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Abstract. We consider the problem of estimating the rearrangement distance in terms of reversals,
insertion and deletion between two genomes, G and H with possibly multiple genes from the same
gene family. We define a notion of breakpoint distance for this problem, based on matching genes from
the same family between GG and H. We show that this distance is a good approximation of the edit
distance, but NP-hard to compute, even when just one family of genes is non-trivial. We also propose
a branch-and-cut exact algorithm for the computation of the breakpoint distance.

1 Introduction

Evaluating the evolutionary distance between genomes in terms of gene order rearrangements has
been intensively studied, from the algorithmic point of view, since the early 90’s, due, among other
reasons, to its important applications in comparative genomics [2]. From an algorithmic point, it
can roughly be defined as follows: given a set A of gene families, two genomes G and H, represented
as sequences of signed elements (genes) from A, and a set of evolutionary operations that operate
on segments of genes (like reversals, transpositions, insertions, duplications, deletions for example),
what is the minimum number of operations needed to transform G into H ? This number is often
called the edit distance.

Until recently, most of the algorithms developed to evaluate the rearrangement distance between
two genomes relied on the assumption that there is exactly one copy of each gene in each genome:
each element of A appears exactly once in GG and once in H. In this framework, the comparison of
genomes reduces to the comparison of signed permutations (see the book [6] that contains several
surveys on this topic). In this framework, when only reversals are considered, computing the distance
between two genomes can be achieved in linear time [1]. However, this “non-duplication” assumption
induces a strong limitation, and prevents to perform whole-genome analysis, at least with gene
orders (in [2], Bourque et al. consider genomic segments containing possibly many genes): in the
general case, sequences of signed integers need to be considered instead of signed permutations, as
well as operations like insertions and deletions of gene segments.

Extending the so-called Hannenhalli-Pevzner theory for sorting signed permutations by reversals
[8], El-Mabrouk proposed some algorithms allowing to consider some restricted cases of insertions
and deletions [4]. Based on El-Mabrouk’s work, Marron, Swenson and Moret proposed approxima-
tion algorithms both in the case where one of the genomes considered is a signed permutation [10]
and in the case where the two genomes are sequences [12]. Their method relies on a matching be-
tween genes of the two genomes that allows to reduce the problem to the comparison of two signed
permutations instead of two signed sequences. Such an idea, to reduce the problem to the case
of permutations, based on the matchings between duplicated genes was also used, in the median



problem, by Tang and Moret [13], who try all possible matchings and choose the best one. Sankoff
[11] proposed another way to reduce the problem to signed permutations, the exemplar strategy,
that consists in deleting all but one gene for each gene family (see also Bryant [3] for a proof of the
NP-completeness of the problem).

Here, we extend the breakpoint distance model in order to consider insertions and deletions of
gene segments, and we relate this model to the case of sorting by reversals, insertions and dele-
tions (Section 2). Our main theoretical results state that computing the corresponding breakpoint
distance between two signed sequences is NP-complete (Section 3). In Section 4, we provide a
branch-and-cut exact algorithm.

2 Breakpoint distance and edit distance for signed sequences

Genomes, gene families and gene. Given an alphabet A of elements called gene families, a genome
G on A is a sequence of signed (4 or —) elements of 4. Each occurrence of an element of A in G
is called a gene. For two genomes GG and H and a gene family a, the number of occurrences of a in
G and H is the cardinality of this family a. A gene family a is said to be trivial if either a appears
in exactly one genome or a has cardinality exactly 2. Otherwise, a is said to be non-trivial. A gene
belonging to a trivial (resp. non-trivial) family is said to be trivial (resp. non-trivial). A segment
(substring) of G' that contains only non-trivial genes is called a non-trivial segment.

We say that two genomes G and H are balanced if, for any gene family a, there are as many
occurrences of a in G as in H.

Gene matchings. Let G = g1,...,g9, and H = hq, ..., h;, be two genomes on A. A gene matching
M between G and H is a maximal matching between the genes of G and the genes of H such that,
for every pair (g;, h;j) € M, g; and h; belong to the same family (|g;| = |h;|). By maximal matching,
we mean that for any gene family a, it is forbidden to have at the same time an occurrence of a in
G and one in H that do not belong to M.

G
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A={a,b,c,d,e,f,g,h,i,j,k,1,m,n,0,p,q,r,s,t}

Fig. 1. Illustration of a gene matching M between two unbalanced genomes GG and H.

It follows from the maximality condition of matchings that in any matching M between balanced
G and H, every gene of GG is matched to a gene of H and conversely.

Breakpoint distance and the minimum breakpoint matching. Given G, H and a gene matching M,
a breakpoint between GG and H with respect to M is

— either a pair of consecutive genes g;g;41 in G (resp. hjhjy1 in H) such that exactly one of
them does not belong to M (these breakpoints are called deletion breakpoints (resp. insertion
breakpoints)),



— or a pair of consecutive genes g;gi+1 in G such that both genes belong to M (say M(g;) = h;
and M(g;+1) = hg) but neither h; = ¢;, hi, = gix1 and k = j + 1, nor hj = —gi11, hi, = —g;
and k = j — 1 (these breakpoints are called rearrangement breakpoints).

One denotes by Dy(G, H, M) the number of breakpoints between G and H with respect to M,
and by Dy(G, H) the breakpoint distance between G and H, that is the minimum of Dy(G, H, M)
among all matchings M.

The minimum breakpoint matching problem can be stated as follows: given G = ¢g1,...,9n
and H = hy,...,h, two genomes, find the gene matching M between G and H such that
Dy(G, H, M) = Dy(G, H). In the rest of this paper, we call such a matching a minimum breakpoint
matching.

Remark 1. The notion of breakpoint was originally introduced for signed permutations (see [9]
for example), as a good approximation for the reversal distance, and here we define breakpoints
for signed sequences. However, it is immediate to see that in the case where G and H are signed
permutations (every gene occurs exactly once in G and once in H ), there is only one minimum gene
matching between G and H and Dy(G, H) is the classical breakpoint distance defined for signed
permutations.

Rearrangements and edit distance. In the case of signed permutations, it was shown [9] that there is
a close link between the breakpoint distance and the edit distance when only reversals are allowed.
We extend here this result to the case of signed sequences, and reversals, insertions and deletions
of segments of genes. A reversal of a segment S = x1,...,x; of genes replaces this segment by its
reverse S = —y, ..., —x at the same position in the genome. An insertion inserts a new segment
of genes into a genome, while a deletion removes a segment of genes from a genome. We impose
that, for any gene family a, and a sequence of rearrangements that transform G into H, there can
not be an insertion and a deletion of segments containing occurrences of a. In other words, if G
has more (resp. less) occurrences of a than H, then no segment containing an a will be inserted
(resp. deleted)3. The edit distance between G and H is the minimum number of rearrangements
that transform G into H, denoted by D.(G, H).

Proposition 1. For two genomes G and H, D.(G,H)/2 < Dy(G,H) < 2D.(G, H).

Proof. Let o1,...,0k be an edit sequence (reversals, insertions and deletions) that transforms G
into H. Every reversal creates at most two rearrangement breakpoints. Similarly, every deletion of
a segment of genes creates at most two deletion breakpoints, while every insertion of a segment
creates at most two insertion breakpoints. Hence, Dy(G, H) < 2D.(G, H).

Let M be a gene matching between G and H, inducing ki rearrangement breakpoints, ko
insertion breakpoints and k3 deletion breakpoints. Note that ke and k3 are even numbers. One can
delete all the non-trivial segments of G in at most k3/2 deletions, that will remove the k3 deletion
breakpoints and create at most k3/2 rearrangement breakpoints. The resulting signed sequence
is then such that all its genes belong to M. Now one can remove all rearrangement breakpoints
(there are ki +k3/2 such breakpoints) with at most 2k + k3 reversals, which gives a signed sequence
that is equal to H where all the non-trivial segments are removed. It then suffices to perform ks /2
insertions (the non-trivial segments of H) to obtain H. The above edit sequence contains exactly
2k1 + k2/2 + (3/2)ks, and then D.(G,H)/2 < Dy(G, H). O

3 This restriction, that is limiting from the biological point of view, is necessary from the algorithmic point of view
and was followed, although it is not stated explicitely, in [10, 12]



Remark 2. In [10], Marron et al. shown that when H is a signed permutation and D.(G, H) = k,
their algorithm (that is quadratic in the length of the genomes) produces an edit sequence of length
at most 10k + 4. In the general case [12], they did not prove any theoretical result on the quality
of their algorithm, but in both cases, experimental results on simulated data were very convincing.
However, the close link showed by Proposition 1 between the breakpoint distance and the edit
distance, coupled to a good approximation algorithm for the breakpoint distance could improve the
theoretical approximation bound for the edit distance.

3 Complexity results with exactly one non-trivial family

In this section, we are interested in the case where just one gene family is non-trivial. We first prove
that, even with just one non-trivial gene family, computing the breakpoint distance is NP-complete
(Theorem 1). Note that Theorem 1 implies that in the general case (more than one non-trivial gene
family), the problem is also NP-complete. This result also implies that the MINIMUM COVER
problem introduced by Swenson et al. [12] is also NP-complete (Theorem 2). We then give an
approximation algorithm for the breakpoint distance whose approximation ratio depends on the
maximal length of a non-trivial segment (Theorem 3).

3.1 NP-hardness results

Theorem 1. For two genomes G and H, computing Dy(G, H) is NP-complete, even when the
number of non-trivial gene families is equal to 1.

Our proof relies on a reduction of the classical decision problem associated to MINIMUM BIN
PACKING, that is well known to be NP-complete [5], to a decision problem related to the minimum
breakpoint matching problem. For the sake of clarity, we now state formally the two decision
problems we consider, MINIMUM BIN PACKING and MBM(L,F).

MiNniMUM BIN PACKING

INSTANCE: A finite set U = {uy,us, ..., un}, a size s(u) € Z" for each u € U and two positive
integers IC and C.

QUESTION: Is there a partition of U into K disjoint sets Uy, Us, ..., Ux such that the sum of|
the sizes of the elements in each U; is at most C ¢

MBM(L,F)
INSTANCE: An integer P and two genomes G and H on a set of gene families such that there
is exactly ¥ non-trivial gene families and no non-trivial segment (either in G or H) contains

more than L genes.
QUESTION: Dy(G,H) <P ¢

It is easily seen that MBM(L,1) is in NP since given an integer P and a set of matchings
between two genomes we can polynomially compute the breakpoint distance and thus check if
this distance is less than or equal to P. The remainder of the section is devoted to proving that
MBM(L,1) is NP-complete, which implies Theorem 1. For this, we reduce the MINIMUM BIN
PACKING problem to the problem MBM(L,1), i.e. we show that from any instance (U, IC,C) of
MiINIMUM BIN PACKING we are able to construct in polynomial time an instance (G, H,P) of
MBM(L,1) such that Dy(G, H) < P if and only if there is a minimum bin packing for (U, KC,C).
We denote N' = K.C — Y1 s(u;).



Let us first detail the construction from of the genomes G and H from a minimum bin pack-
ing instance (U, K,C). The gene families are {«, 3,x, A1, As ..., Apin, B1, B2, ..., Bi+1}. On the
whole, there are K +N +n+4 families of genes, and x is the unique non-trivial family. For 1 <i <n
(resp. n+1 < i <n+N), we denote by u} a sequence of s(u;) consecutive genes x (resp. one gene
x). For 1 < j <k, UJ’. represents a sequence of C consecutive genes x. G and H are defined as
follows:

Gzau’l A1 11/2 A2 u;JrNAnJrNBl Bg B}CJrlﬂ
HZO[Bl Ull BQU/2 BICU;C B’C+1 A1 A2 An+/\[,3

An illustration of such a construction, that can obviously be achieved in polynomial time, is given
in Figure 2. To complete the construction of the instance of MBM(L,1), it remains to define P:
P=2n+N+1)+K.

v R YUY vy vy vy VY VY Yy vy
o [XXXXX] Aq [XXXX| Az [XXX| A3 [XX| Ag[xXXXX|As5 [XXXX| Ag [X|A; B1 B, B3B4 B G

o By [XXXXXXXX] B [XXXXXXXX| B3[XXXXXXXX| B4 A1 Ay A3 Ag As Ag Ay B H

Fig. 2. Instance of MBM(L,1) associated to the minimum bin packing instance where X = 3, C = 8 and U =
{u1,...,ue} with s(u1) = s(us) = 5, s(u2) = s(ug) =4, s(us) = 3 and s(us) = 2. Black arrows indicate breakpoints
that are not dependant of a particular gene matching.

In the next two lemmas, that establish that MBM(L,1) is NP-complete, we consider an instance
(U,K,C) of MINIMUM BIN PACKING and the corresponding, according to the above construction,
instance (G, H, P) of MBM(L,1).

Lemma 1. Dy(G,H) > P, and, in any minimum matching between G and H, at least P break-
points involve at least one trivial gene.

Proof. Let us count the number of breakpoints in G that occur between two adjacent genes, of
which at least one is non-trivial. For a gene g in a genome G, let L%(g) (resp. R%(g)) denotes the
left (resp. right) neighbor of the gene g in the genome G.

For any gene A; with 1 < i < n+ N, LY(4;) # L¥(A;) and R%(A;) # RH(A;). Thus, each
gene A;, with 1 <14 < n + N, induces two breakpoints (one with both its left and right neighbor).
Similarly, for any gene B; with 1 < j < K, RY(B;) # RY(B;). Thus, each gene B; induces
a breakpoint. By now, we have 2n + 2N + K breakpoints in G. Finally, R®(a) # R (a) and
L%(B) # LY (B). Thus, on the whole the number of breakpoints in G is at least 2(n+N+1)+K = P,
and the P breakpoints we described above all involve at least one trivial gene. O

Lemma 2. There is a partition of U into KC disjoint sets Uy,Us, ..., Ui such that the sum of the
sizes of the elements in each U; is at most C if and only if Dy(G, H) < P.

Proof. (<) Suppose that Dy(G,H) < P. By Lemma 1, we know that Dy(G,H) = P, and all the
breakpoints with respect to a minimum matching between G and H occur between two adjacent
genes, of which at least one is trivial. In other words, any pair of adjacent genes x in G is matched
with a couple of adjacent genes x in H. Consequently, any non-trivial segment u}, with 1 <14 < n,
in G is matched with a sequence of consecutive genes x in H. Precisely, for any 1 < ¢ < n, there is a



Fig. 3. Gene to gene matching corresponding to the following partition of U : Ui = {u1,us}, Uz = {u2,us} and
U3 = {U4, U5}

given 1 < j < K such that the sequence u] is totally matched with a subsstring of U ]’ as illustrated
in Figure 3.

Therefore, such a matching induces a partition of the set of sequences {u},u),...,u),} into at
most K disjoint sequences U1, Uj, ..., Uy.. As, by construction, |U/| = C for 1 < i < K, this partition
corresponds to an answer to the corresponding MINIMUM BIN PACKING instance.

(=) Suppose we have a partition of U into disjoint sets Uy, Us,...,Ux each of cardinality at
most C. We compute a gene matching M between G and H as follows:

— each trivial gene in G is matched with its corresponding gene in H,
— for 1 < j <K, for each w;, if u; € Uj, then the sequence of genes x of u} in G is matched gene
to gene with the first free (i.e. not already matched) sequence of genes x of UJ‘ in H.

Since M is built according to the partition of U, we claim that each non-trivial segment w,
with 1 <4 < n, is matched to a contiguous sequence of genes x in H. Thus, all the breakpoints
induced by this matching occur between two adjacent genes, at least one of them being trivial. By
Lemma 1, this leads to Dy(G, H, M) < P, and so to Dy(G, H) < P. O

Using the result of Theorem 1, we can answer a question introduced in [12] by Swenson et al.
They defined a cover as a mapping that relates substrings of genes in a target genome to the same
substring of genes (possibly reverted) in a source genome. Swenson et al. also defined the notion of
Minimum Cover as a cover that maps the subject to the target genome with the fewest substrings.
They introduced this notion as a way to obtain a good approximation of the edit distance (in
terms of reversals, insertions and deletions) between two genomes. In the following, we prove that
finding a Minimum Cover between two genomes is NP-complete. Our proof relies on a reduction
of the MBM(L,F) problem over balanced genomes. We now state formally the decision problem we
consider: MINIMUM COVER.

MiNiMUM COVER
INSTANCE: Two genomes G and H and an integer Q.
QUESTION: Is there a cover that maps G to H with at most Q substrings?

Theorem 2. For two genomes G and H, computing the minimum cover of (G, H) is NP-complete.

Proof. (Sketch) It is easily seen that MINIMUM COVER is in NP since given an integer Q and a
set of matchings between two genomes we can polynomially compute the number of substrings and
thus check if this number is less than or equal to Q.

We propose hereafter an intuitive reduction from MBM(L,F) over balanced genomes, with
Q =P+ 1. Indeed, MBM(L,F) over balanced genomes is NP-complete since the reduction used in
the proof of Theorem 1 uses balanced genomes. Given an instance (G, H,P) of MBM(L,F) where
G and H are balanced, we take the same instance (i.e. the genomes are identical) (G, H,P + 1)



of Minimum Cover problem. If there is a gene matching between G and H inducing at most k
breakpoints then it follows from the definition of a breakpoint that this matching is a cover that
maps G to H with at most k£ 4 1 substrings. Moreover, given a minimum cover involving at most
k substrings then the corresponding mapping is also a gene matching inducing at most k£ — 1
breakpoints. Therefore, there is a minimum cover of (G, H, P+ 1) if and only if Dy(G,H) <P. O

3.2 An approximation result for balanced instances

Theorem 3. Let G and H be two genomes of a balanced instance for the minimum breakpoint
matching problem, with exactly one non-trivial gene family and every non-trivial segment of length
at most L. Computing Dy(G, H) is (L + 1)-approximable.

To prove this result, we introduce the notion of duplicated non-trivial segment: a segment a S b
of G, where a and b are trivial genes and S is a non-trivial segment, is duplicated if H contains
either a S b or b S a (this segment of H is called the copy of a S b in H). In other words, matching
a S b to its copy in H does not induce any rearrangement breakpoint involving a gene of S.

Lemma 3. Let G and H be two genomes of a balanced instance for the minimum breakpoint match-
ing problem, with exactly one non-trivial gene family. There is an optimal matching between G and
H that matches any duplicated segment of G to its copy in H.

Proof. Let M be a matching between G and H, and a S b a duplicated segment of G that is not
perfectly matched to its copy. W.l.o.g we suppose that the copy of a S b in H is a S b. Let g; be
the first gene of a S b that is not matched to its copy h; in H, say (g, hi,) € M and (gs, hj) € M.
There are two breakpoints, one to the left of g; and one to left of gy. It is immediate to see that if
one replaces (g;, hi) and (g¢, hj) by (gi, hj) and (g¢, hy), then one does not increase the number of

breakpoints, which proves the lemma. An illustration is given in Figure 4. a
S S
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Fig. 4. Matching a segment of GG to its copy in H does not increase the number of breakpoints.

The following lemma follows obviously from the definition of a duplicated segment.

Lemma 4. Let G and H be two genomes of a balanced instance for the minimum breakpoint match-
ing problem, with exactly one non-trivial gene family, and S a non-trivial segment of G' that is not
part of a duplicated segment. In every optimal matching between G and H, there is at least one
breakpoint involving a gene in S.

Proof of Theorem 3. Consider the algorithm computing a gene matching between G and H presented
in Figure 5.

Let M be the matching produced by the above algorithm and Mg, be an optimal matching
that matches every duplicated segment of G to its copy in H (by Lemma 3, such a matching



SimpleAlgorithm(G,H)

1. Perfectly match each duplicated segment of G to its copy in H.
2. Match each remaining trivial gene in G with its unique copy gene in H
3. Randomly match each remaining non-trivial gene in G with a non-trivial gene in H

Fig. 5. Algorithm SimpleAlgorithm(L,1).

exists). Hence, in M as well as in Mgpt, there is no breakpoint involving two genes of a same
duplicated segment. By definition of a matching, in the result of the above algorithm, the number
of breakpoints involving two trivial genes is the same in M and in Mps. So the only breakpoints
in M that differ from M, involve pairs of consecutive genes that do not belong both to the same
duplicated segment and where at least one is non-trivial. As every non-trivial segment is of length
at most L, in M there are at most L + 1 breakpoints induced by each non-trivial segment, when,
by Lemma 4, in M there is at least one breakpoint induced by each non-trivial segment. The
result follows immediately. a

4 An exact algorithm

In this section we propose an exact algorithm for computing the breakpoint distance between two
genomes G and H, based on the following intuition: long segments that match (up to a complete
reversal) in G and H are likely to belong to a minimum gene matching. This idea was introduced in
the context of computing the edit distance between genomes by Swenson et al. [12]. (They proposed
heuristics, with no theoretical bound, based on this intuition and the notion of minimum cover,
that performs well on simulated data).

The algorithm focuses only on non-trivial segments. Indeed, if a gene appears in just one genome,
it does not belong to any gene matching, and if a gene appears exactly once in each genome, then
these two occurrences have to be matched together. Hence, the main principle of this algorithm is
to match parts of non-trivial segments that are common to G' and H*.

Our algorithm follows a branch-and-cut strategy. In principle we try all the possible matchings
between G and H, starting with an empty matching and trying all possibilities to extend it. But as
soon that the current matching already induces more breakpoints than the best matching previously
computed, we do not try to extend it. We use the algorithm by Swenson et al. [12] to compute an
initial matching that gives an upper bound for the breakpoint distance.

As we are interested in segments that appear both in G and H, we will use a suffix-tree that
will allow to find quickly the occurrences of a segment of G that appears in H (for a reference on
suffix-trees, see [7]). More precisely, let S = {S1,52...Sm,51,52...Sn,} be the set of non-trivial
segments of H (the S;’s), and of the reversed non-trivial segments of H (the S;’s), and 7 (H) the
generalized suffix-tree of this set of segments. For a node N of 7 (H), one denotes by label(/V) the
concatenation of the labels of the edges from the root of 7(H) to N. We assume that each node
N of T(H) is provided with a list, possibly empty, of triples (b, h, p), such that the suffix of Sy, if
b =0 (resp. S if b = 1) starting at position p in H is equal to label(N). An illustration of 7 (H)
is given in Figure 6.

Let R = {R1,Rz2...R,} be the set of non-trivial segments of G and M’ a partial matching
between G and H involving only genes of Ry, ..., Ri[l..i — 1] (Rg[1..i — 1] is the prefix of length ¢ — 1

4 In this section, by common segment, we mean a segment that appears, up to a complete reversal, both in G and
H.



of Ry): some genes of Ry, ..., Rg[1..i — 1] are matched to genes of H, while the ones that are not are
considered as belonging to segments that will induce deletion breakpoints (they will not be matched
in any extension of M’). Without loss of generality, we suppose that Ry is of length ¢ greater than
i — 1. The principle of the algorithm is to try all possibilities to extend the partial matching M/,
either by deciding to leave the gene Rj[i] unmatched (it will belong to a deleted segment) or by
matching a prefix of Ry[i..f] that is common to G and H and is unmatched. Following the intuition
that long matches are better, we try to match prefixes of Ry[i../] with segments of H greedily, that
is in decreasing order of their length.

R R R R R

1 2 3 4 5
G ABRRPYEI T ﬁ
H ARSIy d$H1ICE
S S S S S,

1 2 3 4

(1,3,2)(1,4,1)

Fig. 6. Illustration of S, R and 7 (H) for two genomes G and H built on two non-trivial families (z and y). In this
example, $y = —x —x —z, So = —y —x, S3 = —y —y, Sa = —y and S5 = —z. In T(H), node N is provided with a
list (0, 1,2) since zx (i.e. label(N)) is a suffix of Sy starting at position 2 and node N’ is provided with a list (1,3, 1)
since —y — y (i.e. label(N")) is a suffix of S5 starting at position 1.

Before presenting the algorithm, we need to make precise a few more details. We use a global
variable B, (initially computed on the matching produced by the algorithm of [12]) that records
the breakpoint distance given by the best matching generated so far, and a global variable B, that
records the number of breakpoints induced by the current partial matching. Moreover, we suppose
that for each gene family x, we know the number of genes of this family that will have to be left
unmatched (this depends only on the number of occurrences of x in G and H and on M), denoted
dx.

The pseudo-code of the recursive procedure that tries to extend a partial matching is presented
in Figure 7.

The complexity of this algorithm does not improve the complexity of the brute-force algorithm
(see [13] where the brute-force strategy is used for the median problem, in the context of edit
distance), that tries all possible gene matchings. However, the combination of an upper bound for
the breakpoint distance together with a branch-and-cut strategy seems to improve dramatically the
computation time. We are currently running tests in order to quantify this speed-up.

There are several ways to improve this algorithm. For example, we build the matching by
reading the non-trivial segments of G in the order they appear in the genome. In the context of
a branch-and-cut strategy, one can think that improving the order in which the segments of G
are considered is of primary importance. This was shown to be effective, for the edit distance, by
Swenson et al. that used a greedy strategy to build a minimum cover [12]. One can also notice
that when all unmatched segments left are of length 1, then there is no need to explore the space
of all matchings to find the best extension of the current partial matching. Indeed, when L = 1
it is immediate to see that the problem of computing a minimum gene matching reduces to the
computation of a minimum weighted bipartite matching, that can be solved in polynomial time.



ExactAlgorithmRec(Ry,i)

1. Let x = Ry[i] and £ be the length of Ry.

// Comment: first one tries to find a match for Ry[i..f]

2. For j = ¢ down to i do

3. If there is a node N of 7 (H) such that label(N) = Ry[i..j] Then

4. For each node N’ of the subtree rooted at N and each triple (b, h, p) of the node N’ do

5. If all the genes of the prefix of S;[p..p + j — i] are unmatched Then

6. Match Rg[i..j] and S;[p..p + 7 — i

7. If B, > B. Then

8. B := B. and update of the variables B. and B,

9. If (j = ¢) Then ExactAlgorithmRec(Ri+1, 1) Else ExactAlgorithmRec(Ry, j + 1)
10. B.:=B
11. Unmatch Rg[i..j] and Sj[p..p + 5 — 1]

// Comment: next one tries to consider R[] as unmatched.
12. If dx« > 0 Then
13. If B,, > B. Then

14. B := B. and update of the variables B. and B,
15. If (¢ = ¢) Then ExactAlgorithmRec(Ry1, 1) Else ExactAlgorithmRec(Ry, i + 1)
16. B. =B

Fig. 7. Recursive procedure extending a partial matching

5 Conclusion

In this note, we extended the breakpoint distance to the case of signed sequences, and we showed
how it can be related to the edit distance. We proved that, contrary to signed permutations,
computing the breakpoint distance is NP-complete, even in the case of simple instances, with one
non-trivial gene family and no insertion and deletion breakpoints. As far as we know, aside from
the exemplar distance, these are the first complexity results on these problems, for which some
algorithms that perform well in practice exist [10,12].

This leaves many theoretical questions. For example, it is not known at which value of L (length
of non-trivial segments) the problem of computing the breakpoint distance becomes NP-hard: if
L = 1, this problem reduces easily to a minimum weight bipartite matching problem (which is
known to be polynomial), but nothing is known for greater values of L. Also, following Remark 2,
it would be interesting to design an approximation algorithm for the general MBM(L,F) problem
with a good (e.g. constant) ratio, that could translate into an approximation algorithm for the edit
distance. Moreover, in the context of phylogenetic reconstruction, it would be interesting to design
a good heuristic for computing the median of three signed sequences.
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