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Introduction

The general problem of establishing a general representation of structured patterns, i.e., macroscopic describers of RNA secondary structures, was considered in [START_REF] Vialette | Pattern matching over 2-intervals sets[END_REF][START_REF]On the computational complexity of 2-interval pattern matching[END_REF]. The approach was to set up a geometric description of helices by means of a natural generalization of intervals, namely a 2-interval. A 2-interval is the disjoint union of two intervals on the line. The geometric properties of 2-intervals provide a possible guide for understanding the computational complexity of nding structured patterns in RNA sequences. Using a model to represent non sequential information allows us for varying restrictions on the complexity of the pattern structure. Indeed, two disjoint 2-intervals, i.e., two 2-intervals that do not intersect in any point, can be in precedence order (<), be allowed to nest ( ) and/or be allowed to cross ( ). Furthermore, the set of 2-intervals and the pattern can have dierent restrictions. These dierent combinations of restrictions alter the computational complexity of the problems, and need to be examined separately. This examination produces ecient algorithms for more restrictive structured patterns, and hardness results for those less restrictive.

There are basically two lines of research our results refer to. The rst one is that of arc annotated sequences and the other one is that of protein topolo-gies. In the context of arc annotated sequences, the Arc-Preserving Subsequence (APS) and Longest Arc-Preserving Common Subsequence (LAPCS) problems are useful in representing the structural information of RNA and protein sequences [Eva99,JLMZ00,GGN02,AGGN02]. The basic idea is to provide a measure for similarity, not only on the sequence level, but also on the structural level. Moreover, a similar problem to compare the three-dimensional structure of proteins is the Contact Map Overlap problem described by Goldman et al [START_REF] Goldman | Algorithmic aspects of protein structure similarity[END_REF]. Viksna and Gilbert described algorithms for pattern matching and pattern learning in TOPS diagram (formal description of protein topologies) [START_REF] Viksna | Pattern matching and pattern discovery algorithms for protein topologies[END_REF].

Our results are also related to the independent set problem in dierent extensions of 2-interval graphs. A graph G is a t-interval graph if there is an intersection model whose objects consist of collections of t intervals, t ≥ 1, such that G is the intersection graph of this model [START_REF] Trotter | On double and multiple interval graphs[END_REF][START_REF] Griggs | Extremal values of the interval number of a graph, I[END_REF]. From this denition, it is clear that every interval graph is a 1-interval graph. Of particular interest is the class of 2-interval graphs. For example, line graphs, trees and circular-arc graphs are 2-interval graphs. However, West and Shmoys [START_REF] West | Recognizing graphs with xed interval number is NP-complete[END_REF] have shown that the recognition problem for t-interval graphs is NP-complete for every t ≥ 2 (this has to be compared with linear time recognition of 1-interval graphs). In the context of sequence similarity, [START_REF] Joseph | Determining DNA sequence similarity using maximum independent set algorithms for interval graphs[END_REF] contains an application of graphs having interval number at most two. In [BYHN + 02], the authors considered the problem of scheduling jobs that are given as groups of non-intersecting segments on the real line. Of particular importance, they showed that the maximum weighted independent set for t-interval graphs (t ≥ 2) is APX-hard even for highly restricted instances Also, they gave a 2t-approximation algorithm for general instances based on a fractional version of the Local Ratio Technique.

The problem of nding the longest 2-interval pattern in a set of 2-intervals D with respect to a given abstract model, the so-called 2-Interval Pattern problem, has been introduced by Vialette [START_REF] Vialette | Pattern matching over 2-intervals sets[END_REF][START_REF]On the computational complexity of 2-interval pattern matching[END_REF]. Vialette divides the problem in dierent classes based on the structure of the model and gives for most of them either NP-completeness results or polynomial time algorithms. In the present paper, we focus on three classes: the model { } over an unlimited support, the model { , } over a disjoint support and the model {<, } over a unitary support. We give precise results for these three classes. Those three classes are of importance since each one is a straightforward extension of the Pattern Matching Over Set Of 2-Intervals problem introduced in [START_REF]On the computational complexity of 2-interval pattern matching[END_REF] and hence is strongly related, in the context of molecular biology, to pattern matching over RNA secondary structures. The results given in the present paper almost complete the table proposed by Vialette [START_REF]On the computational complexity of 2-interval pattern matching[END_REF] (see Table 1) and provide an important step towards a better understanding of the precise complexity of 2-interval pattern matching problems.

The remainder of the paper is organized as follows. In Section 2 we briey review the terminology introduced in [START_REF]On the computational complexity of 2-interval pattern matching[END_REF]. In Section 3, we improve the time complexity of the best known algorithm for model R = { } over an unlimited support. In Section 4, we give a graph-like relaxation for model { , } that is solvable in polynomial time. In Section 5, we prove that the 2-interval pattern problem for model R = {<, } is NP-complete even when restricted to unitary support thereby answering an open problem posed in [START_REF]On the computational complexity of 2-interval pattern matching[END_REF]. In addition to that latter result, we give in Section 6 a xed-parameter tractability result based on the crossing structure of D.

Preliminaries

An interval and a 2-interval represent respectively a sequence of contiguous bases and pairings between two intervals, i.e., stems, in RNA secondary structures. Thus, 2-intervals can be seen as macroscopic describers of RNA structures.

Formally, a 2-interval is the disjoint union of two intervals on a line. We denote it by D = (I 1 , J 1 ) where I 1 and J 1 are intervals such that I 1 < J 1 (here < is the strict precedence order between intervals); in that case we write also Left(D) = I 1 and Right(D) = J 1 . If [x : y] and [x : y ] are two intervals such that [x : y] < [x : y ], we will sometimes write D = ([x : y], [x : y ]) to emphasize on the precise denition of the 2-interval D. Let D 1 = (I 1 , J 1 ) and D 2 = (I 2 , J 2 ) be two 2-intervals. They are called disjoint if (I 1 ∪J 1 )∩(I 2 ∪J 2 ) = ∅ (i.e., involved intervals do not intersect). The covering interval of a 2-interval D, written Cover(D), is the least interval covering both Left(D) and Right(D).

Of particular interest is the relation between two disjoint 2-intervals D 1 = (I 1 , J 1 ) and D 2 = (I 2 , J 2 ). We will write

D 1 < D 2 if I 1 < J 1 < I 2 < J 2 , D 1 D 2 if I 2 < I 1 < J 1 < J 2 and D 1 D 2 if I 1 < I 2 < J 1 < J 2 . Two 2-intervals D 1 and D 2 are τ -comparable for some τ ∈ {<, , } if D 1 τ D 2 or D 2 τ D 1 .
Let D be a set of 2-intervals and R ⊆ {<, , } be non-empty. The set D is R-comparable if any two distinct 2-intervals of D are τ -comparable for some τ ∈ R. Throughout the paper, the non-empty subset R is called a model. Clearly, if a set of 2-intervals D is R-comparable then D is a set of disjoint 2-intervals. The support of a set of 2-intervals D, written Support(D), is the set of all simple intervals involved in

D, i.e., Support(D) = D∈D (Left(D) ∪ Right(D)). The leftmost (resp. rightmost) element of a set of disjoint 2-intervals D is the 2-interval D i ∈ D such that Left(D i ) < Left(D j ) (resp. Right(D j ) < Right(D i )) for all D j ∈ D -D i .
Observe that it could be the case that D i is both the leftmost and rightmost element of D (this is indeed the case if |D| = 1 or if D j D i for all D j ∈ D -D i ). Some parameters can be dened. The width of D, written Width(D), is the size of a maximum cardinality {<}-comparable subset of D, the height of D, written Height(D), is the size of a maximum cardinality { }-comparable subset of D and the depth of D, written Depth(D), is the size of a maximum cardinality { }comparable subset of D. Observe that these three parameters can be computed in polynomial time [START_REF]On the computational complexity of 2-interval pattern matching[END_REF]. Finally, the forward crossing number of D, written FCrossing(D), is dened by

FCrossing(D) = max Di∈D |{D j : D i D j }|. Clearly, Depth(D) ≤ FCrossing(D).
In [START_REF]On the computational complexity of 2-interval pattern matching[END_REF], Vialette proposed two restrictions on the support:

1. all the intervals of the support are of the same size;

2. all the intervals of the support are disjoint, i.e., if two intervals I, I ∈ Support(D) overlap then I = I .

Using restrictions on the support allows us for varying restrictions on the complexity of the 2-interval set structure, and hence on the complexity of the problems. These two restrictions involve three levels of complexity: 

{<, @, G} NP-complete O(n √ n)[MV80] {@, G} NP-complete O(n 2 √ n) {<, @} O(n 2 ) {<, G} NP-complete ? {<} O(n log n) {@} O(n log n) • {G} O(n 2 log n)

Improving the Complexity of 2-IP-Unl-{ }

The problem of nding the largest { }-comparable subset in a set of 2-intervals was considered in [START_REF]On the computational complexity of 2-interval pattern matching[END_REF]. Observing that this problem is equivalent to nding a largest clique in a comparability graph (a linear time solvable problem [START_REF] Golumbic | Algorithmic graph theory and perfect graphs[END_REF]), an O(n 2 ) time algorithm was thus proposed. We improve that result by giving an optimal O(n log n) time algorithm for nding a largest { }-comparable subset in a set of 2-intervals.

The ineciency of the algorithm proposed [START_REF]On the computational complexity of 2-interval pattern matching[END_REF] lies in the eective construction of a comparability graph. We show that this construction can be avoided by considering trapezoids in place of 2-intervals. Recall that a trapezoid graph is the intersection graph of a nite set of trapezoids between two parallel lines [START_REF] Dagan | Trapezoid graphs and their coloring[END_REF] (it is easily seen that trapezoid graphs generalize both interval graphs and permutation graphs). Analogously to 2-intervals, we will denote by T = ([x : y], [x : y ]) the trapezoid with upper interval [x : y] and lower interval Claim 1. For all 1 ≤ i ≤ j ≤ n, the 2-intervals D i and D j are { }-comparable if and only if the trapezoids T i and T j are non-intersecting.

[x : y ]. Proposition 1. 2-IP-Unl-{ } is solvable in O(n log n) time. Proof. Let D = {D 1 , D 2 , . . . , D n }

Proof (of Claim 1). Let

D i = ([x i : y i ], [x i : y i ]) and D j = ([x j : y j ], [x j : y j ]) be two 2-intervals of D and T i = ([x i : y i ], [-y i : -x i ]
) and T j = ([x j : y j ], [-y j : -x j ]) be the two corresponding trapezoids in T . Suppose that D i and D j are { }-comparable. Without loss of generality, we may assume D j D i . Thus, we have y i < x j and y j < x i . It follows immediately that -x i < -y j , and hence the two trapezoids T i and T j are non-intersecting. The proof of the converse is identical.

Clearly, the collection T can be constructed in O(n) time. Based on a geometric representation of trapezoid graphs by boxes in the plane, Felsner et al. [START_REF] Felsner | Trapezoid graphs and generalizations: Geometry and algorithms[END_REF] have designed a O(n log n) algorithm for nding a maximum cardinality subcollection of non-intersecting trapezoids in a collection of trapezoids, and the proposition follows.

Based on Fredman's bound for the number of comparisons needed to compute maximum increasing subsequences in permutation [START_REF] Fredman | On computing the length of longest increasing subsequences[END_REF], Felsner et al. [START_REF] Felsner | Trapezoid graphs and generalizations: Geometry and algorithms[END_REF] argued that their O(n log n) time algorithm for nding a maximum cardinality subcollection of non-intersecting trapezoids in a collection of trapezoids is optimal. Then it follows from Proposition 1 that our O(n log n) time algorithm for nding a maximum cardinality { }-comparable subset in a set of 2-intervals is optimal as-well.

A Polynomial Time Algorithm for 2-IP-Dis-{ , }

In this section, we give a O(n 2 √ n) time algorithm for the 2-IP-Dis-{ , } problem, where n is the cardinality of the set of 2-intervals D. Recall that given a set of 2-intervals D over a disjoint support, the problem asks to nd the size of a maximum cardinality { , }-comparable subset D ⊆ D. Observe that the , } problem has an interesting formulation in terms of constrained matchings in general graphs: Given a graph G together with a linear ordering π of its vertices, the 2-IP-Dis-{ , } problem is equivalent to nding a maximum cardinality matching M in G with the property that for any two distinct edges {u, v} and {u , v } of M neither max{π(u), π(v)} < min{π(u ), π(v )} nor max{π(u ), π(v )} < min{π(u), π(v)} occur.

Roughly speaking, our algorithm is based on a three-step procedure. First, the interval graph of all the covering intervals of 2-intervals in D is constructed. Next, all the maximal cliques of that graph are eciently computed. Finally, for each maximal clique we construct a new graph and nd a solution using a maximum cardinality matching algorithm. The size of a best solution found in the third step is thus returned. Clearly, the eciency of our algorithm relies upon an ecient algorithm for nding all the maximal cliques in the intersection of the covering intervals. We now proceed with the details of our algorithm.

Let Proof. Let D i and D j be two distinct 2-intervals of D . Since D i and D j are { , }-comparable then it follows that either intervals Cover(D i ) and Cover(D j ) overlap or one interval is included in the other. In both cases, intervals Cover(D i ) and Cover(D j ) intersect and hence vertices v i and v j are joined by an edge in Ω(C D ). Therefore {v i : D i ∈ D } induces a complete graph in Ω(C D ).

D = {D i : 1 ≤ i ≤ n}
Observe that the converse is false since the intersection of two 2-intervals in D results in an edge in Ω(C D ), and hence two 2-intervals associated to two distinct vertices in the maximal clique C may not be { , }-comparable. However, thanks to Lemma 1 we now only need to focus on maximal cliques of Ω(C D ).

Several problems that are NP-complete on general graphs have polynomial time algorithms for interval graphs. The problem of nding all the maximal cliques of a graph is one such example. Indeed, an interval graph G = (V, E) is a chordal graph and as such has at most |V | maximal cliques [START_REF] Fulkerson | Incidence matrices and interval graphs[END_REF]. Furthermore, all the maximal cliques of a chordal graph can be found Lemma 2. Let C be a clique in Ω(C D ) and G C = (V C , E C ) be the graph constructed as detailed above. Then, {(I i1 , J i1 ), (I i2 , J i2 ), . . . ,

(I i k , J i k )} is a { , }- comparable subset if and only if {{I i 1 , J i 1 }, {I i 2 , J i 2 }, . . . , {I i k , J i k }} is a match- ing in G C . Proposition 2. The 2-IP-Dis-{ , } problem is solvable in O(n 2 √ n) time,
where n is the number of 2-intervals in D.

Proof. Consider the algorithm given in Figure 1. Correctness of this algorithm follows from Lemmas 1 and 2. What is left is to prove the time complexity. Clearly, the interval graph Ω(C D ) can be constructed in O(n 2 ) time. All the maximal cliques of Ω(C D ) can be found in O(n+m) time, where m is the number of edges in Ω(C D ) [START_REF] Tarjan | Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs[END_REF][START_REF] Blair | An introduction to chordal graphs and clique trees[END_REF]. Summing up, the rst two steps can be done in O(n 2 ) time since m < n 2 . We now turn to the time complexity of the loop (in fact the dominant term of our analysis). For each maximal clique C of Ω(C D ), the graph G C can be constructed in O(n) time since |C| ≤ n. We now consider the computation of a maximal matching in G C . Micali and Vazirani [MV80] (see also [START_REF] Vazirani | A theory of alternating paths and blossoms for proving correctness of the O( p |V ||E|) maximum matching algorithm[END_REF]) gave an O( |V ||E|) time algorithm for nding a maximal matching in a graph G = (V, E). But G C has at most n edges (as each edge corresponds to a 2-interval) and hence has at most 2n vertices. Then it follows that a maximum matching M in G C can be found in

O(n √ n) time. Since Ω(C D )
is an interval graph with n vertices, it has at most n maximal cliques [START_REF] Fulkerson | Incidence matrices and interval graphs[END_REF], we conclude that the algorithm as a whole runs in O(n 2 √ n) time.

Max {@, G}-Comparable 2-Interval Pattern Input: A set of 2-intervals D with disjoint support Output: The size of a maximum cardinality {@, G}-comparable subset of D

Construct the interval graph

Ω(C D ) 2. Compute all maximal cliques in Ω(C D ) 3. For each maximal clique C in Ω(C D ) 3.1. Construct the graph G C 3.2. Compute a maximal matching M in GC 3.3. Store the cardinality of M in m(C) 4. Return max{m(C) : C is a maximal clique of Ω(CD)} Fig. 1. Algorithm Max {@, G}-Comparable 2-Interval Pattern.

2-IP-Uni-{<, } is NP-complete

Theorem 1 below completes the analysis of 2-IP-Uni-R and 2-IP-Unl-R for any model R ⊆ {<, , } (see Table 1).

Theorem 1. The 2-IP-Uni-{<, } problem is NP-complete.

Proof. The proof is by reduction from the Exact 3-CNF Sat problem. Due to space considerations, the rather technical proof is deferred to the full version of this paper.

6 A Fixed-Parameter Algorithm for 2-IP-Uni-{<, } According to Theorem 1, nding the largest {<, }-comparable subset in a set of 2-intervals on a unitary support is an NP-complete problem. In this section, we give an exact algorithm for that problem with strong emphasis on the crossing structure of the set of 2-intervals. More precisely, we consider the time complexity of the problem with respect to the forward crossing number of the input. Indeed, in the context of 2-intervals, one may reasonably expect the forward crossing number to be small compared to the number of 2-intervals. Therefore, a natural direction seems to be the question for the xed-parameter tractability with respect to parameter FCrossing(D). In response to that question, we show that the problem can be Clearly, a maximum cardinality {<, }-comparable subset D ⊆ D of which the 2-interval D i is the rightmost element can be obtained either (1) by adding D i to a maximum cardinality {<, }-comparable subset D ⊆ D whose rightmost 2-interval D j precedes the 2-interval D i , i.e., D j < D i , or (2) by adding D i to a maximum cardinality {<, }-comparable subset D ⊆ D whose rightmost 2interval D j crosses the 2-interval D i , i.e., D j D i , and such that D i crosses or precedes any 2-interval of D . Here is another way of stating these observations:

∀D i ∈ D, T (D i ) = 1 + max max {T (D j ) : D j < D i } max {T (D j | D i ) : D j D i } (1)
What is left is thus to compute T (D j | D i ). To this aim, we extend the notation T (D j | D i ) as follows: for any { }-comparable subset 

{D i 1 , D i 2 , . . . , D i k } ⊆ D, k ≥ 1, satisfying Right(D ) < Right(D i2 ) < . . . < Right(D i k ), we let T (D i 1 | D i 2 , . . . , D i k ) stand
T (D i 1 | D i 2 , . . . , D i k ) = 1+ max                max {T (D j ) | D j satises condition (1)} max {T (D j | D i 1 ) | D j satises condition (2)} max {T (D j | D i 1 , D i 2 ) | D j satises condition (3)} . . . max {T (D j | D i 1 , D i 2 , . . . , D i k ) | D j satises condition (k + 1)} (2) 
where condition (i), 1 ≤ i ≤ k + 1, is dened as follows: Proof. For any 2-interval D i ∈ D, the number of distinct { }-comparable subsets of which D i is the leftmost element is upper-bounded by 2 FCrossing(D) , and hence there exist at most 2 FCrossing(D) distinct entries of the form T (D i | * ) in the dynamic programming table T .

condition (i) D j D i r for all 0 < r < i (crossing conditions) D j < D i s for all i ≤ s < k + 1 (precedence
The overall algorithm for nding the size of the largest {<, }-comparable subset in a set of 2-intervals is given in Figure 2. Using a suitable data structure for eciently searching 2-intervals, we have the following result (proof deferred to the full version of this paper). Output: The maximum size of a {<, G}-comparable pattern in D.

1. Sort the set D according to their right interval. For the sake of clarity, let us assume that the ordered 2-intervals set is now given by D = {D 1 , D 2 , . . . , D n }, i.e., Right(Di) < Right(Dj) implies i < j. All ordered subsets considered in the following of the algorithm are to be understood as ordered with respect to that order. 2. For i from 1 to n 2.1. Fill the entry T (D i ).

2.2. For all ordered non-empty set {Di 1 , Di 2 , . . . , Di q } ⊆ D such that {Di} ∪ {D i 1 , D i 2 , . . . , D iq } is an ordered subset of {G}-comparable 2-intervals with Right(Di) < Right(Di 1 ) < . . . < Right(Di q ), ll the entry T (Di | D i 1 , D i 2 , . . . , D iq ) according to the recurrence relation (2). 3. Return the largest entry T (Di) 

Conclusion

In the context of structured pattern matching, we considered the problem of nding an occurrence of a given structured pattern in a set of 2-intervals and solved three open problems of [START_REF]On the computational complexity of 2-interval pattern matching[END_REF]. We gave an optimal O(n log n) algorithm for model R = { } thereby improving the complexity of the best known algorithm. Also, we described a O(n 2 √ n) time algorithm for model R = { , } over a disjoint support. Finally, we proved that the problem is NP-complete for model R = {<, } over a unitary support, and in addition to that, we gave a xed parameter-tractability result based on the crossing structure of the set of 2-intervals. These results almost complete the table of complexity classes for the 2-interval pattern problem proposed by Vialette [START_REF]On the computational complexity of 2-interval pattern matching[END_REF] (see Table 1).

An interesting question would be to answer the last remaining open problem in that area, that is to determine whether there exists a polynomial time algorithm for 2-IP-Dis-{<, }, i.e., nding the largest {<, }-comparable subset of a set of 2-intervals over a disjoint support1 . In the light of Table 1, we conjecture that problem to be polynomial time solvable.

  be a collection of 2-intervals of the real line. Construct a collection of trapezoids T = {T 1 , T 2 , . . . , T n } between two parallel lines as follows. For each 2-interval D i = ([x : y], [x : y ]) ∈ D, we add the trapezoid T i = ([x : y], [-y : -x ]) to T .

  be a set of 2-intervals. Consider the set C D composed of all the covering intervals of the 2-intervals in D, i.e., C D = {Cover(D) : D ∈ D}. Now, let Ω(C D ) be the interval graph associated with C D . The graph Ω(C D ) has a vertex v i for each interval Cover(D i ) in C D and two vertices v i and v j of Ω(C D ) are joined by an edge if the two associated intervals Cover(D i ) and Cover(D j ) intersect. Most in the interest in the interval graph Ω(C D ) stems from the following lemma. Lemma 1. Let D be a set of 2-intervals and D be a { , }-comparable subset of D. Then, {v i : D i ∈ D } induces a complete graph in Ω(C D ).

  in O(n + m) time, where n = |V | and m = |E|, by a modication of Maximum Cardinality Search (MCS) [TY84,BP93]. Let C be a maximal clique of Ω(C D ). As observed above, any two 2-intervals associated to two distinct vertices in the maximal clique C may not be { , }comparable. Let D ⊆ D be the set of all 2-intervals associated to vertices in the maximal clique C. Based on C, consider the graph G C = (V C , E C ) dened by V C = Support(D ) and E C = {{I, J} : D = (I, J) ∈ D }. In other words, the set of vertices of G C the support of D and the edges of G C is the 2-interval subset D itself viewed as a set of subsets of size 2. Note that the construction of G C is possible only because D has disjoint support. The following lemma is an immediate consequence of the denition of G C and Lemma 1.

  solved for any support by means of dynamic programming in O(n • FCrossing(D) • 2 FCrossing(D) (log(n) + FCrossing(D))) time where n is the number of 2-intervals in D, and hence is xed-parameter tractable with respect to parameter FCrossing(D). For any D i ∈ D, let T (D i ) denote the size of the largest {<, }-comparable subset D ⊆ D of which the 2-interval D i is the rightmost element. Furthermore, for any D i , D j ∈ D such that D j D i , let T (D j | D i ) denotes the size of the largest {<, }-comparable subset D ⊆ D such that (1) the 2-interval D j is the rightmost element of D and (2) the 2-interval D i is not part of the subset D but can safely be added to D to obtain a new {<, }-comparable subset of size |D | + 1.

  for the size of a largest {<, }-comparable subset D ⊆ D such that (1) the 2-interval D i 1 is the rightmost element of D and (2) the 2-intervals {D i 2 , D i 3 , . . . , D i k } are not part of the subset D but can safely be added to D to obtain a new {<, }-comparable subset of size T (D i 1 | D i2 , . . . , D i k ) + k -1. A straightforward extension of the calculation (1) yields the following recurrence relation for computing the entry T (D i1 | D i2 , . . . , D i k ) of the dynamic programming table:

  conditions) It follows from the above recurrence relation that entries of the form T (D i | * ) depend only on entries of the form T (D j | * ) where D j < D i or D j D i . From a computational point of view, this implies that the calculation of entries of the form T (D i | * ) depends only on of the calculation of entries of the form T (D j | * ) where Right(D j ) < Right(D i ). The following easy lemma gives an upper-bound on the size of the dynamic programming table T with respect to the forward crossing number of D. Lemma 3. The number of distinct entries of the dynamic programming table T

  is upper-bounded by |D| • 2 FCrossing(D) .

Proposition 3 .

 3 Algorithm Max {<, }-Comparable 2-Interval Pattern returns the size of a maximum cardinality {<, }-comparable subset of a set of 2-intervals D in O(n 2 • FCrossing(D) • 2 FCrossing(D) (log(n) + FCrossing(D))) time where n is the number of 2-intervals in D. Input: A set D of n 2-intervals.

Fig. 2 .

 2 Fig. 2. Algorithm Max {<, G}-Comparable 2-Interval Pattern.

  In this article, we answer three open problems and we improve the complexity of another one as shown in Table1. Moreover, we show that 2-IP-Uni-{<, } is xed parameter tractable when parameterized by the forward crossing number of D.

	2-interval pattern problem
	support	
	model unlimited unitary	disjoint

unlimited: no restrictions unitary: restriction 1 disjoint: restrictions 1 and 2 Given a set of 2-intervals D, a model R ⊆ {<, , } and a positive integer k, the 2-Interval Pattern problem consists in nding a subset D ⊆ D of cardinality greater than or equal to k such that D is R-comparable. For the sake of brevity, the 2-Interval Pattern problem with respect to a model R over an unlimited (resp. unitary, disjoint) support is abbreviated in

2-IP-Unl-R (resp. 2-IP-Uni-R, 2-IP-Dis-R).

Vialette proved in

[START_REF]On the computational complexity of 2-interval pattern matching[END_REF] 

that 2-IP-Uni-{<, , } and 2-IP-Uni-{ , } are NP-complete. Moreover, he gave polynomial algorithms for the problem with respect to the models {<}, { }, { } and {<, } (cf. Table

1

).

Table 1 .

 1 

2-interval pattern problem complexity where n = |D|. When not specied, the complexity comes from

[START_REF]On the computational complexity of 2-interval pattern matching[END_REF]

. contributions of the present paper. • improvement of the existing complexity (which was O(n 2 ) in

[START_REF]On the computational complexity of 2-interval pattern matching[END_REF]

).

The

2-IP-Dis-{<, G} problem has an immediate formulation in terms of constrained matchings in general graphs: Given a graph G together with a linear ordering π