
HAL Id: hal-00620370
https://hal.science/hal-00620370v1

Submitted on 19 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust Partitioned Scheduling for Real-Time
Multiprocessor Systems

Frédéric Fauberteau, Serge Midonnet, Laurent George

To cite this version:
Frédéric Fauberteau, Serge Midonnet, Laurent George. Robust Partitioned Scheduling for Real-
Time Multiprocessor Systems. 7th IFIP Conference on Distributed and Parallel Embedded Sys-
tems (DIPES’10), Sep 2010, Brisbane, Australia. pp.193-204, �10.1007/978-3-642-15234-4_19�. �hal-
00620370�

https://hal.science/hal-00620370v1
https://hal.archives-ouvertes.fr

Robust Partitioned Scheduling for Real-Time
Multiprocessor Systems

Frédéric Fauberteau1, Serge Midonnet1, and Laurent George2

1 Université Paris-Est
LIGM, UMR CNRS 8049

5, bd Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée CEDEX 2, France
{fauberte,midonnet}@univ-mlv.fr

2 ECE / LACSC
37,quai de Grenelle, 75015 Paris, France

lgeorge@ieee.org

Abstract. In this paper, we consider the problem of fixed-priority par-
titioned scheduling of sporadic real-time tasks for homogeneous proces-
sors. We propose a partitioning heuristic that takes into account possible
Worst Case Execution Time (WCET) overruns. Our goal is to maximize
the duration a task can be allowed to exceed its WCET without compro-
mising the timeliness constraints of all the tasks. This duration is denoted
in the paper the allowance of the task and is computed with a sensitivity
analysis. The partitioning heuristic we propose, assigns the tasks to the
processors in order (i) to maximize the allowance of the tasks and (ii) to
tolerate bounded execution duration overruns. Property (ii) is important
as real-time applications are often prone to be subject to OS approxima-
tions or software faults that might result in execution duration overruns.
We show with performance evaluations that Allowance-Fit-Decreasing
partitioning improves the temporal robustness of real-time systems w.r.t.
classical {First-Fit/Best-Fit/Next-Fit}-Decreasing partitioning.

Key words: Real-time Scheduling, Partitioned Scheduling, Robustness

1 Introduction

Fixed-priority scheduling of recurring real-time tasks has been largely studied
for uniprocessors. In such a scheduling, a Priority Assignment (PA) assigns a
fixed priority to each job of the task. For instance, Rate-Monotonic (RM) is an
optimal PA for periodic tasks with implicit-deadlines (deadlines equal to periods)
[1]. Optimality implies that if a feasible PA over a taskset exists, then the optimal
PA is also feasible. A feasible taskset is a taskset such that a scheduling algorithm
exists which can schedule this taskset. We focus on the more general model of
tasks with constrained-deadlines (deadlines less than or equal to periods) for
which Deadline-Monotonic (DM) is an optimal PA [2]. Recently, the optimal
Robust Priority Assignment (RPA) [3] has been proposed to find the PA which
maximizes the interference that a tasks system can support. These interferences

can be handled by the tasks by allowing WCETs overruns while the timeliness
constraints of all the tasks are respected. These tolerated WCETs overruns are
denoted allowance of the tasks. In the same way, our motivation is to propose a
robust multiprocessor scheduling which maximizes the allowance.

The two most studied approaches to schedule real-time tasks on a multi-
processor are partitioned and global scheduling. The first one does not allow
tasks to migrate whereas the second one allows unrestricted migrations. Recent
architecture have reduced the cost of migration. Nevertheless, taking into ac-
count the cost of migration in the feasibility conditions of global scheduling is
still an open issue. A recent performance evaluation of partitioned and global
schedulings show that partitioned scheduling outperform global scheduling, in
the current state-of-the-art of feasibility conditions [4]. We therefore focus on the
partitioned approach. Several algorithms for fixed-priority partitioned schedul-
ing have been proposed [5–9]. The aim of the authors is to propose algorithms
which improve the worst-case utilization bound. The worst-case utilization bound
for a scheduling algorithm A is defined as the minimum utilization for which any
implicit-deadline taskset is schedulable according to algorithm A. The utilization
of an implicit-deadline taskset is the sum of the processor utilization (formally
defined in Sect.2) of each task composing this taskset.

In this paper, our motivation is slightly different since we want to design
a partitioned scheduling which improves the temporal robustness of a system
i.e. to improve its capability to support variations on the system parameters at
run time (WCET overruns for e.g.). Such events should not lead to a deadline
violation in a hard real-time application. We focus on the WCET parameter
and we propose an algorithm which allocates the tasks on the processor having
the greatest capability to support WCETs overrun by maximizing the minimum
allowance of all the tasks.

The rest of this paper is organized as follows. In Section 2, we introduce the
terminology used in the rest of this paper. In Section 3, we give a definition
of robustness in context of this paper. In Section 4, we discuss two manners to
compute the allowance of the execution duration which is the criterion of our
partitioning algorithm for the assignment of real-time tasks on the processors.
In Section 5, we present our heuristic and describe how it works. In Section 6,
we compare on some simulations the performance of the partitioning schedulings
and we explain the benefits of our approach. We summarize the contributions of
this paper in Section 7 and we give direction for our future work.

2 Terminology

In this paper, we consider an application built from a set τ = {τ1, τ2, . . . , τn} of
n sporadic real-time tasks. A sporadic task is a recurring task for which only a
upper bound on the separation between release times of the jobs is known. Each
task τi is characterized by a minimum interarrival time Ti (also denoted period),
a worst-case execution time Ci and a relative deadline Di. This application runs
on a platform Π = {π1, π2, . . . , πm} of m identical processors (homogeneous

case). We consider a fixed-priority scheduling on each processor. A fixed-priority
scheduler assigns a priority to each task and all jobs of a task is released with the
fixed priority of this task. We assume that tasks are indexed by decreasing prior-
ity: ∀i = 1, . . . , n−1, task τi has a higher priority than task τi+1. A partitioning
algorithm produces a partition Part(τ) = {τ1, τ2, . . . , τm} of m disjointed sub-
sets where each subset τ j of real-time tasks is executed on processor πj . The

subset τ j composed by nj tasks is also denoted by τ j = {τ j1 , τ
j
2 , . . . , τ

j
nj
}. In

the rest of this paper, we refer to τi when the considered task is taken indepen-
dently and to τ ji when it is considered assigned on processor πj . We define ui
as the utilization of task τi : ui ≡ Ci

Ti
and U j as the utilization of the taskset τ j

: U j ≡
∑
τj
k∈τj uk. On the processor πj , we denote lpj(i) (respectively hpj(i))

the subset of real-time tasks assigned to πj which have a priority lower than
(respectively higher than or equal to) τi. The response time of the task τi is
denoted Ri. We denote Rki the kth iteration in the response time computation
of the task τi.

3 Robustness

We consider the robustness in the real-time systems as the capacity of the system
to handle WCET overruns faults when the WCET are estimated. If the WCET
of all the tasks of the system has been well defined, a feasibility analysis shows
wheter the system is feasible. But in pratice, it may possible that a task makes
a fault or that the time constraints has been miscalculated. Some real-time
specifications - such as Real-Time Specification for Java [10] - provide mechanism
to handle cost overruns and deadline misses in the case of estimated WCET.

In this work, we consider the robustness as the capacity of a system to meet
all the deadlines. We can guarantee that the system stay feasible if and only if we
know the execution duration during which a task can exceed its WCET without
any deadline is missed. This duration is denoted allowance and the more each
task allowance has, the more robust the system regarding to our definition is.

4 Allowance concept

The allowance of a task is used as a criterion for allocating a task on a processor
by our heuristic. We define the allowance Aji of a task τ ji on the processor πj as
follows :

Definition 1. Let τ j be a given set of tasks assigned on processor πj. The al-
lowance Aji of a task τ ji of τ j is the maximum duration which can be added to

the WCET Ci of τ
j
i such as all tasks of τ j meet their deadlines.

We identified in the literature two approaches to compute the allowance: one
based on a (Worst Case Response Time) WCRT computation and one based
on a sensitivity analysis on the WCETs. The response time of a task is the du-
ration between the time this task has been released and the time it has been

finished. The WCRT of a task is the response time of this task in the worst acti-
vation scheme. We use the taskset given in Tab.1 to describe the two allowance
computation methods in the following subsections.

Table 1. System of 4 sporadic real-time tasks.

Ci Di Ti

τ1 10 60 70
τ2 15 85 100
τ3 30 190 210
τ4 45 260 320

4.1 Allowance Computed from WCRT

One of the available approach to compute the allowance of the execution duration
has been proposed by Bougueroua et al. [11]. For a given value of allowance Aji ,
this method consists in checking that the system remains schedulable when the
execution duration of a task τi is equal to C ′i = Ci + Aji . In other words, this
method consists in checking that the WCRT of all the tasks remains less than or
equal to their deadline when their WCET is extended to Ci+A

j
i . The 3 following

equations perform this check for the task τ ji on a processor πj if τ ji was assigned
on τ j .

U j +
Aji
Ti
≤ 1 (1)

Rk+1
i = Ci +Aji +

∑
τh∈hpj(i)

⌈
Rki
Th

⌉
Ch ≤ Di (2)

∀τl ∈ lpj(i),

Rk+1
l = Cl +

∑
τh∈hpj(l)

⌈
Rkl
Th

⌉
Ch +

⌈
Rkl
Ti

⌉
Aji ≤ Dl

(3)

The value of allowance of a real-time task τi is found by a binary search.
Equation (1) tests if the utilization U j of the system when the WCET of τ ji is

extended to Ci+A
j
i does not exceed processor utilization. An upper bound Aji,up

on the allowance of the task τi can be found from (1):

Aji,up =
⌊
(1− U j) · Ti

⌋
(4)

Equation (4) allows to bound the binary search in [0, Aji,up]. For the task τ j1
of our example, Aj1,up = b(1− 0.58) · 70c = 29. We can carry out a binary
search with 0 ≤ A1 ≤ 29. Equation (2) tests if the response time R1 of τ1,

when its WCET has been extended to C1 + A1,j , does not exceed its deadline

D1. Equation (3) tests if the response times Rl of all tasks τ jl of lower priority

than τ j1 don’t exceed their deadlines Dl when the WCET of τ j1 is extended by
A1,j . For the value b29/2c = 14, we must check that this value satisfies (2) and

(3). For A1,j = 14, the response time of τ j1 is R1 = 24 ≤ D1. We also obtain
R2 = 39 ≤ D2, R3 = 69 ≤ D3 and R4 = 177 ≤ D4. Then A1,j = 14 is a valid

value of allowance for τ j1 on the processor πj . We continue the binary search
until A1,j = 21, then A1 = 21 is the maximum value of allowance for τ1,j .

The complexity of this approach is pseudo-polynomial due to the Response
Time Analysis (RTA) in (2) and in (3). This complexity is in O(n2) where n is
the number of tasks. Indeed, for a task τi, a RTA is performed in O(n) and for
each task of lower priority than τi, a RTA is performed in O(n). In the worst
case, there is n− 1 tasks of lower priority than τ1, thus the complexity is O(n2).

4.2 Allowance Computed from Sensitivity Analysis

Another approach to compute the allowance of the execution duration is the
sensitivity analysis. This approach has been introduced by Bini et al. [12]. This
approach is attractive compared to the previous one because no iterative compu-
tation (such as WCRT computation) is needed. The authors propose to consider
the system only at time corresponding to the activation time of the highest pri-
ority tasks in [0, Di] union time {Di}. The maximum allowance Aji of a task τ ji
on the processor πj is computed by the following equations:

Sens(k) = max
t∈schedPk

t−

Ck +
∑

h∈hp(k)

⌈
t

Th

⌉
Ch

dt/Tie

(5)

Aji =

⌊
min
k∈lp(i)

Sens(k)

⌋
(6)

where schedPk is the set of scheduling points defined by schedPk = Pi−1(Dk)
and Pk(t) is defined by :{

P0(t) = {t}
Pk(t) = Pk−1(

⌊
t
Tk

⌋
Tk) ∪ Pk−1(t)

(7)

For the task τ1 of our example, schedP1 = D1 = {60}. In the same way,
schedP2 = {70, 85}, schedP3 = {70, 100, 140, 190} and schedP4 = {140, 200, 210, 260}.
The values Sens(1) = 50, Sens(2) = 45, Sens(3) = 33.33 and Sens(4) = 21.66
are computed by using Equation 5. The allowanceM1 = mink∈lpj(i)bSens(k)c =
21 is obtained from (5) and (6).

The complexity of this approach is exponential because |schedPn|, denoted
as the size of the scheduling points set computed by (7) is 2n−1 in the worst-case.
But in practice, the size of schedPn << 2n−1 for a great value of n. We notice
that the size of schedPn is highly sensitive to the range of task periods as seen
in appendix of [13].

5 Partitioning Algorithm

5.1 Task Partitioning Problem

The task partitioning problem consists of finding a partition of a taskset τ in m
subsets τ j , 1 ≤ j ≤ m such that each subset is feasible on processor πj . Since it
has been proved that bin-packing problem (NP-hard in the strong sense) can
be reduced in polynomial-time to a task partitioning problem [14], no optimal
algorithm exists to decide in polynomial-time if a given taskset is feasible. For-
tunately, approximation algorithms and heuristics exist to find solutions for the
task partitioning problem in polynomial-time. Heuristics for the tasks partition-
ing problem exist and are versions of the heuristics proposed for the bin-packing
problem. The more cited in the literature are First-Fit [8] (FF), Best-Fit [6]
(BF) and Next-Fit (NF) [7]. These heuristics have been initially designed to
minimize the number of bins (respectively the number of processors) for the
bin-packing problem (respectively the tasks partitioning problem). Another
heuristic Worst-Fit [15], is rarely used because it provides poor performance to
solve the bin-packing problem. On the problem of task partitioning, this heuris-
tic allocates tasks to processors where utilization is the lowest. This approach is
relevant because we want the best allocation of tasks to maximize the allowance
of tasks. We propose in the next subsection a heuristic which allocates tasks to
processors that has the greatest allowance rather than processors that has the
lowest utilization.

5.2 Allowance-Fit-Decreasing

We propose a heuristic, denoted Allowance-Fit-Decreasing, to solve the task par-
titioning problem. We want to tolerate bounded WCET overruns, a property not
considered in classical heuristics. WCETs overruns can be due to OS approxima-
tions, faults of the task or WCET under-estimation. By definition, the allowance
of a processor is the minimum allowance for all task allocated to the processor.
Our goal is to propose a partitioning scheme that assigns a task to the processor
whose allowance is maximum.

We describe the Allowance-Fit-Decreasing heuristic with the pseudo-code
given in Alg.1. The tasks are first sorted according to their utilization by func-
tion sort task by decreasing utilization() (line 1). For each task τi of the
taskset τ (iteration loop at lines 2-17), the proc parameter, denoting the pro-
cessor on which τi is allocated (at line 3), is initialized with a null value. The
minimum value of allowance for the entire system (variable Amin at line 4) is
first initialized to minus infinity. We then consider all processors in Π and find
the processor that maximizes the processor allowance. For each processor πj (it-
eration loop at lines 5-11), our heuristic finds the minimum value of processor
allowance Ajmin computed by function compute allowance(πj, τ ji) when τi is
allocated to πj with the method described in Sect.4.2. If after the iteration loop,
Amin is greater than or equal to 0 then, τi can be assigned to a processor, the
one that maximizes the processor allowance, by construction. We then proceed

Algorithm 1: Allowance-Fit-Decreasing

sort task by decreasing utilization()1

foreach τi in τ do2

proc = None;3

Amin = -Inf;4

foreach πj in Π do5

Aj
min = compute allowance(πj , τ

j
i)6

if Aj
min > Amin then7

proc = πj ;8

Amin = Aj
min;9

end10

end11

if Amin ≥ 0 then12

assign τi to proc13

else14

return unschedulable15

end16

end17

return schedulable18

with the other tasks until all the tasks until either all tasks have been assigned
to a processor (we then return that the task set is schedulable in line 18) or one
task is declared not schedulable (line 15).

5.3 Partitioned Scheduling Algorithm

A partitioned scheduling algorithm is the combination of a task partitioning
algorithm with a schedulability condition. We build two partitioned scheduling
algorithms, one from Worst-Fit and one from Allowance-Fit-Decreasing. For the
first one, the schedulability condition is a necessary and sufficient condition
implicitly given by Allowance-Fit-Decreasing. Indeed, our heuristic computes
with the function compute allowance(πj,τi) the value of Ajmin, the minimum
allowance for all the tasks assigned to processor πj , including τi. If this function

returns a negative value, then τi cannot be assigned on the processor πj . Ajmin
is computed from the sensitivity analysis given in Sect.4.2. For the second one,
we combine Worst-Fit with the necessary and sufficient schedulability condition
RTA [16].

During the allocation, the tasks are taken in order of their decreasing utiliza-
tion. In other words, the tasks with the greater utilization are allocated first. We
consider a fixed-priority assignment and we use DM priority assignment since
this PA is an optimal one when the considered tasks have constrained-deadlines
(∀i, Di ≤ Ti) [2].

6 Simulations

6.1 Methodology

Our simulations is based on randomly generated tasksets. Because we focus on
tasks with constrained-deadlines, we consider tasksets such that for any task
τi, α = Di

Ti
). We randomly generate 10 sets for α ∈ [0.1, 0.2, . . . , 1.0]. Each set

is built from 100,000 randomly generated tasksets. Each taskset is composed
by 24 tasks. A taskset is generated using the UUniFast algorithm [17] which
produces a uniformly distributed set of task utilizations and which avoids bias
in the generated tasksets. For a given task τi, the period Ti is generated with
a uniform distribution between 100 and 100,000 ms. The deadline Di is given
by Di = α · Ti and the WCET Ci is given by Ci = ui · Ti. We consider an
homogeneous processor composed by 8 identical processors.

6.2 Simulation Results

We show in Fig.1 the average number of iterations during the computation of
allowance.

Rk+1
i = Ci +

∑
τh∈hpj(i)

⌈
Rki
Th

⌉
Ch (8)

We implement a function iteration() which computes the value given by (8).
The computation of the allowance based on the WCRT computation calls this
function in (2) and in (3). The computation of the allowance based on the sensi-
tivity analysis calls this function in (5). For the two implementations of the al-
lowance computation, we count the number of calls to the function iteration()

for each randomly generated taskset and we keep the average of the allowance
over all the taskset. We notice that despite the fact of the complexity of the
sensitivity analysis seems greater than the complexity of the allowance compu-
tation based on the WCRT, the number of iterations for sensitivity analysis is
well below the number of iterations for computation based on the WCRT. We
therefore choose to compute allowance by sensitivity analysis [12].

We show in Fig.2, 3 and 5 the comparison between First-Fit-Decreasing
(FFD), Worst-Fit-Decreasing (WFD) and Allowance-Fit-Decreasing (AFD). De-
creasing means that these heuristics assign the tasks in order of their decreasing
utilization. We voluntarily omit to show results concerning BF and NF because
their behavior are very similar to FF. AFD and WFD use a necessary and suffi-
cient condition of schedulability. Therefore we used the necessary and sufficient
condition RTA [16] for the heuristics FFD.

We show in Fig.2 the number of partition found by the heuristics FFD,
WFD and AFD. We notice that FFD provides a slightly better schedulability for
α ≥ 0.4. This result is explained by the fact that FFD is one of the best heuristic
for the task partitioning problem in terms schedulability. But the gap between
FFD and the other two heuristics is not very large and may be acceptable if we
want more robustness to WCETs overruns.

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 it

er
at

io
ns

α (Di/Ti)

WCRT
Sensitivity Analysis

Fig. 1. Comparison of computation time for the allowance computation approaches.

 0

 20000

 40000

 60000

 80000

 100000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
um

be
r

of
 s

ch
ed

ul
ab

le
 s

ys
te

m
s

α (Di/Ti)

First-Fit-Decreasing
Worst-Fit-Decreasing

Allowance-Fit-Decreasing

Fig. 2. Comparison of schedulability for the tasks partitioning heuristics.

We compare in Fig.3 the minimum allowance obtained by the three heuristics
on 4 processors and in Fig.4 on 8 processors. Minimum allowance Amin guaran-
tees that any task of the system can bear an interference during Amin without
any deadline is missed. We show that AFD and WFD outperforms largely FFD.

Indeed, AFD and WFD distributes the tasks among the processors instead of
fills up all the first processors. We note that AFD is slightly better than WFD.

 0

 20

 40

 60

 80

 100

 120

 140

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
al

ue
 o

f a
llo

w
an

ce
 (

m
s)

α (Di/Ti)

First-Fit-Decreasing
Worst-Fit-Decreasing

Allowance-Fit-Decreasing

Fig. 3. Comparison of minimum allowance for the tasks partitioning heuristics on 4
processors.

We show in Fig.5 the comparison between the computational time of the three
heuristics. AFD offers better results than WFD in terms of minimum allowance.
But the computation time of AFD is 6 to 10 greater than the computation time
of WFD. For a robust allocation to the WCETs overruns, it is interesting to use
AFD. But when tasks must be accepted online, WFD is a preferable choice.

7 Conclusion

We have proposed a fixed-priority partitioned scheduling for homogeneous pro-
cessors which maximizes the allowance of the execution duration. This scheduling
is more robust than the others based on FF, BF or NF because during alloca-
tion of the tasks, the processor offering the greatest value of allowance is chosen.
In terms of maximization of allowance, Allowance-Fit is slighty efficient than
Worst-Fit. But in terms of computation time, Worst-Fit is largelly better than
Allowance-Fit. Thus Worst-Fit is a good heuristic to maximize the robustness
of a partitioned system of real-time tasks. In a future work, we will extend this
approach to the class of restricted migration scheduling to improve the schedula-
bility of our solution. In such a scheduling, the different jobs of a recurring task
can migrate from a processor to another, but no migration is allowed during the
execution of the job.

 0

 20

 40

 60

 80

 100

 120

 140

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
al

ue
 o

f a
llo

w
an

ce
 (

m
s)

α (Di/Ti)

First-Fit-Decreasing
Worst-Fit-Decreasing

Allowance-Fit-Decreasing

Fig. 4. Comparison of minimum allowance for the tasks partitioning heuristics on 8
processors.

 0

 5

 10

 15

 20

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
om

pu
ta

tio
n

tim
e

(m
s)

α (Di/Ti)

First-Fit-Decreasing
Worst-Fit-Decreasing

Allowance-Fit-Decreasing

Fig. 5. Comparison of computation time of the heuristics.

References

1. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard
real-time environment. Journal of the ACM 20(1) (1973) 47–61

2. Leung, J.Y.T., Whitehead, J.: On the complexity of fixed-priority scheduling of
periodic, real-time tasks. Performance Evaluation 2(4) (December 1982) 237–250

3. Davis, R.I., Burns, A.: Robust priority assignment for fixed priority real-time
systems. In: Proceedings of the 28th IEEE Real-Time Systems Symposium (RTSS),
Tucson, Arizona, USA, IEEE Computer Society (December 2007) 3–14

4. Bertogna, M.: Evaluation of existing schedulability tests for global EDF. In:
Proceedings of the 38th International Conference on Parallel Processing Workshops
(ICPPW), Vienna, Austria, IEEE Computer Society (September 2009) 11–18 First
International Workshop on Real-time Systems on Multicore Platforms: Theory and
Practice (XRTS).

5. Burchard, A., Liebeherr, J., Oh, Y., Son, S.H.: New strategies for assigning real-
time tasks to multiprocessor systems. IEEE Transactions on Computers 44(12)
(December 1995) 1429–1442

6. Oh, Y., Son, S.H.: Allocating fixed-priority periodic tasks on multiprocessor sys-
tems. Real-Time Systems 9(3) (November 1995) 207–239

7. Andersson, B., Jonsson, J.: Preemptive multiprocessor scheduling anomalies. In:
Proceedings of the 16th International Parallel and Distributed Processing Sym-
posium (IPDPS), Fort Lauderdale, Florida, USA, IEEE Computer Society (April
2002) 12–19

8. Fisher, N.W., Baruah, S.K., Baker, T.P.: The partitioned scheduling of sporadic
tasks according to static-priorities. In: Proceedings of the 18th Euromicro Confer-
ence on Real-time Systems (ECRTS), Dresden, Germany, IEEE Computer Society
(July 2006) 118–127

9. Lakshmanan, K., Rajkumar, R., Lehoczky, J.P.: Partitioned fixed-priority preemp-
tive scheduling for multi-core processors. In: Proceedings of the 21st Euromicro
Conference on Real-time Systems (ECRTS), Dublin, Ireland, IEEE Computer So-
ciety (July 2009) 239–248

10. Dibble, P.: Jsr 1: Real-time specification for java (December 1998)
11. Bougueroua, L., George, L., Midonnet, S.: Dealing with execution-overruns to

improve the temporal robustness of real-time systems scheduled FP and EDF. In:
Proceedings of the 2nd International Conference on Systems (ICONS), Sainte-Luce,
Martinique, IEEE Computer Society (April 2007) 8pp

12. Bini, E., Di Natale, M., Buttazzo, G.C.: Sensitivity analysis for fixed-priority
real-time systems. In: Proceedings of the 18th Euromicro Conference on Real-time
Systems (ECRTS), Dresden, Germany, IEEE Computer Society (April 2006) 13–22

13. Davis, R.I., Zabos, A., Burns, A.: Efficient exact schedulability tests for fixed
priority real-time systems. IEEE Transactions on Computers 57(9) (September
2008) 1261–1276

14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. (1979)

15. Coffman Jr., E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin
packing: A survey. In: Approximation Algorithms for NP-Hard Problems. PWS
Publishing Co., Boston, MA, USA (1996) 46–93

16. Audsley, N.C., Alan, B., Tindell, K.W., Wellings, A.J.: Applying new scheduling
theory to static priority pre-emptive scheduling. Software Engineering Journal 8(5)
(Sepember 1993) 284–292

17. Bini, E., Buttazzo, G.C.: Biasing effects in schedulability measures. In: Proceedings
of the 16th Euromicro Conference on Real-time Systems (ECRTS), Catania, Sicily,
Italy, IEEE Computer Society (June - July 2004) 196–203

