
HAL Id: hal-00620354
https://hal.science/hal-00620354v1

Submitted on 30 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fault Tolerance with Real-Time Java
Damien Masson, Serge Midonnet

To cite this version:
Damien Masson, Serge Midonnet. Fault Tolerance with Real-Time Java. WPDRTS 2006, Apr 2006,
Rhodes Island, Greece, Greece. 8pp. �hal-00620354�

https://hal.science/hal-00620354v1
https://hal.archives-ouvertes.fr

Fault Tolerance with Real-Time Java

Damien Masson1 and Serge Midonnet1

1Université de Marne-la-vallée
Institut Gaspard-Monge

Champs-sur-Marne, France
{damien.masson, serge.midonnet}@univ-mlv.fr

Abstract

After having drawn up a state of the art on the theo-
retical feasibility of a system of periodic tasks scheduled
by a preemptive algorithm at fixed priorities, we show
in this article that temporal faults can occur all the
same within a theoretically feasible system, that these
faults can lead to a failure of the system and that we
can use the data calculated during control of admission
to install detectors of faults and to define a factor of
tolerance. We show then the results obtained on a sys-
tem of periodic tasks coded with Java Real-Time and
carried out with the virtual machine jRate. These re-
sults show that the installation of the detectors and the
tolerance to the faults makes an improvement of the
behavior of the system in the presence of faults.

1. Introduction

Real-Time systems occupy an increasingly signifi-
cant place in industry and are present in an increasing
number of fields. Today, because of temporal con-
straints, real-time programmers have to use low-level
programming languages like the assembler or the
language C. They cannot benefit from the advantages
of the Java language: a high level of abstraction (ori-
ented object approach) and the independence from the
execution platforms (portability). This led in 2001 to
the Real-Time Specification for Java (RTSJ)[4]. This
specification describes a set of classes and interfaces
and defines the constraints imposed for real-time
virtual machines (memory management, scheduling al-
gorithms and synchronisation mechanisms). The work
on this specification is still in progress, as attested
by the publication in June 2005 of its version 1.0.1.
There are also many RTSJ virtual machines. Some are
commercialized as Jamäıca VM from AICAS society.

Some others exist for research as RI which stand
for reference implementation. The latter was made
to prove the feasibility of real-time Java adventure.
Eventually jRate [7, 6], an open source project based
upon an extension of the GNU GCJ compiler or flex
[8] developed in MIT. Recently, Sun Microsystems
themselves announced their own implementation of
the specification called project Mackinac [13, 3].

If this specification offers to programmers methods
to compute an admission control for real-time peri-
odic tasks, the tested machines do not offer a valid
implementation. We can easily show a non feasible set
of tasks for which RI returns feasible, and we can see
in the file PriorityScheduler.java that feasibility
methods are not yet implemented in jRate.

So, to begin this work, we have drawn up a state
of the art on the feasibility analysis issues for a fixed
priority scheduled periodic task system. This study
leads us to write the deficient methods of RI and
missing ones in jRate. However, though these methods
give us a theoretical feasibility of the task system, in
practice faults can occur for many reasons. To take
into account these faults, an approach usually met
in the literature is to install overload detection and
treatment mechanisms [12, 9, 5]. Our approach, in the
other hand, consisted on using an admission control
with fault detection and treatments mechanisms, in
order to avoid any overload.

We start by presenting the admission control
algorithm in Section 2. In Section 3 we define the
temporal faults and we explain how we can detect
them by overloading methods of the Real-time Spec-
ification for Java (RTSJ). Section 4 presents the
various treatments of the faults we have established.
We explain which mechanisms of measurement we

1-4244-0054-6/06/$20.00 ©2006 IEEE

set up in Section 5 and have their results in Section
6. Finally we present in conclusion the prospects for
work offered by these results.

2. Control of admission

The theory of scheduling applied to real-time sys-
tems have been largely studied over the past twenty
years and many results were published [11, 10, 1, 2].
We limited our study to a fixed priority pre-emptive
scheduling algorithm because all the RTSJ implemen-
tations have to offer it at least. A task, denoted by τi

has a cost Ci, a relative deadline Di, a period Ti and
a priority Pi.

In this section, we present the results described by
Liu and Layland in [11] and generalised by Lehoczky
in [10] to the tasks with the deadline higher than the
period.

2.1. Load test

The system load, denoted by U , can be calculated
by:

U =
N∑

i=1

Ci

Ti
(1)

There are two possibilities:

• if U > 1, the system is not feasible,

• else the load condition is not enough to conclude.

2.2. Worst case response times computation

Pi Di Ti Ci

τ1 20 6 6 3
τ2 15 2 4 2

Table 1. System task data

The response time for a task job is the time interval
between its activation and its termination. The worst
case response time for a task is the response time of
its longest job in the worst situation. In the particular
situation where Di < Ti, the worst situation is reached
when all the tasks are activated simultaneously. As
shown in table 1 and figure 1, this is not true in the
general case. Consequently, the calculation of these
worst case response times in the general case requires
a thorough study.

Figure 1. Response times

[Return the worst case response time in nanosecondes]

Function WCResponseTime(S : Schedulable) : long
integer

Rq : long integer
Rmax : long integer ← 0
q : integer ← 0
Rtmp : long integer
While (true) do

Rq ← 0
Rtmp ← S.cost ∗ (q + 1)
While (Rq �= Rtmp) do

HP(S) : Set of Schedulables with
higher or equal priority than S pri-
ority
Rq ← Rtmp

Rtmp ← S.cost ∗ (q + 1)
For all Sj in HP(S) do

Rtmp ← Rtmp +
l

Rq
Sj.period

m
∗ Sj .cost

done

done
Rq ← Rtmp

If (Rmax < Rq − q ∗ S.period) then
Rmax ← Rq − q ∗ S.period

end If

If (Rq ≤ (q + 1) ∗ S.period) then
break;

end If

q ← q + 1
done

return Rmax

End

Figure 2. Worst case response time compu-
tation of a task in a fixed priority preemptive
system

Many works were carried out on the calculation of
these response times. They led to the algorithm shown

on Figure 2.
The algorithm is based on the following observa-

tions: a job activation can only be delayed by a job
of a higher priority task or by the previous jobs of the
same task. Furthermore a job can only be preempted
by a higher priority task job. A recurrence formula
enables us to compute the response time of each task
job from the response time of the previous job. We
just have to iterate this computation over all the jobs
until we find a job with a response time smaller than
its period. In that case, there is no influence of the job
on the following jobs: the worst case response time is
then the maximum response time computed during the
iterations.

2.3. Implementation

We offer to developers a new package called
javax.realtime.extended. This package contains
the class RealtimeThreadExtended which extends
RealtimeThread.

The methods concerned by the job control are
addToFeasibility() and removeFromFeasibility()
and are overloaded to delegate the work to one of our
classes called FeasibilityAnalysis. This class imple-
ments the algorithm of Figure 2.

3. Fault detection

A system failure occurs when one (or many) task
has a job which missed its deadline (Di). If we al-
ways perform an admission control before starting a
task system, it should never have any system failure.
However, algorithms shown up on the previous section
lead on the hypothesis of the exactitude and the respect
of tasks parameters. In particular, the task jobs have
always to respect their costs (Ci). Since this cost is of-
ten obtained by a statistical work, it is not reliable. So
it is possible a task job takes a little bit more than its
cost, either because it was underestimated, or because
of an external event with the system. This is called a
fault. A fault can lead to the failure of the faulty task
or the failure of a task with a smaller priority.

The detection of a cost overrun is a difficult problem,
because it implies being able to know at any time how
much CPU resource a job has already consumed. How-
ever, the worst case response time computation carried
out during the admission control gives us for each task
job a date, depending on its activation, before which it
has to be finished.

A worst case response time overrun implies a cost
overrun.

All the critical instants to watch depend on the jobs
activations. This is why a detector can be a periodic
task, with a period equal to the task period and
with an offset equal to the task worst case response
time. This periodic approach enables us to avoid the
creation of an instance of a detector for each job. This
decreases the cost overrun induced in the system by
our detectors since there is only need for one real-time
task for each thread.

3.1. Implementation

In RealtimeThreadExtended, we overload the
method start(). Our method starts a periodic de-
tector with an offset equal to the worst case response
time just after having called the method start()
of the super-class. The detector is an instance of
PeriodicTimer which checks the states of a boolean
value and a job counter. This job counter was added
to our real-time thread class. If the job is not fin-
ished when the timer is called, a fault treatment can
be started. The states of the boolean value and
the counter are up-to-date in overloading the method
waitForNextPeriod() which is called at the end of
each periodic job and which is blocking until the next
job activation. Our method becomes:

public boolean waitForNextPeriod(){
computeAfterPeriodic();
boolean returnValue =
super.waitForNextPeriod();

computeBeforePeriodic();
return returnValue;

}

With this approach, we are able to add actions just
before and just after each job.

It implies that the method waitForNextPeriod()
has to be called before the first job, which is often the
case in order to minimise the influence of the method
start() call.

4. Treatments

We are now able to detect some kinds of faults in
a real-time system. How can we treat these faults ?
First, we have to look at the consequences of a worst
case response time overrun:

• the system is still feasible, there are no more con-
sequences than a little offset on the worst case re-
sponse times of the tasks with a lower priority,

• the faulty task misses its deadline and probably
provokes the failure of tasks with lower priority,

• the faulty task ends before its deadline but the
offset leads to failure for some tasks with lower
priority.

Our goal is to prevent that the faulty tasks with
a strong priority cause the failure of non-faulty tasks
with a lower priority. To do so, we considered three
treatments presented in the following subsections. We
compare these treatments and we measure the improve-
ment of the system behavior in a practical way on an
example of three tasks in Section 6.

4.1. Instantaneous stop of the faulty tasks

The first idea of treatment consists in simply stop-
ping the faulty tasks. This approach is very pessimistic,
because making a fault can have no consequence on the
system feasibility.

Let us note in addition that, in Java, it is not
possible to stop a thread brutally. The theoretical
solution would consist in lowering the priority of
the task so that this one can be preempted, but
this possibility is not yet implemented with jRate.
For the needs of our analysis, we thus added a
boolean field in the class RealtimeThreadExtended
which is checked after each instruction of the loop
constituting the periodic treatment. If this boolean
gets true, then the loop is broken and the thread
is stopped. That causes an annoying side effect:
in the method run(), the thread must check the
state of the boolean, and thus calls the method
RealtimeThread.currentRealtimeThread(), the
cost of which is not bounded. Consequently, the task
will regularly make small cost overruns, about a few
milliseconds. These cost overruns remaining lower
than the precision of our detectors, that does not
obstruct our analysis.

4.2. Stop after an allowance factor granted
to the task

In order to have a less pessimistic approach, and
to make it possible for the faulty tasks to continue as
long as they can without obstructing the lower priority
tasks, we have to calculate what we will call the al-
lowance of the system, i.e. the additional cost we can
grant to each task while keeping a theoretically feasible
system.

To compute this tolerance, we carry out a binary
search of the maximum value which can be added to

the costs of all the tasks so that the system remains
feasible (within the meaning of the analysis described
in the previous section).

During this computation, we also compute new
worst case response times which take into account the
allowance. The tasks will now be stopped after these
new worst case response times.

4.3. Stop after an allowance factor granted
to the system

The treatment previously described considers that
all the tasks have the same probabilities to make faults.
The free time in the system is equitably distributed
between all the tasks.

In the last treatment we implemented we consider
that the higher the task priority is, the more it has
the right to make a fault: this time, a task is stopped
after a worst case response time overrun equal to the
maximum free time available in the system.

This allowance is obtained by seeking the maximum
value which can be added to each task cost.

If the first faulty task finishes before having con-
sumed all its allowance, the remainder is allocated to
the other faulty tasks. A task allowance is obtained
looking for the maximum cost overrun this task can do
and substracting the more priority tasks overrun.

5. Measurements

In order to have measurements, we developed
various tools. The first one enables us to parse a file
which describes the tasks in the system. It builds
and runs the tasks automatically. During the system
execution, many data are collected. A second tool
provides a chart of these data in the form of a time
series chart.

The data collected, which are the key dates in the
system life, are:

• the beginning of a job (the moment when the
method computeBeforePeriodic() is called),

• the end of a job (the moment when the method
computeAfterPeriodic() is called),

• the release of a detector.

In order to have a maximum precision, we use for
these measurements an Intel processors characteris-
tic: these processors have an instruction RDTSC (ReaD

Time-Stamp Counter) providing the number of cycles
carried out since the start-up of the system.

We thus wrote a library in Java native interface
(JNI) allowing us to exploit this instruction, in order
to obtain durations with a nanosecond precision.

We write these times in StringBuffer fields in order
not to slow down the system with in-out operations. At
the end of the execution of the system, these fields are
written in a log file which can then be interpreted by
our tool of time series chart.

Figures presented in Section 6 were obtained thanks
to these tools, and thus are experimental results ob-
tained on true Real-time Java systems of tasks, and
not the awaited theoretical behaviors.

6. Results

We present in this section the results obtained on
the system of tasks described in table 2. A cost over-
run was voluntarily added for the priority task, which
represents the most unfavourable case. We will com-
pare the time series charts obtained in the following
cases:

• no detection mechanism,

• active detectors, no fault treatment,

• active detectors, immediate stop of faulty tasks,

• active detectors, allowance granted equitably to all
tasks,

• active detectors, allowance granted totally for the
first faulty task.

Pi Ti Di Ci WCRTi Ai

τ1 20 200 70 29 29 11
τ2 18 250 120 29 58 11
τ3 16 1500 120 29 87 11

Table 2. Tested tasks system

Figures from 3 to 7 are obtained with the tool that
we developed, and present the behavior of the system
during the fifth job of task τ1, which coincides with the
activation of a job of τ2 and τ3.

On these figures ↑ represents the periods and ↓ the
deadlines. The � materializes the detectors, and > in-
dicates the worst case response times.

For our tests, we used the RTSJ jRate com-
piler because it is the only one among the tested
virtual machines (RI, JamäıcaVM, ...) to have a

good implementation of some essential aspects for
our work, such as the signature of the method
RealtimeThread.waitForNextPeriod(). We used a
2 GHz processor INTEL Pentium 4 machine with 500
MB of memory and a real-time kernel Timesys 2.4.18-
timesys-4.0.243.

6.1. Execution without detection

Figure 3. Execution without detection

Figure 3 shows us that task τ1 makes a temporal
fault at moment 1020m. It ends before its deadline,
just as task τ2 but task τ3 misses its deadline. It is the
case we wish to avoid.

6.2. Execution with detection, without
treatments

Figure 4. Execution with detection, without
treatments

The execution presented in Figure 4 is similar to the
one presented on Figure 3. One can notice that the

detectors have a small delay. This delay cannot exceed
ten milliseconds. This is due to the implementation of
the PeriodicTimer in jRate: if the value given for the
first release is not a multiple of ten, the precision is not
good. We thus voluntarily round the release values of
the detectors. This is why the detector of task τ1 has
a 30 − 29 = 1 millisecond delay, that of τ2 60 − 58 = 2
milliseconds and that of τ3 90 − 87 = 3 milliseconds,
which can be checked on the diagram.

The overrun generated in the system by the presence
of the detection mechnism is that of a pre-emption, in
addition to an unbounded value which corresponds to
the boolean testing/test, as explained in Section 4.1.
One can estimate this overrun to be inferior to the
underlying accuracy of the real-time machine, hence to
be negligible. Yet, one has to bear in mind that the
more tasks in the system, the more sensors, hence, the
higher the influence of this overrun on its execution.

6.3. Instantaneous stop of the faulty tasks

Figure 5. Execution without allowance

In the execution presented on Figure 5, the tasks
are stopped as soon as they make faults. One can no-
tice that the only task to miss its deadline is task τ1.
However after the end of the execution of task τ3, the
processor is free, and there remains time before its ex-
piry. We can then think that task τ1 could have time
to finish, or at least to be carried out at greater length
without causing the failure of τ2 and/or τ3.

6.4. Allowance granted equitably to all
tasks

Figure 6. Allowance granted equitably to all
tasks

Figure 6 results from an execution in which we left
all the tasks the same allowance: eleven milliseconds.
The worst case response times indicated by > now rep-
resent the worst response times by taking into account
a cost overrun of the task equal to eleven milliseconds.

Task worst case response time with cost overruns
τ1 WCRT1 + A1 = WCRT1 + 11
τ2 WCRT2 + A1 + A2 = WCRT2 + 22
τ2 WCRT3 + A1 + A2 + A3 = WCRT3 + 33

Table 3. Worst case response time with cost
overruns

Table 3 gives these new worst case response times.
We note that only task τ1 is stopped, and that it had
more time to be carried out than in the previous case.
However, we also notice that there remains unused
CPU time, because tasks τ2 and τ3 did not consume
their allowance, since they did not make cost overruns.

6.5. Allowance granted totally to the first
faulty task

Figure 7. Allowance granted totally to the first
faulty task

Figure 7 corresponds to the last treatment consid-
ered: all the system time available in the worst exe-
cution case, that is to say thirty three milliseconds, is
granted to the first faulty task. If this task does not
consume all this allowance, and if another task makes
a fault, it will benefit of what remains. Task τ1 is thus
stopped thirty-three milliseconds after its worst case re-
sponse time and as neither τ2 nor τ3 make fault, they
both finish just before their deadlines.

7. Conclusions and future works

The study of the theoretical results of the analy-
sis of feasibility of a system enabled us to provide a
correct establishment of the methods specified by the
standard RTSJ for control of admission, which we could
concretely check on the machine jRate.

We saw that theoretical feasibility is based on data
such as the cost of the tasks which can possibly be
exceeded during a real execution because of external
factors, causing faults within the tasks system.

Thanks to the study of the worst case response
times, we could define a type of fault whose detection
does not require a complete monitoring of the CPU us-
age. We deduced a mechanism of detection which we
coded and tested.

Finally we showed that the theoretical study made
it possible to obtain a factor of allowance which
maximizes the execution time of a task before its fault
causes a failure of the system.

However, our study considers a rather static system,
in which all the tasks are known before launching, mak-
ing possible to set up expensive algorithms in time to
compute the response times and the allowance of the
system.

Our objective in the continuation of this work will
be to reach the same results in a more dynamic system
where tasks can be added or removed “in real-time” by
adapting the behavior of our detectors.

Moreover, if the cost of a task can be underesti-
mated, it is also possible to overestimate it. Conse-
quently, we can consider to dynamically study the sys-
tem in order to detect these costs under-run and to
reassign resources for faulty tasks.

Besides, we have considered neither the issues re-
lated to precedence constraints nor the ones deriving
from the share of resources among the various tasks of
the system. In the latter case, it would be advisable to
study the influence of tolerance on the determination
of the blocking time (bi).

Another main line of our research will consist in
studying the faults detection and tolerance in the case
of aperiodic tasks.

References

[1] N. C. Audsley, A. Burns, M. F. Richardson, and A. J.
Wellings. Hard Real-Time Scheduling: The Deadline
Monotonic Approach. In Proceedings 8th IEEE Work-
shop on Real-Time Operating Systems and Software,
Atalanta, 1991.

[2] E. Bini, G. C. Buttazzo, and G. M. Buttazzo. Rate
monotonic analysis: The hyperbolic bound. IEEE
TRANSACTIONS ON COMPUTERS, 52(07):933–
942, July 2003.

[3] G. Bollella, B. Delsart, R. Guider, C. Lizzi, and
F. Parain. Mackinac: Making hotspot(tm) real-
time. In Eighth IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing
(ISORC’05), pages 45–54, 2005.

[4] G. Bollella and J. Gosling. The Real-Time Specifica-
tion for Java, volume 33. Addison-Wesley Publishing,
2000.

[5] G. C. Buttazzo and J. Stankovic. Red: A robust ear-
liest deadline scheduling algorithm. In Proceedings of
Third International Workshop on Responsive Comput-
ing Systems, 1993.

[6] A. Corsaro and D. C. Schmidt. The design and per-
formance of the jrate real-time java implementation.
In On the Move to Meaningful Internet Systems, 2002
- DOA/CoopIS/ODBASE 2002 Confederated Interna-
tional Conferences DOA, CoopIS and ODBASE 2002,
pages 900–921, London, UK, 2002. Springer-Verlag.

[7] A. Corsaro and D. C. Schmidt. Evaluating real-time
java features and performance for real-time embed-
ded systems. In RTAS ’02: Proceedings of the Eighth

IEEE Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS’02), page 90, Washington,
DC, USA, 2002. IEEE Computer Society.

[8] C. A. Francu. Real-time scheduling for java. Mas-
ter’s thesis, MIT Dept. of Electrical Engineering and
Computer Science, 2002.

[9] G. Koren and D. Shasha. Rt-0138 - d-over : an optimal
on-line scheduling algorithm for overloaded real-time
systems. Technical report, INRIA, february 1992.

[10] J. Lehoczky. Fixed priority scheduling of periodic task
sets with arbitrary deadline. In 11th IEEE Real-Time
System Symposium, pages 201–209, December 1990.

[11] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard real time environment.
Journal of the Association for Computing Machinery,
20(1):46–61, January 1973.

[12] C. D. Locke. Best-effort decision-making for real-time
scheduling. PhD thesis, Computer Science Depart-
ment, Carnegie Mellon University, Pittsburgh, PA,
May 1986.

[13] Sun microsystems. The Real-Time Java Platform, A
Technical White Paper, June 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

