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We study the problem of phylogenetic reconstruction based on gene order for whole genomes. We define three genomic distances between whole genomes represented by signed sequences, based on the matching of similar segments of genes and on the notions of breakpoints, conserved intervals and common intervals. We use these distances and distance based phylogenetic reconstruction methods to compute a phylogeny for a group of 12 complete genomes of γ-Proteobacteria.

Introduction

Methods based on gene orders have proved to be powerful for the study of evolution, both for eukaryotes [START_REF] Bourque | Reconstructing the genomic architecture of ancestral mammals: lessons from human, mouse and rat genomes[END_REF][START_REF] Bourque | Comparative architectures of mammalian and chicken genomes reveal highly variable rates of genomic rearrangements across different lineages[END_REF] and for prokaryotes [START_REF] Earnest-Deyoung | Reversing gene erosion: Reconstructing ancestral bacterial genomes from gene-content and order data[END_REF][START_REF] Belda | Genome rearrangement distances and gene order phylogeny in γ-proteobacteria[END_REF]. The main algorithmic methods developed for this purpose are based on a representation of a genome by a signed permutation (see several survey chapters in the recent book [START_REF] Gascuel | Mathematics of Evolution and Phylogeny[END_REF] for example). At first, this representation of genomes implies that these methods should be limited to the comparison of genomes having the exact same gene content and where there is a unique copy of each gene in each genome. This model thus fits perfectly with the study of gene order in mitochondrial genomes, for example [START_REF] Blanchette | Gene order breakpoint evidence in animal mitochondrial phylogeny[END_REF]. However, in general, genomes do not share the same gene content or some gene families are not trivial -a given gene can occur more than once in a genome -, which implies that such genomes should be represented by signed sequences instead of signed permutations. There has been several attempts to develop methods for the comparison of such genomes and most of these methods are based on the transformation of the initial data, a set of signed sequences representing genomes, into a set of signed permutations, in order to apply one or several of the algorithms developed in this context. For example, the approach developed by the group of Pevzner for eukaryotic genomes is based on representing a genome by a sequence of synteny blocks, where such a block can contain several genes [START_REF] Bourque | Reconstructing the genomic architecture of ancestral mammals: lessons from human, mouse and rat genomes[END_REF][START_REF] Bourque | Comparative architectures of mammalian and chicken genomes reveal highly variable rates of genomic rearrangements across different lineages[END_REF]. Another approach, developed by Sankoff [START_REF] Sankoff | Genome rearrangement with gene families[END_REF], suppresses in every genome all but one copy of the genes of a gene family (the remaining gene of this family in a genome being called the exemplar gene), which leads to representing genomes by signed permutations. It is also natural to consider only a subset of the genes of a genome, that belong to families of size one, as it was done for a set of 30 γ-Proteobacteria in [START_REF] Belda | Genome rearrangement distances and gene order phylogeny in γ-proteobacteria[END_REF]. Finally, a recent approach is based on the computation of a matching of similar segments between two genomes that immediately allows to differentiate the multiple copies of a same gene and to represent genomes by signed permutations [START_REF] Swenson | Approximating the true evolutionary distance between two genomes[END_REF][START_REF] Blin | The breakpoints distance for signed sequences[END_REF]. This method, combined with the reversal distance between signed permutations, has been shown to give good results on simulated data [START_REF] Swenson | Approximating the true evolutionary distance between two genomes[END_REF].

In the present work, we are interested in the computation of genomic distances between bacterial genomes, based on gene order for whole genomes, and to assess the quality of these distances for the reconstruction of phylogenies. We define three distances in terms of gene orders based on two main ingredients: (1) the computation of a matching of similar genes segments between two genomes, following the approach of [START_REF] Swenson | Approximating the true evolutionary distance between two genomes[END_REF], and (2) three measures of conservation of the combinatorial structure: breakpoints, conserved intervals and common intervals. This last aspect differs from most of previous works that relied on the reversal distance. Moreover, this is, as far as we know, the first time that distances based on conserved intervals and common intervals are used on real data. We test our distances on a set of 12 γ-Proteobacteria complete genomes studied in [START_REF] Lerat | From gene tree to organismal phylogeny in prokaryotes: the case of γ-proteobacteria[END_REF][START_REF] Earnest-Deyoung | Reversing gene erosion: Reconstructing ancestral bacterial genomes from gene-content and order data[END_REF], and, for two different sets of gene families, we compute phylogenies for these data, using the Fitch-Margoliash method. We then compare the trees we obtain to the phylogenetic tree proposed in [START_REF] Lerat | From gene tree to organismal phylogeny in prokaryotes: the case of γ-proteobacteria[END_REF], based on a Neighbor-Joining analysis of the concatenation of 205 proteins.

Distances and gene matching

In this section, we introduce the combinatorial notions and algorithms used in the computation of distances based on gene order conservation for whole genomes.

Genomes representation. We represent a genome by a signed sequence on the alphabet of gene families. Every element in a genome is called a gene1 and belongs to a gene family. For a signed sequence G, one denotes by g i the signed integer representing the i th gene in G. Two genes belong to the same gene family if they have the same absolute value.

Gene matching. Given two signed sequences G and H, a matching M between G and H is a set of pairs (g i , h j ), where g i and h j belong to the same gene family. Genes of G and H that do not belong to any pair of the matching M are said to be unmatched for M . A matching M between G and H is said to be complete if for any gene family, there are no two genes of this family that are unmatched for M and belong respectively to G and H. A matching M between G and H can be seen as a way to describe a putative assignment of orthologous pairs of genes between G and H (see [START_REF] Chen | Computing the assignment of orthologous genes via genome rearrangement[END_REF] for example where this notion was used, together with the reversal distance, to the precise problem of orthologous assignment). In this view, segments of consecutive unmatched genes could represent segments of genes that have been inserted, by lateral transfer for example, or deleted, due to functional divergence of loss of genes after a lateral transfer or a segmental duplication for example, during the evolution.

Given a matching M between two genomes G and H, once the unmatched genes have been removed from these two genomes, the resulting matching M is a perfect matching between the remaining genes of the two genomes. It follows immediately that M defines a signed permutation of |M | elements, denoted P M , as illustrated in Figure 1. We also denote by del(G, M ) and del(H, M ) the number of maximum segments of consecutive unmatched genes in G and H. Given G, H and a matching M between G and H, one can define a distance between G and H, induced by M , in terms of one of the classical distances based on signed permutations, applied to the permutation P M , corrected with del(G, M ) and del(H, M ) in order to take into account modifications of gene order due to events like lateral transfer or loss of genes. In the following, we consider three different distances, based on three measures of the conservation of the combinatorial structure in signed permutations: breakpoints, conserved intervals and common intervals.

The rationale for using the above ideas in the design of a gene order distance between bacterial genomes relies on the observation that during their evolution, prokaryotic genomes seem to have been rearranged mostly by short reversals [START_REF] Lefebvre | Detection and validation of single gene inversions[END_REF][START_REF] Sankoff | The distribution of inversion lengths in prokaryotes[END_REF], which implies that close genomes will share similar clusters of genes [START_REF] Sankoff | Short inversions and conserved gene clusters[END_REF]. Based on this hypothesis, one of the goals of our work was to study how distances based on the conservation of structure allow to capture phylogenetic signal, and we tried the three known measures of conservation of structures: breakpoints is the simplest and has been used for a long time, while the two other distances, based on intervals are more recent but capture more subtle similarities than breakpoints.

Breakpoints distance. Let P = p 1 , . . . , p m be a signed permutation. A breakpoint in P is a pair of consecutive elements p i p i+1 such that p i+1 = p i + 1. We denote by bkpts(P ) the number of breakpoints of P . Given a matching M between G and H, and the corresponding signed permutation P M , we define the breakpoints distance between G and H given M as follows:

d Breakpoints(G, H, M ) = bkpts(P M ) |M | + del(G, M ) |G| + del(H, M ) |H|
Note that this definition considers, in the computation of the distance, the size of the matching M and the size of the compared genomes, both characteristics that can vary a lot as it appears in our study of γ-Proteobacteria. In the example given in Figure 1, bkpts(P M ) = 14, and del(G, M ) = del(H, M ) = 2. We thus obtain d Breakpoints(G, H, M ) = 14 23 + 2 26 + 2 26 = 0, 806.

Distances based on intervals. The number of breakpoints in a signed permutation is a very natural measure of conservation of the structure of this permutation with respect to the identity permutation. Recently, several more complex measures of such structure conservation have been introduced, and in this work we consider two of them: conserved intervals and common intervals.

A common interval in a signed permutation P is a segment of consecutive elements of this permutation which, when one does not consider signs and order, is also a segment of consecutive elements of the identity permutation (see [START_REF] Bérard | Conserved structures in evolution scenarios[END_REF] for an example of the relationship between common intervals and the study of gene order). Conserved intervals of signed permutations were defined in [START_REF] Bergeron | On the similarity of sets of permutations and its applications to genome comparison[END_REF]: a segment p i , . . . , p j of a signed permutation P , with i = j, is a conserved interval if it is a common interval of P and either p i > 0 and p j = p i + (j -i), or p i < 0 and p j = p i -(j -i) (in other words, in absolute value, p i and p j are the greatest and smallest elements of the common interval p i , . . . , p j ). For a given signed permutation P , one denotes respectively by ICommon(P ) and IConserved(P ), the number of common intervals in P and the number of conserved intervals in P .

Given a matching M between G and H, and the corresponding signed permutation P M , we introduce here two new distances, based on ICommon(P M ) and IConserved(P M ) : one defines the common intervals distance between G and H given M by

d ICommon(G, H, M ) = 1 - 2 * ICommon(P M ) |M | 2 + del(G, M ) |G| + del(H, M ) |H|
and the conserved intervals distance between G and H given M by

d IConserved(G, H, M ) = 1 - 2 * IConserved(P M ) |M | 2 + del(G, M ) |G| + del(H, M ) |H|
Computation of a matching. For a given distance model, a parsimonious approach for the comparison of two genomes G and H searches for a matching M between G and H involving the smallest distance between G and H. Unfortunately, this problem has been shown to be NP-complete, when using the breakpoints and conserved intervals distances [START_REF] Blin | The breakpoints distance for signed sequences[END_REF][START_REF] Blin | Conserved interval distance computation between nontrivial genomes[END_REF]. Swenson et al. [START_REF] Swenson | Approximating the true evolutionary distance between two genomes[END_REF] proposed a fast heuristic to compute a matching based on a greedy approach consisting on (1) identifying the longest common segment of unmatched genes of G that is also a segment of unmatched genes in H, up to a reversal, (2) matching these two segments of G and H, and (3) repeating the process until a complete matching is found. In [START_REF] Blin | Conserved interval distance computation between nontrivial genomes[END_REF], Blin and Rizzi have designed a quite similar heuristic using a suffix-tree. We have used the heuristic of Swenson et al. in the present work. Let M G,H denote the matching returned by the heuristic with G as first and H as second parameters. As our implementation of the heuristic does not return a symmetric matching -matching M G,H may differ from M H,G -, we have defined the distances, respectively of breakpoints, conserved intervals and common intervals, between G and H as follows:

d Breakpoints(G, H) = (d Breakpoints(G, H, M G,H ) + d Breakpoints(H, G, M H,G ))/2 d ICommon(G, H) = (d ICommon(G, H, M G,H ) + d ICommon(H, G, M H,G ))/2 d IConserved(G, H) = (d IConserved(G, H, M G,H ) + d IConserved(H, G, M H,G ))/2

Experimental results and discussion

Input data. The data set we studied is composed of 12 complete genomes from the 13 γ-Proteobacteria studied in [START_REF] Lerat | From gene tree to organismal phylogeny in prokaryotes: the case of γ-proteobacteria[END_REF]. We have not considered the genome of V.cholerae because it is composed of two chromosomes, and this is not considered in our model. This data set is composed of the genomes of the following species: Buchnera aphidicola APS (Genbank accession number NC 002528), Escherichia coli K12 (NC 000913), Haemophilus influenzae Rd (NC 000907), Pasteurella multocida Pm70 (NC 002663), Pseudomonas aeruginosa PA01 (NC 002516), Salmonella typhimurium LT2 (NC 003197), Xanthomonas axonopodis pv. citri 306 (NC 003919), Xanthomonas campestris (NC 0 03902), Xylella fastidiosa 9a5c (NC 002488), Yersinia pestis CO 92 (NC 003143), Yersinia pestis KIM5 P12 (NC 004088), Wigglesworthia glossinidia brevipalpis (NC 004344). Data set and programs used and mentioned in this article can be found on a companion web site at http://www.lacim.uqam.ca/~chauve/CG05. Gene families. From these 12 genomes, the initial step was to compute a partition of the complete set of genes into gene families, where each family is supposed to represent a group of homologous genes. This partition induces the encoding of the genomes by signed sequences, that is the input of the matchings computation that leads to distance matrices. Hence, the result of a phylogenetic analysis based on gene order depends strongly on the initial definition of families. Due to this importance of the partition of genes into families, and in order to assess the quality of the distances we defined on our data set of γ-Proteobacteria genomes without relying on a single set of families, we used two different methods to partition genes into gene families. Both are based on alignments of amino-acid sequences with BLAST [START_REF] Altschul | Gapped blast and psi-blast: a new generation of protein database search programs[END_REF].

The first partition we used is the one computed in [START_REF] Lerat | From gene tree to organismal phylogeny in prokaryotes: the case of γ-proteobacteria[END_REF], in order to define families of orthologous genes used in a Neighbor-Joining analysis of these γ-Proteobacteria genomes, and has been provided to us by Lerat. Briefly, this partition is given by the connected components of a directed graph whose nodes are the coding genes and pseudo-genes of the 12 genomes and there is an edge from gene g to gene h the bit-score of the BLAST comparison of g against h is at least equal to 30% of the bit-score of the BLAST comparison of g against itself. Details are available in [START_REF] Lerat | From gene tree to organismal phylogeny in prokaryotes: the case of γ-proteobacteria[END_REF].

To compute the second partition we used all coding genes of our 12 genomes, as well as ribosomal and transfer RNAs. For RNAs, the families were decided on the basis of the annotation of the genes. For coding genes, a family is a connected component of the undirected graph whose vertices are genes and where there is an edge between two genes g and h if the alignment computed by BLAST between the sequences of g and h has at least 25% of identity for both sequences, and overlaps at least 65% of both sequences.

We can notice that the matchings of the second partition are always bigger than the ones of the first partition. However, the difference between the two is always relatively small compared to the size of the matchings.

Details on partitions and matchings can be found on the companion web site.

Phylogenetic trees computation. Given a matrix distance, obtained by the algorithms described in Section 2, we computed phylogenetic trees using the following Fitch-Margoliash phylogenetic reconstruction method implemented in the fitch command (version 3.63) of the PHYLIP package available at http://evolution.genetics.washington.edu/phylip.html, where we have used the G (global rearrangements) and J (jumbling, with parameters 3 and 1000) options. We chose this method instead of the classical Neighbor-Joining method because it examines several tree topologies and optimizes a well defined criterion, based on the least-squared error. We have used the retree command of the PHYLIP package to re-root and flip some branches of the trees in order to harmonize the representation of our results with the tree obtained by Lerat et al. in [START_REF] Lerat | From gene tree to organismal phylogeny in prokaryotes: the case of γ-proteobacteria[END_REF]Figure 5].

Results and analysis. Figures 2 and3 present the trees obtained by applying our method on the breakpoints, common and conserved intervals distances, and the tree given by Lerat et al. using NJ method with the concatenation of 205 proteins [15, Figure 5], that we call the reference tree below. One can notice that these trees agree relatively well with the reference tree. Indeed, we can stress the following points:

1. Using either set of gene families, one can notice that there are always differences that concern the taxa Buchnera aphidicola and Wigglesworthia glossinidia brevipalpis. However, Herbeck et al. [START_REF] Herbeck | Nonhomogeneous model of sequence evolution indicates independent origins of primary endosymbionts within the enterobacteriales (γ-proteobacteria)[END_REF] suggested that the fact that this clade exists in the results from Lerat et al. [START_REF] Lerat | From gene tree to organismal phylogeny in prokaryotes: the case of γ-proteobacteria[END_REF] is due to a bias in GC composition. 2. Using the first partition, and if we do not consider the case of Buchnera aphidicola and Wigglesworthia glossinidia brevipalpis discussed above, one can notice that the tree obtained with the breakpoints distance agrees with the reference tree (Figure 2 Thus, we can say that the distances we defined capture a significant phylogenetic signal, and provide good results on real data. However, the use of distance relying on intervals, as opposed to the one based on breakpoints, seems to imply some inaccuracy in the trees we obtained. This should not come as a surprise, since our matching computation method is optimized for the breakpoints distance.

Conclusion

In this first study, we proposed a simple approach for the phylogenetic reconstruction for prokaryotic genomes based on the computation of gene matchings and distances expressed in terms of combinatorial structure conservation. Despite its simplicity, our approach gave interesting results on a set of 12 genomes of γ-Proteobacteria, as the trees we computed agree well with the tree computed in [START_REF] Lerat | From gene tree to organismal phylogeny in prokaryotes: the case of γ-proteobacteria[END_REF] and based on the concatenation of the sequences of 205 proteins. It should be noted that our results agree well too with another recent study based on gene order and signed permutations [START_REF] Belda | Genome rearrangement distances and gene order phylogeny in γ-proteobacteria[END_REF]. Moreover, this study raises several interesting questions.

First, the initial computation of gene families plays a central role in the gene order analysis. In [START_REF] Belda | Genome rearrangement distances and gene order phylogeny in γ-proteobacteria[END_REF] for example, where 30 γ-Proteobacteria genomes were considered, these families were designed in such a way that each one contains exactly one gene in every genome. As a consequence, if one considers all other genes as member of families of size one, there is only one possible matching for every pair of genomes. Based on these families, phylogenetic trees based on the reversal and breakpoints distances were computed. Our approach can be seen as less strict in the sense that pairwise genomes comparisons are not based only on genes that are present in all genomes, and our results agree quite well with the results of [START_REF] Belda | Genome rearrangement distances and gene order phylogeny in γ-proteobacteria[END_REF]. But more generally, it would be interesting to study more precisely the influence of the partition of the set of all genes into families on the whole process, and in particular the impact of the granularity of such a partition. Second, a method for the validation of the computed trees, similar to the bootstrap commonly used in phylogenetic reconstruction, would be a very valuable tool. This lack of a validation step in our analysis was one of the main reasons that led us to use the Fitch-Margoliash method, that tries several topologies, instead of the Neighbor-Joining method. A validation method, based on a Jackknife principle was introduced in [START_REF] Belda | Genome rearrangement distances and gene order phylogeny in γ-proteobacteria[END_REF], but it was not clear how to use it in our context where the matchings used in pairwise comparisons can have very different sizes.

Finally, we think that an important point in the development of methods similar to the one described in this work should rely into the link between the computation of a matching and the kind of measure of structure conservation that is used to define a distance. Indeed, the principle of computing a matching by the identification of similar segments is natural when breakpoints are used, as two similar matched segments define only breakpoints at their extremities. But when using distances based on intervals, it would clearly be more interesting to consider also segments of similar gene content but maybe not with the same order of the genes.
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 1 Fig. 1. A possible complete matching M between two genomes G and H represented as signed sequences. In this example, del(G, M ) = del(H, M ) = 2 and PM = 23 -3 -2 4 5 6 11 7 8 9 -10 12 14 15 16 17 -13 18 -19 21 20 22 1

  (a)). Concerning the two other distances (conserved intervals and common intervals distances), the only difference lies in the position of Pseudomonas aeruginosa (Figures 2 (b) and 2 (c)). 3. Using the second partition, we also see that the tree obtained with the breakpoints distance agrees with the reference tree (Figure 3 (a)), if Buchnera aphidicola and Wigglesworthia glossinidia brevipalpis are not considered. Using any of the two other distances (conserved intervals and common intervals distances), the only difference concerns the group of taxa Haemophilus influenzae and Pasteurella multocida, that is placed at a different position (Figures 3 (b) and 3 (c)).
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 2 Fig. 2. Experimental results with the first set of gene families ([15]). (a) breakpoints distance. (b) common intervals distance. (c) conserved intervals distance. (d) reference tree obtained by Lerat et al. [15, Figure 5]. In gray, the genome not considered in our experiments. In black, Buchnera aphidicola and Wigglesworthia glossinidia brevipalpis.
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 3 Fig. 3. Experimental results with the second set of gene families. (a) breakpoints distance. (b) common intervals distance. (c) conserved intervals distance. (d) reference tree obtained by Lerat et al. [15, Figure 5]. In gray, the genome not considered in our experiments. In black, Buchnera aphidicola and Wigglesworthia glossinidia brevipalpis.

This terminology is restrictive as one could use the methods described in this work considering any kind of genetic marker located on a genome, but we follow the classical terminology and use the word gene through all this paper.