , r m }, r i ∈ {0, 1} n for 1 ≤ i ≤ m, and an integer K, find a set of

K founders F = {f 1 , f 2 , . . . , f K }, f i ∈ {0, 1} n for 1 ≤ i ≤ K, such that m i=1 cost(r i ; f 1 , f 2 , . . . , f K ) is minimized.

Hardness result for the Minimum Mosaic problem

In this section, we prove the Minimum Mosaic problem for an unbounded K to be NP-complete without relying on unrealistic prohibitive mutation costs (as done in [START_REF] Rastas | Haplotype inference via hierarchical genotype parsing[END_REF]). For the sake of presentation, we first generalize the problem to arbitrary strings. The following lemma proves that this can be done safely.

Lemma 1 If the Minimum Mosaic problem on arbitrary strings is NP-hard, then so is the Minimum Mosaic problem on binary strings.

Proof: Assume to be given a natural K and a set of m recombinants D = {r 1 , r 2 . . . r m } ⊂ Σ n where Σ = {σ 1 , σ 2 . . . σ k } is any alphabet on k symbols. Then, take any encoding of the symbols in Σ by binary strings of length log 2 k . In other words, let δ : Σ → {0, 1} k be any injection from Σ to {0, 1} k with k = log 2 k . Once such an encoding has been fixed, we can extend δ to get an injective function which maps every string

r i over Σ into a bi- nary string δ(r i ) of length |δ(r i )| = k |r i |.
Notice that any feasible solution f 1 , f 2 . . . f K for the instance K, r 1 , r 2 . . . r m naturally maps into the feasible solution δ(f 1 ), δ(f 2 ), . . . , δ(f K ) for the instance K, δ(r 1 ), δ(r 2 ) . . . δ(r m ) , and the cost remains unaffected.

Let us show that the converse is also true. To do so, we claim that, given any feasible solution f 1 , f 2 . . . f K for the instance K, δ(r 1 ), δ(r 2 ) . . . δ(r n ) , we can always modify it, without increasing its cost, in such a way that each of the f i is actually the binary encoding of some string over Σ.

In other words, we can assume that

f 1 = δ(f 1 ), f 2 = δ(f 2 ) . . . f K = δ(f K ).
In this way, the converse would directly follow. In order to prove our claim, we can actually act on the f i 's and "clean" them out one by one. Assume f i is not cleaned, that is, f i does not belong to the image of map δ. Then there exists some 1 ≤ j ≤ n such that f i [k (j -1) + 1, k j] does not belong to the codewords set ∆(Σ) := {δ(σ) : σ ∈ Σ }. In this case, where σ is any symbol in Σ such that δ(σ) has a longest suffix in common with f i [k (j -1) + 1, k j], we modify f i precisely on the interval [k (j -1) + 1, k j], and, more precisely, by replacing it by the string δ(σ). Considering the way the procedure for finding a minimum cost segmentation operates (e.g. Algorithm 1), it is easy to see that this modification does not increase the cost.

Algorithm 1 Algorithm for finding a minimum cost segmentation : F S(r; f 1 , f 2 , ..., f K )

1: Let i = |r| 2: if i = 0 then 3: return 4: end if 5: Let j be the smallest positive natural such that r[j..i] = f k [j..i] for some k 6: if j > i then 7: return "No production exists" 8: end if 9: return F S(r[1, j -1]; f 1 [1, j -1], f 2 [1, j - 1], . . . , f K [1, j -1]) + [j..i]
In order to facilitate the understanding of the proof, let us further strengthen the formulation of our problem: consider the more general formulation where K of the K founders comprising the solution (and to be given in output) are actually given as specified in advance in the input. We will refer to those specific founders as forced founders and will first show how one can force a part of the founders.

Let us first remark that it is easy to provide a polynomial-time reduction from any instance containning forced founders to an instance without ones. Indeed, for each forced founder f f , add n m copies of f f in the recombinants set D. It is clear that in a solution, one has to include f f in the founder set, otherwise, it will induce at least n m breakpoints which is the maximal number of breakpoints one can get in the original instance. Note that given an objective of at most B breakpoints, it suffices to add B copies of f f to get this property.

Thus, for the purpose of the reduction, we can without loss of generality assume to have instances of the form K, D, F f such that

D = {r 1 , r 2 . . . r m } ⊂ Σ n , F f = {f f 1 , f f 2 . . . f f m } ⊂ Σ n and m = m + m . Let us now provide a reduction from the NP-complete Vertex-Cover problem: Given a graph G = (V, E) such that |V | = n G , |E| = m G
and an integer k G , decide whether there exists a subset V of V such that each edge of G is incident to at least one vertex of V and |V | ≤ k G . Our reduction begins by giving an arbitrary orientation to each edge of G, that is, for each e j ∈ E, let t j and h j be indices such that v tj is the tail and v hj is the head of the arbitrary oriented edge e j .

We consider the alphabet Σ := {W, Z} ∪ {X i : i = 1, 2, . . . n G }. Informally, there is one letter for each vertex of V , while W and Z act like separators letters. We define m = C n G + 3 recombinants, each of length n = 6 m G built as follows (C is a constant defined later):

• r 1 = (W W ZZW W ) m G , • r 2 = m G j=1 (ZZX tj X tj ZZ) and r 3 = m G j=1 (ZZX hj X hj ZZ), • r j i = (X i X i X i X i X i X i ) m G , for each 1 ≤ i ≤ n G , 1 ≤ j ≤ C.
We then define a set F f of K = 1+2m G n G forced founders as follows.

• F f 1 = (ZZZZZZ) m G , • F f i,t = Z 3 t X i X i X i Z 3 (2m G -t-1) , for each 0 ≤ t ≤ 2m G -1, and 1 ≤ i ≤ n G . Finally, we set K = 2m G n G +k G +2; that is asking for K = k G + 1 founders.
Lemma 2 If the graph G = (V, E) admits a vertex cover of size at most k G then the corresponding built instance of our problem admits a solution of cost at most

C(n G -k G )(2m G -1) + 6m G . Proof: Let V ⊂ V be a vertex cover of size k G of G.
For each 1 ≤ j ≤ m G , we let c j be an index such that v cj ∈ V ∩ e j (such an index exists since V is a vertex cover). By definition, c j ∈ {t j , h j }. Let c j = {t j , h j }\c j . We construct our solution with the following set F of K = k G + 1 founders:

• F 0 = m G j=1 (W W X cj X cj W W ), • F i = (X i X i X i X i X i X i ) m G , for each v i ∈ V .
Let us now compute the corresponding cost:

• cost(r 1 ; F ∪ F f ) = 2 m G since we have to switch from F 0 to F f 1 and from F f 1 to F 0 for each m G blocks of length 6, • cost(r 2 ; F ∪ F f ) = 2 m G and cost(r 3 ; F ∪ F f ) = 2 m G .
For each 1 ≤ j ≤ m G , since V is a vertex cover, F cj and F 0 will prevent a breakpoint between the X tj 's (and between the X hj 's) since c j ∈ {t j , h j } and c j = {t j , h j }\c j . Therefore, by switching from F f 1 to F cj or F 0 and back to F f 1 for each m G blocks of length 6, it only induces 2 breakpoints for each block,

• for 1 ≤ j ≤ C, cost(r j i ; F ∪ F f ) = 0 for each v i ∈ V whereas cost(r j i ; F ∪ F f ) = C(2 m G -1) for each v i / ∈ V . Considering each recombinants r j i such that v i / ∈ V , by switching from F f i ,2t-2
to F f i ,2t-1 for the t th block of length 6, it will only induce 2 breakpoints for each block (except the last one). Since

|V | = k G , there are n G -k G recombinants which costs (2m G -1) each.
On the whole,

2 i=1 cost(r i ; F ∪ F f ) + n G i=1 C j=1 cost(r j i ; F ∪ F f ) = 2m G + (2 × 2m G ) + C(n G -k G )(2m G -1) = C(n G -k G )(2 m G -1) +6 m G .
We now turn to considering the reverse direction. Lemma 3 Given a graph G = (V, E) and the corresponding built instance of our problem, if the latter one admits a solution of cost at most C(n Gk G )(2m G -1) + 6m G , for any C > 6m, then G admits a vertex cover of size at most k G . Proof: Let us prove that the cost of recombinants

r j i , 1 ≤ i ≤ n G , 1 ≤ j ≤ C, for any solution is greater than C((n G -k G )(2m G -1)). Note first that, only considering the set of forced founders F f , each r j i , 1 ≤ i ≤ n G , 1 ≤ j ≤ C, has a cost(r j i , F f ) = C(n G (2m G -1)). Indeed, given a recombinant r j i , one has to switch from F f i,t to F f i,t+1 for 0 ≤ t ≤ 2m G -2. Considering now both F f and F , if the set of K = k G +1 founders is composed of exact copies of K dif- ferent recombinants {r j1 i1 , r j2 i2 . . . r j k G +1 i k G +1 } (for some 1 ≤ i 1 , i 2 . . . i k G +1 ≤ n G and 1 ≤ j 1 , j 2 . . . j k G +1 ≤ C), then n G i=1 C j=1 cost(r j i ; F ∪ F f ) = C(n G -(k G + 1))(2m G -1).
However, r 1 is built over some W letters; which does not belong to any forced founders. Therefore, there should be founders among the K including a W in positions 6t + 1, 6t + 2, 6t + 5, 6t + 6, for each 0 ≤ t ≤ m G -1. Then, for any 0 ≤ t ≤ m G -1, there will exist among the recombinants {r j1 i1 , r j2 i2 . . . r

j k+1
i k+1 } one recombinant -say r j1 i1 -that will induce a switch (for each of its C copies) from a founder of F to F f i1,t+1 (resp. F f i1,t+2 ) due to the W W at positions 6t+1, 6t+2 (resp. 6t+5, 6t+6) in the corresponding founder. Therefore, on the whole, one will end-up with an extra cost of 2Cm G . In the best case, one should only "sacrifice" one of the K founders (which was only allowing a gain of 2C(m G -1) breakpoints). On the whole,

n G i=1 C j=1 cost(r j i ; F ∪ F f ) ≥ C(n G -k G )(2m G -1). Moreover, considering the objective cost (i.e. C(n G -k G )(2m G -1) + 6m G )
and that C > 6m, the following is enforced:

1. Considering any position, each of the K founders has a different letter, 2. A founder with a letter X u in a given position contains only letters X u in the next positions until a letter W or the end of the founder is encountered, 3. All the W letters occur in the same founder.

Let us now prove each of these points.

Point 1. By contradiction, suppose there are two founders with the same letter in a given position. Then, there is at least one more breakpoint for each copy of a given recombinant of {r j1 i1 , r j2 i2 . . . r

j k G +1
i k G +1 } which leads to a cost above the objective.

Point 2. By contradiction, in an optimal solution, suppose there is a founder with a letter X u at position k followed by a letter X v . Then, due to Point 1, there should not exist another founder such that X u is at position k nor X v at position k + 1. Therefore, there is a breakpoint between positions k and k + 1 in all r j u (resp. r j v ); that is 2C breakpoints. Consider now changing X v into X u in the corresponding founder. Then it will induce at least C less breakpoints, leading to a better solution; a contradiction.

Point 3. Let us first prove that W letters at position 6t + 1 and 6t + 2 belong to the same founder. By contradiction, suppose it is not the case; e.g. there is a W letter at position 6t + 1 in founder F i and a W letter at position 6t + 2 in founder F j , i = j. By Point 1, there is no W letter at position 6t + 2 (resp. 6t + 1) in founder F i (resp. F j ). Thus, there is a breakpoint in the recombinant r 1 between positions 6t + 1 and 6t + 2. Consider now swapping F i [1..6t + 1] and F j [1..6t + 1]. This will decrease the number of breakpoints at least by one since it only changes the cost due to positions 6t+1 and 6t+2. Same argument holds for the other W positions.

We now know that the W letters appears by block of size 4 (except for the first and last blocks; which are of size 2). It also appears that if the blocks of letters W are not on the same founder, it creates at least C more breakpoints. Figure 3 illustrates this configuration. Indeed, in an optimal solution, consider two founders F i and F j such that there are W letters at positions 6t+1 and 6t+2 (resp. 6t+5 and 6t+6) in F i (resp. F j ). Assume, moreover, that a X u (resp. X v ) appears in position 6t + 3 (resp. 6t + 4) in F i (resp. F j ). Then considering the forced founders, F i and F j , there will be one breakpoint between positions 6t + 3 and 6t + 4 in all r x u and r x v , for 1 ≤ x ≤ C and one breakpoint between positions 6t+6 and 6t+7 in all r x v , for 1 ≤ x ≤ C. Consider now swapping F i [1..6t + 4] and F j [1..6t + 4] and replacing the X i 's of F j by X j 's. It will induce at least C less breakpoints, leading to a better solution; a contradiction.

In the following, let us assume that F 0 denote the founder containning the W letters; the other founders are referred as F 1 , F 2 , ..., F K . Now that we know the precise topology of the founders of any optimal solution, we can now prove that {F 1 , F 2 . . . F K } corresponds to a vertex cover in G. Let V ⊆ V be defined as follows. For each founder F i , 1 ≤ i ≤ K , if F i is the exact copy of the recombinant r y

x , then add v x in V . Let us prove that V is a vertex cover of G. By contradiction, suppose it is not. Then, it exists at least one y such that (v hy , v ty ) ∈ E and both {v hy , v ty } ∩ V = ∅. Therefore, there is at least a breakpoint between X ty and X ty in r 2 or between X hy and X hy in r 3 since neither h y nor t y appears in {F 1 , F 2 . . . F K }, and F 0 can contain at most one of the two in the corresponding positions. It is worth noting that none of the forced founders cannot prevent theses breakpoints since there never have the same letters at position 6t + 3 and 6t + 4.

Combining Lemma 2 and Lemma 3 we obtain the following result. Proposition 4 Minimum Mosaic given haplotype recombinants with no missing values is NP-Complete.

ments among the K founders. This ensures that when considering I x y , the choice of the founder for I x y will not interfere with placement of I x y . Indeed, either in the solution (1) they were on the same founder and thus will have a common prefix or (2) were not in the same founder. This leads to an overall O(BKL) time-complexity algorithm where L is the length of the longest segment.

Let us now consider the case where only the number of breakpoints for each recombinant is known (i.e. without the positions of those last). Then, one can test all the possible positions for each recombinant and apply the previously proposed algorithm. On the whole, since given a recombinant r i with b i breakpoints, there are at most n bi possibilities of placement of the breakpoints, the corresponding algorithm runs in O(n b1 .n b2 . . . . .n bm .BKL) = O(n .BKL).

Finally, we give an algorithm with a lower complexity in the case one only knows the number B of allowed breakpoints. Let first give the maximum number of different strings in D, that is the number m d of different recombinants among the m recombinants of D. In the worst case, there is only one breakpoint on each recombinant, that is B different recombinants. Moreover, there is a maximum number of K different recombinants with no breakpoint in D (they are copies of the founders). Thus, we can give the following upperbound for the number of different recombinants in D : m d ≤ K + B. We also have K ≤ m d ≤ m.

Let now decide which recombinants in D will have some breakpoints. Therefore, we have to choose B recombinants among the m d recombinants with at least one breakpoint. We will try all different possibilities. There are m d B = K+B B = (K +B) B different configurations. For each one, run the exact O(nK 2m ) algorithm of Ukkonen to find the best possible founders. This algorithm is ran among a set of only B chosen recombinants. Thus, the running time of the exact algorithm is O(nK 2B ). On the whole, the total running time of the algorithm when only the number of breakpoints is known is O((K + B) B × nK 2B ). This last result demonstrates that once the number of breakpoints is bounded the problem becomes polynomial.

Open problems

In this article, we showed that the Minimum Mosaic problem given haplotypes with no missing values is hard for an unbounded number K of founders. When K is bounded but the number m of recombinants is not, the problem is still widely open. Indeed, there is an ocean between the linear complexity of the problem when m (and thus K) is bounded, the polynomial-time complexity when K = 2, and the NP-Completeness when K is unbounded. It is also widely open whether the problem admits some PTAS.

the

  SNPs are shown) . . . A . . . C . . . C . . . T . . . G . . . T . . . . . . A . . . C . . . A . . . G . . . C . . . T . . . The corresponding genotype is . . . A/A . . . C/C . . . A/C . . . G/T . . . C/G . . . T/T . . .

Figure 1 :

 1 Figure 1: Recombination of S 1 and S 2 leading to T .

Figure 2 :

 2 Figure 2: A Mosaic issued from a set of founders

W not on the same founder a) .. 

Exact algorithms for Minimum Mosaic

In this section, we will provide exact algorithms considering a variant of the Minimum Mosaic/Segmentation problems where extra informations (e.g. position, number, . . .) on the breakpoints are given.

Let us first give a complexity study of the general solution (Section 4) proposed by Ukkonen in [START_REF] Ukkonen | Finding founder sequences from a set of recombinants[END_REF]. Indeed, the corresponding solution shows that, once the number of founders (i.e. K) is bounded, then the minimum mosaic problem is FPT. The main idea of the dynamic programming solution of Ukkonen is to compute all the partition of size K of the m input recombinants for each column. The central recurrence is based on the fact that the "best" K-partitions for the i first columns can be computed using one of all the "best" K-partitions of the i -1 first columns and any K-partition of the i th column; the parsimony criterion being the number of breakpoints induced. One has to store in a dynamic table, the minimal cost of any K-partition of the i first columns for all the K-partitions of the i th column. On the whole, since (1) there are K m Kpartitions of any column i and (2) one has to compute the minimum number of breakpoints considering all the K-partitions of column i -1 for each K-partition of column i, the time complexity is O(nK 2m which leads to a polynomial solution when the number of recombinants (i.e. m) is bounded. It also provides a practical solution when the number of founders (i.e. K) is bounded.

Let us now design exact algorithms for a variant of the Minimum Mosaic/Segmentation problems that considers that extra informations on the breakpoints are given. Let us first consider a kind of reverse problem of Minimum Segmentation problem where given a set of m recombinants D = {r 1 , r 2 , . . . , r m } ⊂ {0, 1} n and a set of B identified breakpoints on Di.e. an overall cost B segmentation of the recombinants S = {I 1 1 , I 1 2 . . . I 1 k1 , . . . I m 1 , I m 2 . . . I m km } such that ( m i=1 k i ) -m = B and I x y is the y th segment of recombinant r x -find a set of K founders F = {f 1 , f 2 , . . . , f K } ⊂ {0, 1} n such that the B cost segmentation can be derived from F . We propose a polynomial-time algorithm (Algorithm 2) that solves this problem. For any I x y , let L x y (resp. R x y ) denote the leftmost (resp. rightmost) position of I x y in [1.

.n].

Algorithm 2 Find K founders according to a segmentation S 1: Let L be a sorted list -according to the leftmost position -of elements of S 2: F = {F 1 , F 2 . . . F K } such that F i = [ "", "", . . . , ""], 1 ≤ i ≤ K 3: while L is not empty do for each F i in F do 7:

Z ← the leftmost empty position in F i greater than L x y 8:

.Z] and I x y share a common prefix then 9:

if LCP < Z -L x y then 10: Let us now prove that this algorithm indeed find a solution if one exists. Roughly, the algorithm tries to reassemble the segments in order to produce at most K founders. To do so, the algorithm computes the founders from left to right using the available segments in L. For each available segment I x y , the algorithm tries first to detect if there is a founder that has the longest common prefix with I x y at the given position L x y . If there exist one then the corresponding founder is "merged" with I x y for the positions from L x y to R x y . Otherwise, the algorithm tries to find a founder such that the position L x y is empty and then merge the founder and I x y . Let us prove that, if there exist a solution then the algorithm will find it. First, notice that if there exist such a solution then any segments can be placed entirely in one of the K founders. Thus when considering all the segments starting at a given position, one should be able to find a distribution of the seg-