Damien Masson
email: damien.masson@univ-mlv.fr

Serge Midonnet
email: serge.midonnet@univ-mlv.fr

Fault Tolerance with Real-Time Java

After having drawn up a state of the art on the theoretical feasibility of a system of periodic tasks scheduled by a preemptive algorithm at fixed priorities, we show in this article that temporal faults can occur all the same within a theoretically feasible system, that these faults can lead to a failure of the system and that we can use the data calculated during control of admission to install detectors of faults and to define a factor of tolerance. We show then the results obtained on a system of periodic tasks coded with Java Real-Time and carried out with the virtual machine jRate. These results show that the installation of the detectors and the tolerance to the faults makes an improvement of the behavior of the system in the presence of faults.

Introduction

Real-Time systems occupy an increasingly significant place in industry and are present in an increasing number of fields. Today, because of temporal constraints, real-time programmers have to use low-level programming languages like the assembler or the language C. They cannot benefit from the advantages of the Java language: a high level of abstraction (oriented object approach) and the independence from the execution platforms (portability). This led in 2001 to the Real-Time Specification for Java (RTSJ) [START_REF] Bollella | The Real-Time Specification for Java[END_REF]. This specification describes a set of classes and interfaces and defines the constraints imposed for real-time virtual machines (memory management, scheduling algorithms and synchronisation mechanisms). The work on this specification is still in progress, as attested by the publication in June 2005 of its version 1.0.1. There are also many RTSJ virtual machines. Some are commercialized as Jamaïca VM from AICAS society. Some others exist for research as RI which stand for reference implementation. The latter was made to prove the feasibility of real-time Java adventure. Eventually jRate [START_REF] Corsaro | Evaluating real-time java features and performance for real-time embedded systems[END_REF][START_REF] Corsaro | The design and performance of the jrate real-time java implementation[END_REF], an open source project based upon an extension of the GNU GCJ compiler or flex [START_REF] Francu | Real-time scheduling for java[END_REF] developed in MIT. Recently, Sun Microsystems themselves announced their own implementation of the specification called project Mackinac [START_REF]The Real-Time Java Platform[END_REF][START_REF] Bollella | Mackinac: Making hotspot(tm) realtime[END_REF].

If this specification offers to programmers methods to compute an admission control for real-time periodic tasks, the tested machines do not offer a valid implementation. We can easily show a non feasible set of tasks for which RI returns feasible, and we can see in the file PriorityScheduler.java that feasibility methods are not yet implemented in jRate.

So, to begin this work, we have drawn up a state of the art on the feasibility analysis issues for a fixed priority scheduled periodic task system. This study leads us to write the deficient methods of RI and missing ones in jRate. However, though these methods give us a theoretical feasibility of the task system, in practice faults can occur for many reasons. To take into account these faults, an approach usually met in the literature is to install overload detection and treatment mechanisms [START_REF] Locke | Best-effort decision-making for real-time scheduling[END_REF][START_REF] Koren | Rt-0138 -d-over : an optimal on-line scheduling algorithm for overloaded real-time systems[END_REF][START_REF] Buttazzo | Red: A robust earliest deadline scheduling algorithm[END_REF]. Our approach, in the other hand, consisted on using an admission control with fault detection and treatments mechanisms, in order to avoid any overload.

We start by presenting the admission control algorithm in Section 2. In Section 3 we define the temporal faults and we explain how we can detect them by overloading methods of the Real-time Specification for Java (RTSJ). Section 4 presents the various treatments of the faults we have established. We explain which mechanisms of measurement we 1-4244-0054-6/06/$20.00 ©2006 IEEE set up in Section 5 and have their results in Section 6. Finally we present in conclusion the prospects for work offered by these results.

Control of admission

The theory of scheduling applied to real-time systems have been largely studied over the past twenty years and many results were published [START_REF] Liu | Scheduling algorithms for multiprogramming in a hard real time environment[END_REF][START_REF] Lehoczky | Fixed priority scheduling of periodic task sets with arbitrary deadline[END_REF][START_REF] Audsley | Hard Real-Time Scheduling: The Deadline Monotonic Approach[END_REF][START_REF] Bini | Rate monotonic analysis: The hyperbolic bound[END_REF]. We limited our study to a fixed priority pre-emptive scheduling algorithm because all the RTSJ implementations have to offer it at least. A task, denoted by τ i has a cost C i , a relative deadline D i , a period T i and a priority P i .

In this section, we present the results described by Liu and Layland in [START_REF] Liu | Scheduling algorithms for multiprogramming in a hard real time environment[END_REF] and generalised by Lehoczky in [START_REF] Lehoczky | Fixed priority scheduling of periodic task sets with arbitrary deadline[END_REF] to the tasks with the deadline higher than the period.

Load test

The system load, denoted by U , can be calculated by:

U = N i=1 C i T i (1)
There are two possibilities:

• if U > 1, the system is not feasible,

• else the load condition is not enough to conclude.

Worst case response times computation

P i D i T i C i τ 1 20 6 6 3 τ 2 15 2 4 2

Table 1. System task data

The response time for a task job is the time interval between its activation and its termination. The worst case response time for a task is the response time of its longest job in the worst situation. In the particular situation where D i < T i , the worst situation is reached when all the tasks are activated simultaneously. As shown in table 1 and figure 1, this is not true in the general case. Consequently, the calculation of these worst case response times in the general case requires a thorough study.

Figure 2. Worst case response time computation of a task in a fixed priority preemptive system

Many works were carried out on the calculation of these response times. They led to the algorithm shown on Figure 2.

The algorithm is based on the following observations: a job activation can only be delayed by a job of a higher priority task or by the previous jobs of the same task. Furthermore a job can only be preempted by a higher priority task job. A recurrence formula enables us to compute the response time of each task job from the response time of the previous job. We just have to iterate this computation over all the jobs until we find a job with a response time smaller than its period. In that case, there is no influence of the job on the following jobs: the worst case response time is then the maximum response time computed during the iterations.

Implementation

We offer to developers a new package called javax.realtime.extended. This package contains the class RealtimeThreadExtended which extends RealtimeThread.

The methods concerned by the job control are addToFeasibility() and removeFromFeasibility() and are overloaded to delegate the work to one of our classes called FeasibilityAnalysis. This class implements the algorithm of Figure 2.

Fault detection

A system failure occurs when one (or many) task has a job which missed its deadline (D i). If we always perform an admission control before starting a task system, it should never have any system failure. However, algorithms shown up on the previous section lead on the hypothesis of the exactitude and the respect of tasks parameters. In particular, the task jobs have always to respect their costs (C i). Since this cost is often obtained by a statistical work, it is not reliable. So it is possible a task job takes a little bit more than its cost, either because it was underestimated, or because of an external event with the system. This is called a fault. A fault can lead to the failure of the faulty task or the failure of a task with a smaller priority.

The detection of a cost overrun is a difficult problem, because it implies being able to know at any time how much CPU resource a job has already consumed. However, the worst case response time computation carried out during the admission control gives us for each task job a date, depending on its activation, before which it has to be finished.

A worst case response time overrun implies a cost overrun.

All the critical instants to watch depend on the jobs activations. This is why a detector can be a periodic task, with a period equal to the task period and with an offset equal to the task worst case response time. This periodic approach enables us to avoid the creation of an instance of a detector for each job. This decreases the cost overrun induced in the system by our detectors since there is only need for one real-time task for each thread.

Implementation

In RealtimeThreadExtended, we overload the method start(). Our method starts a periodic detector with an offset equal to the worst case response time just after having called the method start() of the super-class. The detector is an instance of PeriodicTimer which checks the states of a boolean value and a job counter. This job counter was added to our real-time thread class. If the job is not finished when the timer is called, a fault treatment can be started. The states of the boolean value and the counter are up-to-date in overloading the method waitForNextPeriod() which is called at the end of each periodic job and which is blocking until the next job activation. Our method becomes: public boolean waitForNextPeriod(){ computeAfterPeriodic(); boolean returnValue = super.waitForNextPeriod(); computeBeforePeriodic(); return returnValue; } With this approach, we are able to add actions just before and just after each job.

It implies that the method waitForNextPeriod() has to be called before the first job, which is often the case in order to minimise the influence of the method start() call.

Treatments

We are now able to detect some kinds of faults in a real-time system. How can we treat these faults ? First, we have to look at the consequences of a worst case response time overrun:

• the system is still feasible, there are no more consequences than a little offset on the worst case response times of the tasks with a lower priority,

• the faulty task misses its deadline and probably provokes the failure of tasks with lower priority,

• the faulty task ends before its deadline but the offset leads to failure for some tasks with lower priority.

Our goal is to prevent that the faulty tasks with a strong priority cause the failure of non-faulty tasks with a lower priority. To do so, we considered three treatments presented in the following subsections. We compare these treatments and we measure the improvement of the system behavior in a practical way on an example of three tasks in Section 6.

Instantaneous stop of the faulty tasks

The first idea of treatment consists in simply stopping the faulty tasks. This approach is very pessimistic, because making a fault can have no consequence on the system feasibility.

Let us note in addition that, in Java, it is not possible to stop a thread brutally. The theoretical solution would consist in lowering the priority of the task so that this one can be preempted, but this possibility is not yet implemented with jRate. For the needs of our analysis, we thus added a boolean field in the class RealtimeThreadExtended which is checked after each instruction of the loop constituting the periodic treatment. If this boolean gets true, then the loop is broken and the thread is stopped. That causes an annoying side effect: in the method run(), the thread must check the state of the boolean, and thus calls the method RealtimeThread.currentRealtimeThread(), the cost of which is not bounded. Consequently, the task will regularly make small cost overruns, about a few milliseconds. These cost overruns remaining lower than the precision of our detectors, that does not obstruct our analysis.

Stop after an allowance factor granted to the task

In order to have a less pessimistic approach, and to make it possible for the faulty tasks to continue as long as they can without obstructing the lower priority tasks, we have to calculate what we will call the allowance of the system, i.e. the additional cost we can grant to each task while keeping a theoretically feasible system.

To compute this tolerance, we carry out a binary search of the maximum value which can be added to the costs of all the tasks so that the system remains feasible (within the meaning of the analysis described in the previous section).

During this computation, we also compute new worst case response times which take into account the allowance. The tasks will now be stopped after these new worst case response times.

Stop after an allowance factor granted to the system

The treatment previously described considers that all the tasks have the same probabilities to make faults. The free time in the system is equitably distributed between all the tasks.

In the last treatment we implemented we consider that the higher the task priority is, the more it has the right to make a fault: this time, a task is stopped after a worst case response time overrun equal to the maximum free time available in the system. This allowance is obtained by seeking the maximum value which can be added to each task cost.

If the first faulty task finishes before having consumed all its allowance, the remainder is allocated to the other faulty tasks. A task allowance is obtained looking for the maximum cost overrun this task can do and substracting the more priority tasks overrun.

Measurements

In order to have measurements, we developed various tools. The first one enables us to parse a file which describes the tasks in the system. It builds and runs the tasks automatically. During the system execution, many data are collected. A second tool provides a chart of these data in the form of a time series chart.

The data collected, which are the key dates in the system life, are:

• the beginning of a job (the moment when the method computeBeforePeriodic() is called),

• the end of a job (the moment when the method computeAfterPeriodic() is called),

• the release of a detector.

In order to have a maximum precision, we use for these measurements an Intel processors characteristic: these processors have an instruction RDTSC (ReaD Time-Stamp Counter) providing the number of cycles carried out since the start-up of the system.

We thus wrote a library in Java native interface (JNI) allowing us to exploit this instruction, in order to obtain durations with a nanosecond precision.

We write these times in StringBuffer fields in order not to slow down the system with in-out operations. At the end of the execution of the system, these fields are written in a log file which can then be interpreted by our tool of time series chart.

Figures presented in Section 6 were obtained thanks to these tools, and thus are experimental results obtained on true Real-time Java systems of tasks, and not the awaited theoretical behaviors.

Results

We present in this section the results obtained on the system of tasks described in table 2. A cost overrun was voluntarily added for the priority task, which represents the most unfavourable case. We will compare the time series charts obtained in the following cases:

• no detection mechanism,

• active detectors, no fault treatment,

• active detectors, immediate stop of faulty tasks,

• active detectors, allowance granted equitably to all tasks,

• active detectors, allowance granted totally for the first faulty task.

P i T i D i C i W CRT i A i τ 1

Table 2. Tested tasks system

Figures from 3 to 7 are obtained with the tool that we developed, and present the behavior of the system during the fifth job of task τ 1 , which coincides with the activation of a job of τ 2 and τ 3 .

On these figures ↑ represents the periods and ↓ the deadlines. The materializes the detectors, and > indicates the worst case response times.

For our tests, we used the RTSJ jRate compiler because it is the only one among the tested virtual machines (RI, JamaïcaVM, ...) to have a good implementation of some essential aspects for our work, such as the signature of the method RealtimeThread.waitForNextPeriod(). We used a 2 GHz processor INTEL Pentium 4 machine with 500 MB of memory and a real-time kernel Timesys 2.4.18timesys-4.0.243.

Execution without detection

Figure 3. Execution without detection

Figure 3 shows us that task τ 1 makes a temporal fault at moment 1020m. It ends before its deadline, just as task τ 2 but task τ 3 misses its deadline. It is the case we wish to avoid. The execution presented in Figure 4 is similar to the one presented on Figure 3. One can notice that the detectors have a small delay. This delay cannot exceed ten milliseconds. This is due to the implementation of the PeriodicTimer in jRate: if the value given for the first release is not a multiple of ten, the precision is not good. We thus voluntarily round the release values of the detectors. This is why the detector of task τ 1 has a 30 -29 = 1 millisecond delay, that of τ 2 60 -58 = 2 milliseconds and that of τ 3 90 -87 = 3 milliseconds, which can be checked on the diagram.

Execution with detection, without treatments

The overrun generated in the system by the presence of the detection mechnism is that of a pre-emption, in addition to an unbounded value which corresponds to the boolean testing/test, as explained in Section 4.1. One can estimate this overrun to be inferior to the underlying accuracy of the real-time machine, hence to be negligible. Yet, one has to bear in mind that the more tasks in the system, the more sensors, hence, the higher the influence of this overrun on its execution. In the execution presented on Figure 5, the tasks are stopped as soon as they make faults. One can notice that the only task to miss its deadline is task τ 1 . However after the end of the execution of task τ 3 , the processor is free, and there remains time before its expiry. We can then think that task τ 1 could have time to finish, or at least to be carried out at greater length without causing the failure of τ 2 and/or τ 3 . Task worst case response time with cost overruns

Instantaneous stop of the faulty tasks

Allowance granted equitably to all tasks

τ 1 W CRT 1 + A 1 = W CRT 1 + 11 τ 2 W CRT 2 + A 1 + A 2 = W CRT 2 + 22 τ 2 W CRT 3 + A 1 + A 2 + A 3 = W CRT 3 + 33

Table 3. Worst case response time with cost overruns

Table 3 gives these new worst case response times. We note that only task τ 1 is stopped, and that it had more time to be carried out than in the previous case. However, we also notice that there remains unused CPU time, because tasks τ 2 and τ 3 did not consume their allowance, since they did not make cost overruns. Figure 7 corresponds to the last treatment considered: all the system time available in the worst execution case, that is to say thirty three milliseconds, is granted to the first faulty task. If this task does not consume all this allowance, and if another task makes a fault, it will benefit of what remains. Task τ 1 is thus stopped thirty-three milliseconds after its worst case response time and as neither τ 2 nor τ 3 make fault, they both finish just before their deadlines.

Allowance granted totally to the first faulty task

Conclusions and future works

The study of the theoretical results of the analysis of feasibility of a system enabled us to provide a correct establishment of the methods specified by the standard RTSJ for control of admission, which we could concretely check on the machine jRate.

We saw that theoretical feasibility is based on data such as the cost of the tasks which can possibly be exceeded during a real execution because of external factors, causing faults within the tasks system.

Thanks to the study of the worst case response times, we could define a type of fault whose detection does not require a complete monitoring of the CPU usage. We deduced a mechanism of detection which we coded and tested.

Finally we showed that the theoretical study made it possible to obtain a factor of allowance which maximizes the execution time of a task before its fault causes a failure of the system. However, our study considers a rather static system, in which all the tasks are known before launching, making possible to set up expensive algorithms in time to compute the response times and the allowance of the system.

Our objective in the continuation of this work will be to reach the same results in a more dynamic system where tasks can be added or removed "in real-time" by adapting the behavior of our detectors.

Moreover, if the cost of a task can be underestimated, it is also possible to overestimate it. Consequently, we can consider to dynamically study the system in order to detect these costs under-run and to reassign resources for faulty tasks.

Besides, we have considered neither the issues related to precedence constraints nor the ones deriving from the share of resources among the various tasks of the system. In the latter case, it would be advisable to study the influence of tolerance on the determination of the blocking time (b i).

Another main line of our research will consist in studying the faults detection and tolerance in the case of aperiodic tasks.

Figure 1 .

 1 Figure 1. Response times

Figure 4 .

 4 Figure 4. Execution with detection, without treatments

Figure 5 .

 5 Figure 5. Execution without allowance

Figure 6 .Figure 6

 66 Figure 6. Allowance granted equitably to all tasks

Figure 7 .

 7 Figure 7. Allowance granted totally to the first faulty task

[Return the worst case response time in nanosecondes] Function WCResponseTime(S : Schedulable) : long integer Rq : long integer Rmax : long integer ← 0 q : integer ← 0 Rtmp : long integer While (true) do Rq

← 0 Rtmp ← S.cost * (q + 1) While (Rq = Rtmp) do HP(S) :

Set of Schedulables with higher or equal priority than S pri- ority

	l	Rq S j .period	m	* Sj .cost
	done			
	done			
	Rq ← Rtmp			
	If (Rmax < Rq -q * S.period) then
	Rmax ← Rq -q * S.period		
	end If			
	If (Rq ≤ (q + 1) * S.period) then		
	break;			
	end If			
	q ← q + 1			

Rq ← Rtmp Rtmp ← S.cost * (q + 1) For all Sj in HP(S) do Rtmp ← Rtmp +

done return Rmax End