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Abstract. We study the problem of phylogenetic reconstruction based
on gene order for whole genomes. We define three genomic distances
between whole genomes represented by signed sequences, based on the
matching of similar segments of genes and on the notions of breakpoints,
conserved intervals and common intervals. We use these distances and
distance based phylogenetic reconstruction methods to compute a phy-
logeny for a group of 12 complete genomes of γ-Proteobacteria.
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1 Introduction

Methods based on gene orders have proved to be powerful for the study of evolu-
tion, both for eukaryotes [8, 9] and for prokaryotes [11, 2]. The main algorithmic
methods developed for this purpose are based on a representation of a genome
by a signed permutation (see several survey chapters in the recent book [12] for
example). At first, this representation of genomes implies that these methods
should be limited to the comparison of genomes having the exact same gene
content and where there is a unique copy of each gene in each genome. This
model thus fits perfectly with the study of gene order in mitochondrial genomes,
for example [5]. However, in general, genomes do not share the same gene content
or some gene families are not trivial – a given gene can occur more than once in
a genome –, which implies that such genomes should be represented by signed
sequences instead of signed permutations. There has been several attempts to
develop methods for the comparison of such genomes and most of these methods
are based on the transformation of the initial data, a set of signed sequences
representing genomes, into a set of signed permutations, in order to apply one or
several of the algorithms developed in this context. For example, the approach
developed by the group of Pevzner for eukaryotic genomes is based on represent-
ing a genome by a sequence of synteny blocks, where such a block can contain
several genes [8, 9]. Another approach, developed by Sankoff [16], suppresses in



every genome all but one copy of the genes of a gene family (the remaining gene
of this family in a genome being called the exemplar gene), which leads to rep-
resenting genomes by signed permutations. It is also natural to consider only a
subset of the genes of a genome, that belong to families of size one, as it was
done for a set of 30 γ-Proteobacteria in [2]. Finally, a recent approach is based on
the computation of a matching of similar segments between two genomes that
immediately allows to differentiate the multiple copies of a same gene and to
represent genomes by signed permutations [19, 6]. This method, combined with
the reversal distance between signed permutations, has been shown to give good
results on simulated data [19].

In the present work, we are interested in the computation of genomic dis-
tances between bacterial genomes, based on gene order for whole genomes, and
to assess the quality of these distances for the reconstruction of phylogenies.
We define three distances in terms of gene orders based on two main ingredi-
ents: (1) the computation of a matching of similar genes segments between two
genomes, following the approach of [19], and (2) three measures of conservation
of the combinatorial structure: breakpoints, conserved intervals and common in-
tervals. This last aspect differs from most of previous works that relied on the
reversal distance. Moreover, this is, as far as we know, the first time that dis-
tances based on conserved intervals and common intervals are used on real data.
We test our distances on a set of 12 γ-Proteobacteria complete genomes studied
in [15, 11], and, for two different sets of gene families, we compute phylogenies
for these data, using the Fitch-Margoliash method. We then compare the trees
we obtain to the phylogenetic tree proposed in [15], based on a Neighbor-Joining
analysis of the concatenation of 205 proteins.

2 Distances and gene matching

In this section, we introduce the combinatorial notions and algorithms used in the
computation of distances based on gene order conservation for whole genomes.

Genomes representation. We represent a genome by a signed sequence on the
alphabet of gene families. Every element in a genome is called a gene1 and
belongs to a gene family. For a signed sequence G, one denotes by gi the signed
integer representing the ith gene in G. Two genes belong to the same gene family
if they have the same absolute value.

Gene matching. Given two signed sequences G and H , a matching M between G
and H is a set of pairs (gi, hj), where gi and hj belong to the same gene family.
Genes of G and H that do not belong to any pair of the matching M are said to
be unmatched for M . A matching M between G and H is said to be complete if
for any gene family, there are no two genes of this family that are unmatched for

1 This terminology is restrictive as one could use the methods described in this work
considering any kind of genetic marker located on a genome, but we follow the
classical terminology and use the word gene through all this paper.



M and belong respectively to G and H . A matching M between G and H can
be seen as a way to describe a putative assignment of orthologous pairs of genes
between G and H (see [10] for example where this notion was used, together
with the reversal distance, to the precise problem of orthologous assignment). In
this view, segments of consecutive unmatched genes could represent segments of
genes that have been inserted, by lateral transfer for example, or deleted, due
to functional divergence of loss of genes after a lateral transfer or a segmental
duplication for example, during the evolution.

Given a matching M between two genomes G and H , once the unmatched
genes have been removed from these two genomes, the resulting matching M is
a perfect matching between the remaining genes of the two genomes. It follows
immediately that M defines a signed permutation of |M | elements, denoted
PM , as illustrated in Figure 1. We also denote by del(G, M) and del(H, M) the
number of maximum segments of consecutive unmatched genes in G and H .

Fig. 1. A possible complete matching M between two genomes G and H represented
as signed sequences. In this example, del(G, M) = del(H,M) = 2 and PM = 23 -3
-2 4 5 6 11 7 8 9 -10 12 14 15 16 17 -13 18 -19 21 20 22 1

Given G, H and a matching M between G and H , one can define a distance
between G and H , induced by M , in terms of one of the classical distances
based on signed permutations, applied to the permutation PM , corrected with
del(G, M) and del(H, M) in order to take into account modifications of gene
order due to events like lateral transfer or loss of genes. In the following, we
consider three different distances, based on three measures of the conservation
of the combinatorial structure in signed permutations: breakpoints, conserved
intervals and common intervals.

The rationale for using the above ideas in the design of a gene order distance
between bacterial genomes relies on the observation that during their evolution,
prokaryotic genomes seem to have been rearranged mostly by short reversals [14,
18], which implies that close genomes will share similar clusters of genes [17].
Based on this hypothesis, one of the goals of our work was to study how distances
based on the conservation of structure allow to capture phylogenetic signal, and
we tried the three known measures of conservation of structures: breakpoints is
the simplest and has been used for a long time, while the two other distances,
based on intervals are more recent but capture more subtle similarities than
breakpoints.



Breakpoints distance. Let P = p1, . . . , pm be a signed permutation. A breakpoint
in P is a pair of consecutive elements pipi+1 such that pi+1 != pi + 1. We denote
by bkpts(P ) the number of breakpoints of P . Given a matching M between G
and H , and the corresponding signed permutation PM , we define the breakpoints
distance between G and H given M as follows:

d Breakpoints(G, H, M) =
bkpts(PM )

|M |
+

del(G, M)

|G|
+

del(H, M)

|H |

Note that this definition considers, in the computation of the distance, the size
of the matching M and the size of the compared genomes, both characteristics
that can vary a lot as it appears in our study of γ-Proteobacteria. In the example
given in Figure 1, bkpts(PM ) = 14, and del(G, M) = del(H, M) = 2. We thus
obtain d Breakpoints(G, H, M) = 14

23
+ 2

26
+ 2

26
= 0, 806.

Distances based on intervals. The number of breakpoints in a signed permutation
is a very natural measure of conservation of the structure of this permutation
with respect to the identity permutation. Recently, several more complex mea-
sures of such structure conservation have been introduced, and in this work we
consider two of them: conserved intervals and common intervals.

A common interval in a signed permutation P is a segment of consecutive
elements of this permutation which, when one does not consider signs and order,
is also a segment of consecutive elements of the identity permutation (see [3] for
an example of the relationship between common intervals and the study of gene
order). Conserved intervals of signed permutations were defined in [4]: a segment
pi, . . . , pj of a signed permutation P , with i != j, is a conserved interval if it is
a common interval of P and either pi > 0 and pj = pi + (j − i), or pi < 0 and
pj = pi − (j − i) (in other words, in absolute value, pi and pj are the greatest
and smallest elements of the common interval pi, . . . , pj). For a given signed
permutation P , one denotes respectively by ICommon(P ) and IConserved(P ),
the number of common intervals in P and the number of conserved intervals in
P .

Given a matching M between G and H , and the corresponding signed permu-
tation PM , we introduce here two new distances, based on ICommon(PM ) and
IConserved(PM ) : one defines the common intervals distance between G and H
given M by

d ICommon(G, H, M) = 1 −
2 ∗ ICommon(PM )

|M |2
+

del(G, M)

|G|
+

del(H, M)

|H |

and the conserved intervals distance between G and H given M by

d IConserved(G, H, M) = 1 −
2 ∗ IConserved(PM )

|M |2
+

del(G, M)

|G|
+

del(H, M)

|H |

Computation of a matching. For a given distance model, a parsimonious ap-
proach for the comparison of two genomes G and H searches for a matching



M between G and H involving the smallest distance between G and H . Un-
fortunately, this problem has been shown to be NP-complete, when using the
breakpoints and conserved intervals distances [6, 7]. Swenson et al. [19] proposed
a fast heuristic to compute a matching based on a greedy approach consisting on
(1) identifying the longest common segment of unmatched genes of G that is also
a segment of unmatched genes in H , up to a reversal, (2) matching these two
segments of G and H , and (3) repeating the process until a complete matching
is found. In [7], Blin and Rizzi have designed a quite similar heuristic using a
suffix-tree. We have used the heuristic of Swenson et al. in the present work.
Let MG,H denote the matching returned by the heuristic with G as first and H
as second parameters. As our implementation of the heuristic does not return a
symmetric matching – matching MG,H may differ from MH,G –, we have defined
the distances, respectively of breakpoints, conserved intervals and common in-
tervals, between G and H as follows:

d Breakpoints(G, H) =
(d Breakpoints(G, H, MG,H) + d Breakpoints(H, G, MH,G))/2

d ICommon(G, H) =
(d ICommon(G, H, MG,H) + d ICommon(H, G, MH,G))/2

d IConserved(G, H) =
(d IConserved(G, H, MG,H) + d IConserved(H, G, MH,G))/2

3 Experimental results and discussion

Input data. The data set we studied is composed of 12 complete genomes from
the 13 γ-Proteobacteria studied in [15]. We have not considered the genome of
V.cholerae because it is composed of two chromosomes, and this is not considered
in our model. This data set is composed of the genomes of the following species:
Buchnera aphidicola APS (Genbank accession number NC 002528), Escherichia
coli K12 (NC 000913), Haemophilus influenzae Rd (NC 000907), Pasteurella
multocida Pm70 (NC 002663), Pseudomonas aeruginosa PA01 (NC 002516),
Salmonella typhimurium LT2 (NC 003197), Xanthomonas axonopodis pv. citri
306 (NC 003919), Xanthomonas campestris (NC 0 03902), Xylella fastidiosa
9a5c (NC 002488), Yersinia pestis CO 92 (NC 003143), Yersinia pestis KIM5
P12 (NC 004088), Wigglesworthia glossinidia brevipalpis (NC 004344).

Data set and programs used and mentioned in this article can be found on a
companion web site at http://www.lacim.uqam.ca/~chauve/CG05.

Gene families. From these 12 genomes, the initial step was to compute a parti-
tion of the complete set of genes into gene families, where each family is supposed
to represent a group of homologous genes. This partition induces the encoding
of the genomes by signed sequences, that is the input of the matchings computa-
tion that leads to distance matrices. Hence, the result of a phylogenetic analysis



based on gene order depends strongly on the initial definition of families. Due to
this importance of the partition of genes into families, and in order to assess the
quality of the distances we defined on our data set of γ-Proteobacteria genomes
without relying on a single set of families, we used two different methods to
partition genes into gene families. Both are based on alignments of amino-acid
sequences with BLAST [1].

The first partition we used is the one computed in [15], in order to define
families of orthologous genes used in a Neighbor-Joining analysis of these γ-
Proteobacteria genomes, and has been provided to us by Lerat. Briefly, this
partition is given by the connected components of a directed graph whose nodes
are the coding genes and pseudo-genes of the 12 genomes and there is an edge
from gene g to gene h if the bit-score of the BLAST comparison of g against h
is at least equal to 30% of the bit-score of the BLAST comparison of g against
itself. Details are available in [15].

To compute the second partition we used all coding genes of our 12 genomes,
as well as ribosomal and transfer RNAs. For RNAs, the families were decided on
the basis of the annotation of the genes. For coding genes, a family is a connected
component of the undirected graph whose vertices are genes and where there is an
edge between two genes g and h if the alignment computed by BLAST between
the sequences of g and h has at least 25% of identity for both sequences, and
overlaps at least 65% of both sequences.

We can notice that the matchings of the second partition are always bigger
than the ones of the first partition. However, the difference between the two is
always relatively small compared to the size of the matchings.

Details on partitions and matchings can be found on the companion web site.

Phylogenetic trees computation. Given a matrix distance, obtained by the algo-
rithms described in Section 2, we computed phylogenetic trees using the following
Fitch-Margoliash phylogenetic reconstruction method implemented in the fitch
command (version 3.63) of the PHYLIP package available at
http://evolution.genetics.washington.edu/phylip.html, where we have
used the G (global rearrangements) and J (jumbling, with parameters 3 and
1000) options. We chose this method instead of the classical Neighbor-Joining
method because it examines several tree topologies and optimizes a well defined
criterion, based on the least-squared error. We have used the retree command
of the PHYLIP package to re-root and flip some branches of the trees in order
to harmonize the representation of our results with the tree obtained by Lerat
et al. in [15, Figure 5].

Results and analysis. Figures 2 and 3 present the trees obtained by applying
our method on the breakpoints, common and conserved intervals distances, and
the tree given by Lerat et al. using NJ method with the concatenation of 205
proteins [15, Figure 5], that we call the reference tree below.

One can notice that these trees agree relatively well with the reference tree.
Indeed, we can stress the following points:



1. Using either set of gene families, one can notice that there are always differ-
ences that concern the taxa Buchnera aphidicola and Wigglesworthia glossini-
dia brevipalpis. However, Herbeck et al. [13] suggested that the fact that this
clade exists in the results from Lerat et al. [15] is due to a bias in GC com-
position.

2. Using the first partition, and if we do not consider the case of Buchnera
aphidicola and Wigglesworthia glossinidia brevipalpis discussed above, one
can notice that the tree obtained with the breakpoints distance agrees with
the reference tree (Figure 2 (a)). Concerning the two other distances (con-
served intervals and common intervals distances), the only difference lies in
the position of Pseudomonas aeruginosa (Figures 2 (b) and 2 (c)).

3. Using the second partition, we also see that the tree obtained with the
breakpoints distance agrees with the reference tree (Figure 3 (a)), if Buchn-
era aphidicola and Wigglesworthia glossinidia brevipalpis are not considered.
Using any of the two other distances (conserved intervals and common inter-
vals distances), the only difference concerns the group of taxa Haemophilus
influenzae and Pasteurella multocida, that is placed at a different position
(Figures 3 (b) and 3 (c)).

Thus, we can say that the distances we defined capture a significant phyloge-
netic signal, and provide good results on real data. However, the use of distance
relying on intervals, as opposed to the one based on breakpoints, seems to imply
some inaccuracy in the trees we obtained. This should not come as a surprise,
since our matching computation method is optimized for the breakpoints dis-
tance.

4 Conclusion

In this first study, we proposed a simple approach for the phylogenetic recon-
struction for prokaryotic genomes based on the computation of gene matchings
and distances expressed in terms of combinatorial structure conservation. De-
spite its simplicity, our approach gave interesting results on a set of 12 genomes
of γ-Proteobacteria, as the trees we computed agree well with the tree computed
in [15] and based on the concatenation of the sequences of 205 proteins. It should
be noted that our results agree well too with another recent study based on gene
order and signed permutations [2]. Moreover, this study raises several interesting
questions.

First, the initial computation of gene families plays a central role in the
gene order analysis. In [2] for example, where 30 γ-Proteobacteria genomes were
considered, these families were designed in such a way that each one contains
exactly one gene in every genome. As a consequence, if one considers all other
genes as member of families of size one, there is only one possible matching for
every pair of genomes. Based on these families, phylogenetic trees based on the
reversal and breakpoints distances were computed. Our approach can be seen as
less strict in the sense that pairwise genomes comparisons are not based only on



Fig. 2. Experimental results with the first set of gene families ([15]). (a) breakpoints
distance. (b) common intervals distance. (c) conserved intervals distance. (d) reference
tree obtained by Lerat et al. [15, Figure 5]. In gray, the genome not considered in our
experiments. In black, Buchnera aphidicola and Wigglesworthia glossinidia brevipalpis.

genes that are present in all genomes, and our results agree quite well with the
results of [2]. But more generally, it would be interesting to study more precisely
the influence of the partition of the set of all genes into families on the whole
process, and in particular the impact of the granularity of such a partition.

Second, a method for the validation of the computed trees, similar to the
bootstrap commonly used in phylogenetic reconstruction, would be a very valu-
able tool. This lack of a validation step in our analysis was one of the main
reasons that led us to use the Fitch-Margoliash method, that tries several topolo-
gies, instead of the Neighbor-Joining method. A validation method, based on a
Jackknife principle was introduced in [2], but it was not clear how to use it in



Fig. 3. Experimental results with the second set of gene families. (a) breakpoints dis-
tance. (b) common intervals distance. (c) conserved intervals distance. (d) reference
tree obtained by Lerat et al. [15, Figure 5]. In gray, the genome not considered in our
experiments. In black, Buchnera aphidicola and Wigglesworthia glossinidia brevipalpis.

our context where the matchings used in pairwise comparisons can have very
different sizes.

Finally, we think that an important point in the development of methods
similar to the one described in this work should rely into the link between the
computation of a matching and the kind of measure of structure conservation
that is used to define a distance. Indeed, the principle of computing a matching
by the identification of similar segments is natural when breakpoints are used,
as two similar matched segments define only breakpoints at their extremities.
But when using distances based on intervals, it would clearly be more interesting
to consider also segments of similar gene content but maybe not with the same
order of the genes.
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