
HAL Id: hal-00620353
https://hal.science/hal-00620353

Submitted on 30 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conserved Interval Distance Computation Between
Non-trivial Genomes
Guillaume Blin, Roméo Rizzi

To cite this version:
Guillaume Blin, Roméo Rizzi. Conserved Interval Distance Computation Between Non-trivial
Genomes. 11th Annual International Conference Computing and Combinatorics (COCOON’05), Aug
2005, Kunming, China, China. pp.22-31. �hal-00620353�

https://hal.science/hal-00620353
https://hal.archives-ouvertes.fr


Conserved Interval Distance Computation

between Non-trivial Genomes⋆

Guillaume Blin1 and Romeo Rizzi2
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Abstract. Recently, several studies taking into account the ability for a
gene to be absent or to have some copies in genomes have been proposed,
as the examplar distance [11, 6] or the gene matching computation be-
tween two genomes [10, 3]. In this paper, we study the time complexity
of the conserved interval distance computation considering duplicated
genes using both those two strategies.
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1 Introduction

In comparative genomics, gene order study in a set of organisms has been inten-
sively led essentially in phylogenetic research field [5, 2, 4]. Most of the methods
associated to gene order study are based on a distance computation. This dis-
tance has to reflect the number of genetic operations needed to transform a
source genome into a target genome. For this purpose, a set of distances and
associated methods have been developed in the past decade. Among others, we
can mention three intensively studied distances: edit [9, 12], breakpoint [3], and
conserved interval [1] distances.

From an algorithmic point, distances can roughly be defined as follows: given
a set F of gene families, two genomes G and H , represented as sequences of
signed elements (genes) from F , and a set of evolutionary operations that oper-
ate on segments of genes (like reversals, transpositions, insertions, duplications,
deletions for example), the distance between G and H is the minimum number
of operations needed to transform G into H .

Until recently, the assumption that in a genome there is no copy of a gene
was a requirement of most of the methods associated to gene order study. This
restriction reduces the problem to the comparison of signed permutations [8]. It
is known that this assumption is very restrictive and is only justified in small
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virus genomes, therefore one needs to consider genomes containing duplicated
genes.

In [11], Sankoff has proposed a method to select, from the set of copies of
a gene, the common ancestor gene such that the distance between the reduced
genomes is minimized. In [6], Bryant proved that the corresponding problem, so
called exemplar string, was NP-complete for two distances: the signed reversals
and the breakpoint distances. Marron et al. have proposed in [12] methods re-
lying on a matching between genes of two genomes. Provided with a matching
between genes of the two genomes, one can, by a rewriting of the genomes ac-
cording to the matching, create genomes without duplicated genes and solve the
reduced problem.

In this paper, we investigate the complexity of both the use of exemplar
strategy and of matchings to compute the conserved interval distance between
genomes containing duplicated genes. First we prove that the use of both strate-
gies unfortunately induces NP-completeness. To overstep NP-hardness of prob-
lems, many techniques have been developed: heuristic, parameterized complexity
and approximation algorithm. For biological problems those alternative tech-
niques have been intensively used, since in most cases specific properties of the
problem are not taken into account in the NP-hardness proof.

This paper is organized as follows. After presenting some preliminaries in
Section 2, we show in Section 3 that both the use of exemplar strategy and of
matchings to compute the conserved interval distance between genomes contain-
ing duplicated genes induces NP-completeness. Then in Section 4, we present
a heuristic approach based on the Longest Common Substring which have been
implemented and tested over a set of 20 bacteria.

2 Preliminaries

Genomes, gene families and gene. Following terminology introduced in [11], a
genome G is a sequence of elements of an alphabet F (referred as the set of
gene families) such that each element is provided with a sign (+ or −). Each
occurrence of a gene family from F in G is called a gene. Given a genome
G = g1g2 . . . gn, we say that gene gi precedes gene gi+1. For two genomes G and
H and a gene family f , the number of occurrences of f in G and H is called the
cardinality of family f . A gene family f is said to be trivial if f has cardinality
exactly 1 or 2. Otherwise, f is said to be non-trivial. A gene belonging to a trivial
(resp. non-trivial) family is said to be trivial (resp. non-trivial). A segment (i.e.
a substring) of G that contains only non-trivial genes is called a non-trivial
segment. We say that two genomes G and H are balanced if, for any gene family
f , there are as many occurrences of f in G as in H .

Conserved interval, conserved interval distance. Following terminology intro-
duced in [1], given a set of n genomes G and two genes a, b ∈ F , an interval
[a, b] is a conserved interval of G if (1) either a precedes b, or -b precedes -a in
each genome of G and (2) the set of unsigned genes (i.e. not considering signs)



appearing between genes a and b is the same for all genomes of G. For example,
given two genomes G1 = a b c g e f -d h and G2 = a g -c -b e -f -d h, there are
seven conserved intervals between G1 and G2: [a, -d], [a, e], [a, h], [b, c], [e, -d],
[e, h] and [-d, h].

Given two set of genomes G and H, the conserved interval distance between
G and H is defined by d(G,H) = NG + NH − 2NG

S

H where NG (resp. NH

and NG
S

H) is the number of conserved intervals in G (resp. H and G
⋃
H). For

example, let G = {G1, G2} and H = {H1, H2} be two sets of genomes where G1

and G2 are as above and H1 = a e -f b g c -d h and H2 = a f -c -g b -e -d h.
We obtain d(G,H) = 7 + 3 − 4 = 6. In the rest of the paper, for readability, we
denote the conserved interval distance between two singleton sets d({G}, {H})
by d(G, H).

Gene matching. Let G = g1g2 . . . gn and H = h1h2 . . . hm be two genomes on
F . A gene matching M between G and H is a maximal matching between genes
of G and H such that, for every pair (gi, hj) ∈ M, gi and hj belong to the
same family. By maximal matching, we mean that for any gene family f , it is
forbidden to have at the same time an occurrence of f in G and one in H that
do not belong to M. It follows from the maximality condition of matchings that
in any matching M between balanced genomes G and H , every gene of G is
matched to a gene of H and conversely. Given a matching M and a segment
s = s1s2 . . . sm of G if, for all 1 ≤ i ≤ m, (si, ti) ∈ M such that: (1) si = ti
and t = t1t2 . . . tm is a segment of H or (2) si = −ti and t = tmtm−1 . . . t1 is a
segment of H then s is perfectly matched in M; not-perfectly matched otherwise.

Minimum Conserved Interval Matching. Given two genomes G, H and a gene
matching M, we denote by d(G, H,M) the conserved interval distance between
G and H with respect to M, and by d(G, H) the conserved interval distance
between G and H , defined as the minimum d(G, H,M) among all matchings
M. The matching M such that d(G, H,M) = d(G, H) is a minimum conserved
interval matching.

3 Hardness results

In this section, we first prove that, even if there is no non-trivial segment contain-
ing more than one gene, Exemplar Conserved Interval Distance (ECID)
problem (formalized hereafter) is NP-complete. Then, we prove that, even with
just one non-trivial gene family, the problem of finding a Minimum Conserved

Interval Matching (MCIM) is NP-complete. This last result is based on a
polynomial time reduction which is inspired from the one presented in [3] which
proves that a connected problem, Minimum Breakpoint Matching, is NP-
complete.

Theorem 1. Exemplar Conserved Interval Distance problem is NP-
complete even when all non trivial segments are composed of only one duplicated
gene.



To prove the correctness of Theorem 1, we provide a polynomial time reduction
from the NP-complete problem Minimum Set Cover [7]. Following terminol-
ogy introduced in [7], we recall that given a collection C of subsets of a finite
set E, a cover for E is a subset C′ ⊆ C such that every element of E belongs
to at least one member of C′. For the sake of clarity, we now state formally the
two decision problems we consider: ECID and Minimum Set Cover. Given
two genomes G and H , and a positive integer k, ECID problem asks whether it
is possible to find two exemplar genomes G′ and H ′ of resp. G and H such that
d(G′, H ′) ≤ k. Given a collection C of subsets of a finite set E and a positive
integer k′, Minimum Set Cover problem asks whether C contains a cover C′

for E s.t. |C′| ≤ k′.
Hereafter, we consider, w.l.o.g., that in each Ci ∈ C, any ej ∈ Ci is also in

Cj with 1 ≤ i, j ≤ m and i 6= j. In fact, by definition, if an element is covered
by only one subset then this subset must be part of C′. In the following, we
will prove that, even if G does not contain more than one occurrence of each
duplicated gene, ECID problem is NP-complete. Given an integer k′, two ex-
emplar genomes G′ and H ′, one can compute polynomially d(G′, H ′) and check
if d(G′, H ′) ≤ k′ (see [1]). Therefore, ECID problem is in NP. The remainder of
the section is devoted to proving that it is also NP-hard. For this purpose, we re-
duce Minimum Set Cover problem to ECID problem. Let C = {C1, C2 . . . Cm}
be a collection of m subsets of a finite set E = {e1, e2 . . . en} of n elements.

In the rest of this section, we consider that F ⊆ N but any genome is built
with elements of F provided with signs (i.e. R). In other words, genes 3 and −3
are of the same family. Let us detail the construction of the two genomes G and
H . Let y = |E| + 2 if |E| is even, y = |E| + 1 otherwise. Let zi = (y + 2).(i − 1)
for any 1 ≤ i ≤ m + 1. From (C, E), we construct two genomes G and H as
described below (an illustration is given in Figure 1):

G1 = γ|E|+1 γ|E|+2 . . . γ|E|+m−1α1 β1 . . . αm βm γ1 γ|E|+m γ2 γ|E|+m+1 . . . γ2|E|+m−1 γ|E|

H1 = α1 θ1 γ|E|+1 α2 θ2 γ|E|+2 . . . γ|E|+m−1 αm θm γ|E|+m γ|E|+m+1 . . . γ2|E|+m−1

We now detail the substrings that compose G1 and H1:

– for 1 ≤ i ≤ m, we construct the sequences of genes αi = zi and βi =
zi+1 zi+2 . . . zi+y+1;

– for 1 ≤ i ≤ 2|E| + m − 1, we construct a gene γi = zm+1 + i;
– for 1 ≤ i ≤ m, we construct a gene θi = zi+2 zi+4 . . . zi+y zi+1 zi+3 . . . zi+

y-1 zi+y+1.

Note that G1 and H1 are two exemplar genomes. Genome G is, thus, a copy of G1.
We now turn to transform H1 into a non-exemplar genome H : for 1 ≤ i ≤ m and
1 ≤ j ≤ |E|, if ej ∈ Ci then gene γj is inserted between the jth and the j+1th

genes of θi. We denote by ECID-construction any construction of this type.
An illustration of an ECID-construction is given in Figure 1. Intuitively, θi is a
shuffle of βi with some inserted γjs (i.e. no conserved adjacencies) for 1 ≤ i ≤ m.
Clearly, our construction can be carried out in polynomial time. Moreover, the
result of such a construction is indeed an instance of ECID problem.



Fig. 1. Example of an ECID-construction where E = {e1, e2, e3} and y = 4.

We now turn to proving that our construction is a polynomial time reduc-
tion from Minimum Set Cover to ECID problem where G is an exemplar
genome whereas H is not. Let first note that, by construction, there are only |E|
duplicated gene families in G and H , namely the γis for 1 ≤ i ≤ |E|.

Lemma 1. The only conserved intervals that can exist between G and any ex-
emplar genome H ′ of H are intervals [αi, zi + y + 1] such that all the γjs of
[αi, zi + y + 1] in H ′ have been deleted, with 1 ≤ i ≤ m and 1 ≤ j ≤ |E|.

Lemma 2. Let I = (C, E, k′) be an instance of the problem Minimum Set

Cover with a collection C = {C1, C2 . . . Cm} of m subsets of a finite set E =
{e1, e2 . . . en}, and I ′ = (G, H, k) an instance of ECID problem obtained by
an ECID-construction from I. C contains a cover C′ of E of size less than
or equal to k′ iff d(G, H ′) ≤ k where H ′ is an exemplar genome of H and
k = |G|.|G − 1| − 2(m − k′).

Proof. (⇒) Suppose C contains a cover C′ of E of size less than or equal to
k′. Let f : ei → {C1, C2, . . . Cm} be the function which, given an element of E,
returns the index of the subset covering this element in C′. Let I ′ = (G, H, k) be
the instance obtained from an ECID-construction of I. We look for an exemplar
genome H ′ of H such that d(G, H ′) ≤ k. We define H ′ as follows: for each
ej ∈ E, delete γj of θp for all p ∈ {1, 2, .., m}/{f(ej)}.

By construction, E denotes the set of duplicated gene families and by con-
struction the only duplicated genes in H are the γis. Therefore, H ′ is exemplar
since one deletes all occurrences but one of γi with 1 ≤ i ≤ |E|. Remains us
to prove that d(G, H ′) ≤ k. By definition, for each Cj 6∈ C′ and each ei ∈ Cj ,
f(ei) = p with p 6= j and γi of θj has been deleted. Since all the γis of θj in H ′

have been deleted, there is a conserved interval [αj , zj +y+1] between G and H ′.
Globally, there are at least m−k′ such subsets. Therefore, there are at least m−k′

conserved intervals between G and H ′. Thus, d(G, H ′) ≤ |G|.|G−1|−2(m−k′),

since the number of conserved intervals between a genome G and itself is |G|.|G−1|
2

and |G| = |H ′|.
(⇐) Suppose we have an exemplar genome H ′ of H such that d(G, H ′) ≤ k.

Assume, w.l.o.g., that d(G, H ′) = d′ ≤ k. We define C′ as follows: in H ′, if
γj ∈ θp then f(ej) = p and Cp ∈ C′. We now turn to proving that C′ defines



a cover of E of size at most k′. Since H ′ is an exemplar genome of H , there is
exactly one occurrence of each gene family in H ′. Therefore, C′ contains a set
of subsets that covers E. Remains us to prove that |C′| ≤ k′.

By definition, since d′ ≤ |G|.|G − 1| − 2(m − k′), there are at least m − k′

conserved intervals between G and H ′. By Lemma 1, the only conserved intervals
that can exist between G and any exemplar genome H ′ of H are intervals [αi, zi+
y + 1] such that all the γjs of [αi, zi + y + 1] in H ′ have been deleted. Therefore,
by construction, there are at least m − k′ such intervals [αi, zi + y + 1] in H ′.
Correctness of Theorem 1 follows. ⊓⊔

Given Theorem 1, one can ask if instead of deleting the duplicated genes,
one can compute the interval distance taking into account duplicated genes [3,
12]. For this purpose, we propose the MCIM problem: finding a minimum con-
served interval matching between two genomes. Unfortunately, as we will show
hereafter, this problem is also NP-complete.

Theorem 2. Minimum Conserved Interval Matching problem is NP-
complete.

To prove the correctness of Theorem 2, we provide a polynomial time reduction
from the NP-complete problem Minimum Bin Packing [7]. For the sake of
clarity, we now state formally the two decision problems we consider: MCIM

and Minimum Bin Packing. Given two genomes G and H , and an integer
k, MCIM problem asks whether it is possible to find a matching between G
and H such that d(G, H) ≤ k. Given a finite set U = {u1, u2, . . . , un}, a size
s(u) ∈ Z

+ for each u ∈ U and two positive integers k′ and C, Minimum Bin

Packing problem asks whether there is a partition of U into k′ disjoint sets
U1, U2, . . . , Uk′ such that

∑
(s(u)|u ∈ Ui) ≤ C for each Ui.

It is easily seen that MCIM is in NP since given an integer k and a set of
matchings between two genomes we can polynomially compute the number of
conserved intervals between G and H and thus check if the distance is less than
or equal to k (see [1]). The remainder of the section is devoted to proving that
MCIM is also NP-hard even when there is only one non trivial family in F ,
which implies Theorem 2. For this, we reduce Minimum Bin Packing problem
to MCIM problem. Let N = k′.C −

∑n

i=1 s(ui).
Let us first detail the construction of genomes G and H from a Minimum Bin

Packing instance (U, k′, C). The gene families areF = {α, β,x, A1, A2 . . . , An+N ,
B1, B2, . . . , Bk′+1}. On the whole, there are k′ + N + n + 4 families of genes,
and x is the unique non-trivial family. For 1 ≤ i ≤ n (resp. n + 1 ≤ i ≤ n + N ),
we denote by u

′
i a sequence of s(ui) consecutive genes x (resp. one gene x). For

1 ≤ j ≤ k′, U
′
j represents a sequence of C consecutive genes x. G and H are

defined as follows:
G = α u′

1 A1 u′
2 A2 . . . u′

n+N An+N B1 B2 . . . Bk′+1 β

H = α B1 U′
1 B2 U′

2 . . . Bk′ U′
k′ Bk′+1 A1 A2 . . . An+N β

An illustration of such a construction, that can obviously be achieved in poly-
nomial time, is given in Figure 2. To complete the construction of the instance



of MCIM, it remains to us to define k: k = |G|.(|G|−1)
2 + |H|.(|H|−1)

2 − 2q with

q = 1 +
∑n

i=1
s(ui).(s(ui)−1)

2
In the next three lemmas, that establish that MCIM is NP-complete, we

consider an instance (U, k′, C) of Minimum Bin Packing and the corresponding
instance (G, H, k) of MCIM according to the above construction.

Lemma 3. Given a matching M, a non trivial segment of size p perfectly

matched in M induces more conserved intervals ( i.e. p(p−1)
2 ) than a non-trivial

segment of size k not-perfectly matched.

Lemma 4. d(G, H) ≥ k and in any matching M between G and H, any con-
served interval I with respect to M is either [α, β] or I = [p, q] with S[p..q] being
a non trivial segment.

Lemma 5. There is a partition of U into k′ disjoint sets U1, U2, . . . , Uk′ such
that the sum of the sizes of the elements in each Ui is at most C if and only if
d(G, H) ≤ k.

Proof. (⇐) Suppose that d(G, H) ≤ k. By Lemma 4, we know that d(G, H) = k,
and any conserved interval I with respect to a minimum conserved interval
matching between G and H is either [α, β] or I = [p, q] with S[p..q] being a
non trivial segment. Moreover, if d(G, H) = k then the number of conserved

intervals should be maximal (i.e. 1+
∑n

i=1
s(ui).(s(ui)−1)

2 ). Therefore, by Lemma
3, any non-trivial segment u′

i, with 1 ≤ i ≤ n, in G should be matched with a
sequence of consecutive genes x in H . Precisely, for any 1 ≤ i ≤ n, there is a
given 1 ≤ j ≤ k′ such that the sequence u′

i is perfectly matched with a substring
of U ′

j as illustrated in Figure 2.

Fig. 2. Instance of MCIM associated to the Minimum Bin Packing instance where
k′ = 3, C = 8 and U = {u1, . . . , u6} with s(u1) = s(u5) = 5, s(u2) = s(u6) = 4,
s(u3) = 3 and s(u4) = 2 and the gene to gene matching corresponding to the following
partition of U : U1 = {u1, u3}, U2 = {u2, u6} and U3 = {u4, u5}

Therefore, such a matching induces a partition P of the set of sequences
{u′

1, u
′
2, . . . , u

′
n} into at most k′ disjoint sequences U ′

1, U
′
2, . . . , U

′
k′ . As, by con-

struction, |U ′
i | = C for 1 ≤ i ≤ k′, P corresponds to an answer to the corre-

sponding Minimum Bin Packing instance.
(⇒) Suppose we have a partition P of U into disjoint sets U1, U2, . . . , Uk′

each of cardinality at most C. We compute a gene matching M between G and



H as follows: (1) each trivial gene in G is matched with its corresponding gene
in H and (2) for 1 ≤ j ≤ k′, for each ui ∈ U , if ui ∈ Uj, then the sequence
of genes x of u′

i in G is perfectly matched with the first free (i.e. not already
matched) sequence of genes x of U ′

j in H .
Since M is built according to P , we claim that each non-trivial segment u′

i,
with 1 ≤ i ≤ n, is matched to a contiguous sequence of genes x in H . Thus, any

non-trivial segment u′
i, with 1 ≤ i ≤ n, in G induces s(ui).(s(ui)−1)

2 conserved

intervals. Therefore, M induces 1 +
∑n

i=1
s(ui).(s(ui)−1)

2 conserved intervals (see
proof of Lemma 4). This leads to d(G, H,M) ≤ k, and so to d(G, H) ≤ k.
Correctness of Theorem 2 follows. ⊓⊔

4 Using the L.C.Substring to approximate MCIM

In this section, we present a heuristic approach to solve MCIM problem that
performs well on real data. This approach uses the following intuition: long
segments of genes that match, up to a complete reversal, in two genomes are likely
to belong to a Minimum Conserved Interval Matching. Remark that given two
trivial genomes this intuition gives the optimal solution. Unfortunately, this is
not always the case when considering non trivial genomes. Even so, this approach
works very well on real genomes. In the rest of this section, we consider two
genomes G and H build with elements of F ⊆ N and provided with signs.

Our approach to solve MCIM problem is based on the following loop:

1. Identify a longest common segment s of genes between G and H (by common
segment, we mean a segment appearing, up to a complete reversal, both in
G and H);

2. Replace s in both genomes by an integer gc, further call compressed gene,
s.t. gc 6∈ F (this induces that gc is a trivial gene);

3. Mark gc as treated;
4. Store the number of genes of s in Ns[gc] and the set of genes of s in C[gc].

While a common segment of unmarked genes exists, the algorithm performs
the loop described above on the modified genomes. In the following, we will
refer to the modified versions of the genomes G and H as G′ and H ′. Once
the algorithm exits of the loop, any unmarked gene gu of G′ and H ′ is deleted
since, by definition, gu is not common (i.e. there are more genes gu in one of
the genomes). This first step of the algorithm leads to the computation of two
exemplar genomes G′ and H ′ of resp. G and H . Clearly, this step gives the gene to
gene matching of G and H in a compressed version: the corresponding matching
M is obtain by perfectly matching the segments of genes corresponding to each
compressed gene of G as illustrated in Figure 3.

In a second step, the algorithm computes the interval distance induced by

M. By Lemma 3, each compressed gene gc of G′ induces k(k−1)
2 conserved in-

tervals between G and H with k = Ns[gc]. Moreover, some conserved intervals
between G′ and H ′ may exist. Therefore, since G′ and H ′ are trivial genomes,
the algorithm computes the set of conserved intervals Sci between G′ and H ′ in



Fig. 3. The matching of the genes of G and H deduced from the exemplar genomes G′

and H ′.

polynomial time using the algorithm defined in [1]. Since G′ and H ′ are composed
of compressed genes, for each conserved interval [gc1, gc2] ∈ Sci, Ns[gc1].Ns[gc2]
conserved intervals between G and H are induced. Indeed, if [gc1, gc2] ∈ Sci

then a segment of genes gc1λgc2 appears in G′ and either a segment of genes
gc1λ

′gc2 or −gc2λ
′ − gc1 appears in H ′ with λ and λ′ being similar segments of

genes not considering genes order and sign. Therefore, considering M, for any
genes gi ∈ C[gc1] and gj ∈ C[gc2], [gi, gj] is a conserved interval between G and

H . This step returns d(G, H,M) = |G|.|G − 1| − 2(
∑

gc∈G′

Ns[gc].(Ns[gc]−1)
2 +∑

[gc1,gc2]∈Sci
Ns[gc1].Ns[gc2])

We implemented our approach using a suffix tree. Indeed, longest common
segments between G and H can be found in linear time by browsing a suffix tree
built on G, H and the reversed of H . To test our algorithm and get an estimate
of its performance in practice, we applied our heuristic approach to a set of 20
bacteria from NCBI.

Data and programs used and mentioned in this article can be found at
http://www.sciences.univ-nantes.fr/info/perso/permanents/blin/Cocoon05/

Interesting characteristics of this set are given on the web page. We im-
plemented the brute force algorithm which consists in computing all possible
matchings and we compared the obtained results. In average, the gap between
the optimal solution opt and the solution given by our algorithm is less than
0, 12% of opt. We noticed that more than 2

3 of the bacteria have duplicated
genes with, for most of them, duplicated families of cardinality 2. The effective-
ness of our algorithm relies on the fact that the number of duplicated genes are
not significant compared to the size of the genomes. Moreover, since our algo-
rithm gives the optimal solution for trivial genomes, duplicated genes have a
very little impact on the results.

5 Conclusion

The assumption of uniqueness of each gene in a genome has been a requirement
of traditional methods in comparative genomics but is only justified in small
virus genomes, since in general, there are more than one copy of a gene in
a genome. In this paper, we investigate the time complexity of the conserved
interval distance computation considering duplicated genes. We proved that both
use of exemplar and matching methods leads to NP-completeness. We are doing



thorough experimental testing which will determine how well our algorithm does
in practice under different regimes of duplication, but our preliminary results are
extremely encouraging.

Note that, since the Brute Force Algorithm is in O(kk.ln) with k being the
maximal cardinality of any non-trivial gene family, l being the number of non-
trivial families and n being the size of the genomes, MCIM problem is in FPT

for parameter k and l. In order to be usable in many reconstruction algorithms, it
would be of interest to determine if the problem is in FPT for other parameters.
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