
HAL Id: hal-00620350
https://hal.science/hal-00620350v1

Submitted on 30 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RTSJ Extensions: Event Manager and Feasibility
Analyzer

Damien Masson, Serge Midonnet

To cite this version:
Damien Masson, Serge Midonnet. RTSJ Extensions: Event Manager and Feasibility Analyzer. JTRES
2008, Sep 2008, Santa Clara, California, USA, United States. pp.10–18. �hal-00620350�

https://hal.science/hal-00620350v1
https://hal.archives-ouvertes.fr

RTSJ Extensions: Event Manager and Feasibility Analyzer

Damien Masson and Serge Midonnet
Université Paris-Est

Laboratoire d’informatique Gaspard-Monge
UMR 8049 IGM-LabInfo

77454 Marne-la-Vallée Cedex 2, France
{damien.masson, serge.midonnet}@univ-paris-est.fr

ABSTRACT
We present in this paper our experience on the implementa-
tion with RTSJ of advanced algorithms to handle aperiodic
traffic. We have adapted existing algorithms in order to take
into account some constraints brought about by the use of
Java language, and our aim which is to propose a portable
mechanism. To circumscribe some difficulties, we had to use
some programming ruses which could be better integrated
into the specification. From these experiences resulted a
set of modifications to the specification which we propose
to submit to the community in this paper, in addition to a
unified event manager framework.

1. INTRODUCTION
The aim of the Real-time Specification for Java is to de-

sign APIs and virtual machine specifications for the writing
of real-time applications in Java language. An important
aspect of real-time system programming is the feasibility
analysis to ensure the respect of temporal constraints.

The case of hard real-time systems composed of peri-
odic tasks was extensively elaborated for each of the many
scheduling policies. The RTSJ is well designed to write such
systems, with feasibility analysis methods integrated both
in Scheduler abstract class and Schedulable interface.

In more realistic systems composed of hard real-time pe-
riodic tasks and soft real-time aperiodic events, three ap-
proaches are possible to ensure that the interference of ape-
riodic tasks on periodic ones is bounded: 1) scheduling the
aperiodic tasks with a lower priority ; 2) bounding the min-
imal inter-arrival time of aperiodic events, and studying the
worst case scenario where they arrive at this worst rate ; 3)
delegating the service of non periodic events to a mechanism
which can be integrated into the analysis.

There are classes in the RTSJ to model handlers associ-
ated to asynchronous events. These handlers are schedulable
objects which can be set either with AperiodicParameters

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES’08, September 24-26, 2008, Santa Clara, California, USA
Copyright 2008 ACM 978-1-60558-337-2/08/9 ...$5.00.

or with SporadicParameters. The latter enables the event
to be integrated into the feasibility analysis process as a
stand alone task, as if it were arriving at its maximal rate.

For the third approach, the ProssessingGroupParame-

ters class is proposed. It enables several schedulable objects
to share release parameters, such as a mutual CPU time pe-
riodic budget. Unfortunately, it will not support any aperi-
odic task server policy nor any other advanced mechanism
to handle aperiodic events. Moreover, as pointed out in [1],
this is far too permissive and does not provide appropriate
schedulability analysis techniques.

Therefore, if the sporadic approach is not possible or too
pessimistic, the only remaining solution with RTSJ is to
schedule the task in the background.

In [7] we began to address the problem of event managing
with an API proposition to write task servers. We contin-
ued this work and developed an approximate slack stealer
compatible with the task servers model in [8].

In this paper, we propose to generalize our task server
model into an event manager model. We want to set up a
homogeneous event manager framework and propose modi-
fications to the specification in order to better include this
framework. What we propose exactly is this: to modify the
RTSJ feasibility analysis approach and to add methods to
the Scheduler class for monitoring tasks execution and in-
serting treatments before and after each schedulable object
execution.

The remainder of the paper will be structured as follow:
we shall discuss in Section 2 which programming level is suit-
able to write event handling mechanisms. We present a task
server framework and a slack stealer for RTSJ respectively
in Sections 3 and 4. We also discuss modifications on the
specification in order to better integrate them. Some results
are commented on in Section 5. We expose the limitations
of the feasibility analysis model of the RTSJ and propose
to extend it in Section 6. Finally we conclude in Section 7
where we recapitulate the extensions which we propose for
the RTSJ.

2. PROGRAMMING EVENT HANDLING
The aim of a scheduler is to schedule tasks. It is responsi-

ble for handling the execution of pending tasks by following

public class MyRealtimeThread extends RealtimeThread{
. . .
public stat ic boolean waitForNextPeriod (){

computeAfterPer iodic () ;
boolean returnValue =

RealtimeThread . waitForNextPeriod () ;
computeBeforePer iodic () ;
return returnValue ;

}
. . .

}

Figure 1: WaitForNextPeriod() modifications

a specific policy. Thus event handling should be programed
in the scheduler. Unfortunately, this is not always possible.

The specification contains an abstract class, Scheduler,
the aim of which is to model the system scheduler. The
scheduler class can be overridden and a multiplicity of im-
plementations can be proposed. However, if we take a look
at the implementations of this class in available RTJVMs,
we find that scheduler implementations are provided by na-
tive methods, which use the underlying operating system
scheduler. This means that the use of a scheduling policy
which is not provided by the system your virtual machine is
running on, is impossible. Besides, the RTSJ only imposes a
preemptive fixed priority scheduler to each RTSJ-compliant
JVM.

Thus if one wants to design a portable mechanism for
event handling or another advanced algorithm to deal with
specific tasks in a given system, one has to provide it in user
land, above the underlying fixed priority scheduler.

Several questions need to be answered here: how and when
can we control the system without being the scheduler ?
How can we ensure the respect of timing constraints with-
out using underlying system specific data ? In the following
subsections, we will look at solutions to these problems.

2.1 Carrying Out Computations
In order to control the system, the exact implementation

details of the scheduler must be known and the highest prior-
ity task must be used to avoid interference from other tasks.
Unfortunately this interferes with the business tasks. The
mechanism has to be integrated into the feasibility analysis
process, and must be periodic, or have known activation be-
havior, so that its interference with other tasks can be easily
confined.

The solution we propose consists of performing necessary
computations just before the beginning of the periodic tasks,
and just after their completion. When doing this, if the cost
value of these computations is known, then this value can be
added to the periodic tasks worst case execution cost, and
then the usual feasibility analysis can be performed.

This solution is easily integrable with the RTSJ. Indeed,
the periodic behavior is obtained with the specification by
writing the code in a loop and by calling the special method
waitForNextPeriod() at the end of this loop.

This method call is blocking and the thread is activated
automatically by the virtual machine at its next activa-
tion. Thus we just have to extend RealtimeThread or other
Schedulable object and override the waitForNextPeriod()

method in the way shown in Figure 1. Then it only remains
to write the two methods computeBeforePeriodic() and
computeAfterPeriodic().

Although this design may seem to be just a patch, it is
extremely useful. For example, in [6] we used it to set up
temporal fault detectors, and as we will see in Section 4 it
enables computations to be carried out to estimate the avail-
able slack time in the system.

In a system composed only of periodic tasks, it can be used
to find out the amount of time a task has really consumed. A
task stops its execution only when it has completed its peri-
odic activation or when a higher priority task begins its own
execution. Thus if the elapsed time is measured between
the last time an entry is made into one of the two proposed
methods, the consumed CPU time for each task can be kept
up-to-date. It supposes that the execution stack is kept in
order to know which is the executing task between the two
calls.

This behaviour is missing from the RTSJ and has been
proposed by the JSR-282: “7. Add a method to Schedulable
and processing group parameters, that will return the elapsed
CPU time for that schedulable object (if the implementation
supports CPU time)”.

With our patch we can obtain the elapsed CPU time even
if the implementation cannot support the method which pro-
vides that elapsed CPU time. A drawback is that the cost
must be paid both in memory and CPU usage.

The proposed MyRealtimeThread class (Figure 1) requires
that all the tasks in the system either extend or use it. If
one uses both MyRealtimeThread and regular Schedulable

objects, one can no longer deduce anything from the elapsed
time since the last beginning or end of a MyRealtimeThread

implemented task. Moreover, the patch becomes inefficient
if AsyncEventHandlers are used to write periodic tasks, or if
the tasks share resources, inducing priority inversions. So it
is, in our opinion, a good idea to integrate this mechanism
with the RTSJ. In order to do so, we propose to modify
the Scheduler abstract class by adding abstract methods
automatically called before tasks instances start and after
their completion, for all schedulable objects. Appropriate
methods can also be called for other context switches due
to monitor control algorithms or tasks which suspend them-
selves.

Then we also propose to add a CPU time monitor to the
Scheduler which uses this mechanism. This monitor can
be turned off if it is not needed or if the cost enforcement
is available on the targeted platform. If it is turned on, a
method RelativeTime getConsumnedCPUTime(Schedulable

s) should return the total amount of time the Schedula-

ble s has consumed before its last activation. Another
method getTotalCPUTime(Schedulable s) can return the
total CPU time consumed by the schedulable. If priority
inversion due to resource sharing has occurred, the blocking

time values can be incorporated or return separately.
As this mechanism has a non negligible cost, it has to be

integrated into the feasibility analysis. In order to do so
in a transparent way, a method getContextSwitchCost()

should be added in the Scheduler class.

All the extension propositions we make are summed up in
Section 7.

2.2 Ensuring Timing Constraints
Let us suppose here that an event management algorithm

allows us to start an AsyncEventHandler h at the priority
p, assuming that the worst case execution time of h is Ch.

We need to ensure that h does not exceed this worst case
execution time, since the algorithm relies on this parameter
to allow us to start h at the priority p.

Cost enforcement is an optional behavior in the specifi-
cation, so we do not want to use it. The only remaining
solution is to set up a timer which suspends the task if it
has not completed its execution at the expiration. But the
consequence is that we need to cancel the timer each time
the task is preempted, and resume it each time the task is
resumed.

We can do that with the patch proposed in Section 2.1,
but the overhead of these timers’ management would be lin-
ear with the number of pending tasks.

Such a cost can neither be bounded nor integrated in
the feasibility analysis since the number of aperiodic tasks
cannot be controlled. This induces a strong limitation in
the user land approach to managing non periodic events:
we have to schedule them at the highest available priority.
When doing that, we ensure that we need only one control
timer at the same time and this timer is set up once and for
all.

The other limitation is that if a thread can be suspended
through the AsynchronouslyInterruptedExceptionmecha-
nism, it is not possible to resume it. This means that we need
to adapt existing algorithms available in real-time schedul-
ing literature. Indeed, available resources (server remaining
capacity or slack) can exist but may be lower than the worst
case execution cost of any pending aperiodic events. This
leads to situations where some resources available in the gen-
eral context of real-time systems are not expendable because
of the use of the RTSJ. To limit this side effect, we can take
action with the queue policy in the event manager.

Moreover, for the same reason, a task with a very high
cost can never be carried out. To avoid this drawback, we
imagined a BS-duplication policy which consists of simulta-
neously scheduling each aperiodic task in background and
enqueuing it in the event manager. The first replication
which completes its execution interrupts the other.

3. TASK SERVERS IMPLEMENTATION
Task servers which were first introduced in 1987 [5], are

special tasks in the system which are in charge of servicing

Figure 2: Classes to implement the server policies

aperiodic traffic. They are characterized by a capacity and
a policy to recover it. The execution of the aperiodic traffic
cannot interfere with the system more than a server using
its full capacity. The main advantage is that these special
tasks can be integrated into the feasibility analysis (with or
without modifications to it).

Many task server algorithms have been proposed in the
two previous decades [10, 9]. However, the RTSJ does not
support any particular task server policy. It proposes two
classes AsyncEvent and AsyncEventHandler to model re-
spectively an asynchronous event and its handler. The only
way to include the handler in the feasibility process is to
consider it as an independent task, and that implies know-
ing its worst-case occurring frequency. Even if the maximum
value of the frequency is known, it often represents a very
pessimistic approximation.

The RTSJ also provides the class ProcessingGroupParam-
eters (PGP), which allows programmers to assign resources
to a group of tasks. A PGP object is like a ReleaseParam-

eters which is shared between several tasks. More specifi-
cally, PGP has a cost field which defines a time budget for
its associated tasks set. This budget is replenished period-
ically, since PGP has also a field period. This mechanism
provides a way to set up a task server at a logical level. Un-
fortunately it does not take into account any server policy.
Moreover, as pointed out in [1], it is far too permissive and
it does not provide appropriate schedulability analysis tech-
niques. Finally, as cost enforcement is an optional feature
for a RTSJ-compliant virtual Java machine, PGP may not
be available. This is the case with the Timesys Reference
Implementation of the specification (RI).

We proposed a set of classes to write task servers in [7].

This contribution is summed up by Figure 2. It is composed
of six new classes: ServableAsyncEvent (SAE), Servable-
AsyncEventHandler (SAEH), TaskServer, PollingServer

and DeferrableServer. The notion of “Servable” object is
similar to the “Schedulable” one, except that if a Schedula-

ble is executed by a scheduler, whereas a Servable is han-
dled by a server. Thus, the Schedulable object is the server.
A ServableAsyncEvent extends the regular AsyncEvent.

It models an asynchronous event where its handlers can
be either asynchronous event handlers, i.e. regular Schedu-

lable objects, or ServableAsyncEventHandlers: shells con-
taining logic that task servers can execute.

Each ServableAsyncEventHandler has to be registered
in one TaskServer. Then, when a ServableAsyncEvent is
fired, each of its regular AsyncEventHandlers is set ready for
execution. For each of its servable handlers the servable-

EventReleased(SAEH h) method of its associated server is
invoked.

After this the server is notified and can, for example, en-
queue the handler. This allows developers to write different
behaviours for different task server policies: the handlers can
be scheduled in a FIFO order, or any other desired order,
depending on the implemented policy. Finally TaskServer

inherits from Scheduler in order to enable the use of the
feasibility methods for aperiodic tasks inside the server.

3.1 Polling and Deferrable Server Modifica-
tions

As a demonstration of the efficiency of this design, we im-
plement two well known service policies: the Polling Server
and the Deferrable Server, taking into account the limita-
tions described in Section 2 to modify these policies.

The servers have to run at the highest priority, which pro-
hibits the use of several servers. As we cannot resume the
threads, we start a handler only if the remaining capacity in
the server is equal to or greater than its worst case execution
time.

This leads to situations where the server still has capacity,
and has tasks to execute, but remains inactive. In the case
of the deferrable server, the loss in performance is limited,
as the server has bandwidth conservation, but the polling
server loses its remaining capacity when it becomes inactive.

To limit the loss of performances, we investigated a lot of
queue policies. We tried a simple FIFO, a LIFO, schedul-
ing first the task with the highest cost (HCF) and finally
the one with the lower (LCF). The policy which perform
better in all the cases is the LCF policy. Moreover, to en-
sure that all task can be scheduled, we set up a policy we
called “BS duplication” as explained in Section 2.2. Figure
3 show results of simulations we conducted to estimate the
loss of performances. Surprisingly, with the impact of the
BS duplication, the policies performances are quiet similar.
We even have the modified DS policy which performs better
than the preemptive one in some cases.

From an implementation point of view, there is no specific

 0

 20

 40

 60

 80

 100

 35 40 45 50 55 60 65 70 75 80 85 90

M
ea

n
R

ep
on

se
 T

im
e

of
 S

of
t T

as
ks

Percentage total utilisation

PS with 6 Periodic tasks - Periodic Load 30% - D = T

PS - LCF&BS
Modified PS - LCF&BS

DS - LCF&BS
Modified DS - LCF&BS

BS

 0

 50

 100

 150

 200

 250

 300

 75 80 85 90 95

M
ea

n
R

ep
on

se
 T

im
e

of
 S

of
t T

as
ks

Percentage total utilisation

PS with 6 Periodic tasks - Periodic Load 70% - D = T

PS - LCF&BS
Modified PS - LCF&BS

DS - LCF&BS
Modified DS - LCF&BS

BS

Figure 3: Regular server policies VS modified ones

problem with the Polling Server. We use a delegation to a
RealtimeThread set up with PeriodicParameters. Writ-
ing the code for the deferrable server was a little bit more
tricky, since it can be activated at any moment. So we use
a delegation to an AsyncEventHandler associated to a spe-
cial AsyncEvent “wakeUp”. This event is fired each time a
ServableAsyncEventHandler is added to the waiting queue
of aperiodic requests (i.e. each time a ServableAsyncEvent

is fired). This handler is also associated to a PeriodicTimer

in order to manage the capacity.

Despite the limitations and adaptations to the policies,
the performances are much better than just executing ape-
riodic service as a background task. However, the extensive
evaluation of performances is not the purpose of this paper.

3.2 Integrating Servers and Feasibility Anal-
ysis

Integrating the Polling Server in the feasibility analysis
process is straightforward. Indeed, it is just a regular peri-
odic task in the worst case (when it uses its full capacity).
The general overhead of the mechanism can be deducted
from the server capacity. We use a PeriodicParameters

object in which the field cost is used for the capacity.

The Deferrable Server induces more difficulties. In fact,
the feasibility analysis has to be modified because in the
worst case, this server does not interfere like a regular pe-

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
��
��
��
��

�
�
�

�
�
�

��
��
��
��

���������������� ����

overflow
Time

DS

τ1

Figure 4: Double hit effect

riodic task on the lower priority tasks. This is due to its
ability to conserve its capacity when there is no traffic to
the server. The counter example of a feasible system with
a Polling Server but not feasible with a Deferrable Server
is well known as the double hit effect. It is represented in
Figure 4.

A sufficient and necessary condition for the feasibility is
available and described in [3]. However, with the current
specification, the only way to change the feasibility analysis
algorithm is to overrun the Scheduler class. From our point
of view, this is not a coherent action if the scheduling policy
is not modified, which is the case. We propose the creation
of a new interface FeasibilityAnalyzer, which can be inte-
grated into the scheduler as a field, and can be changed by
a setter method call. This question will be further discussed
in Section 6.

4. A SLACK STEALER FOR RTSJ
For the general problem of jointly scheduling hard real-

time periodic tasks and soft real-time non periodic events,
the best known solution for minimizing the soft tasks’ re-
sponse times whilst guaranteeing hard tasks deadlines is the
use of a slack stealer, proposed in [4] and [2]. An approxi-
mate algorithm, DASS, is also presented in [2]. We proposed
in [8] MASS, an algorithm to estimate the slack using data
only updated when periodic tasks end or begin. This algo-
rithm is more pessimistic than DASS but needs less compu-
tations, and only when tasks ends. The slack at the instant
t is the total amount of time you can suspend all the tasks
without inducing temporal faults (i.e. deadline misses).

We perform O(n) complexity operations each time a task
ends, and this allows us to compute a lower limit on the
available slack in constant time.

Implementing this algorithm with RTSJ is simple as it
is designed to take into account RTSJ userland restrictions
evoked in Section 2. Indeed, the evaluation relies on two
pieces of data for each task kept up to date whenever a task
begins and ends.

4.1 Estimating the Slack
We consider a process model of a mono processor system,

Φ, made up of n periodic tasks, Π = {τ1, ..., τn} scheduled

with fixed priorities. Each τi ∈ Π is a sequence of requests
for execution characterized by the tuple τi = (Ci, Di, Ti, P i).
Where Ci is the worst case execution time of the request ;
Di is its relative deadline; Ti its period and Pi its priority,
3 being the highest.

The system also has to serve an unbounded number p of
aperiodic requests, Γ = {σ1, ..., σp}. A request σi ∈ Γ is
characterized by a worst case execution time Ci.

Let Smax
i,t denotes the slack at priority level i available at

the instant t, i.e. the amount of time the processor will be
idle for priority levels higher or equal to i between t and
the next τi deadline. Then Smax

t , the available time at the
highest priority at time t is the minimum over all the Smax

i,t .
This quantity can increase only when a periodic task ends
its periodic execution. So we propose to keep up-to-date for
all task Si,t, a lower bound on Smax

i,t . St is computed each
time a periodic task ends, and is assumed to have decreased
by the elapsed time otherwise. So the Si,t values only have
to be correct (i.e. lesser than or equal to Smax

i,t) in such
situations.

Si,t is described using two elements: firstly a lower bound
on the maximum possible work at priority i regardless of
lower priority processes, wi,t, secondly the effective hard
real-time work we have to process at the instant t, ci(t).

Equation 1 recapitulates the operations needed to obtain
a lower bound on the available slack at time t. These oper-
ations have an O(n) time complexity.

∀i, Si,t = wi,t − ci(t)
St = min

i\τi∈Π

Si,t
(1)

Two pieces of data must be kept up-to-date for each pe-
riodic task: wi,t and ci(t).

cj(t) = cj(t
′) − min(dtc, dtw) (2)

∀j < i, wj,t = wj,t′ − dtw

wi,t = wi,t′ + Ti − Ii

∀j > i, wj,t = wj,t′ + dtw + Ci

ci(t) = Ci

(3)

If we note t the current time, t′ the time of the last update
of a value, dtc the elapsed time since the last update of a
ck(x) value, dtw the elapsed time since the last operation on
a wk(x) value, τi the task which begins or ends and τj the
task which is executing just before t (if any), then Equa-
tion (2) indicates the operation which has to be performed
at the beginning of the task τi and Equation (3) indicates
the operations which have to be performed at the end of the
task τi. Equation 3 still holds even if we allow resources
sharing and priority inversions (we just have to replace Ci

by Ci + Bi), but the operation described by equation 2 has
also to be performed when a critical section is entered.

At the end of a τi periodic execution, the work available :

• is increased by Ti minus the interference from higher
priority tasks activated during its next instance for τi;

• is decreased by dtw but increased by Ci for tasks with
a lower priority;

• is decreased by dtw for tasks with a higher priority.

The interference, which we shall call Ii in Equation (3),
can take two different values depending on the instance. The
most accurate value can be found in a constant time com-
plexity operation.

The operations needed when a task completes all have a
time complexity linear in the number of tasks. Their cost
can be bounded to the worst case execution cost Cep. Re-
spectively, the operation needed when a periodic task begins
has a constant time complexity and can be bounded to the
worst case execution cost Cbp. These values can be inte-
grated into the feasibility analysis process.

This integration is not harmonious with the current RTSJ.
If we use the MyRealtimeThread class proposed in Figure 1,
we have to increase the cost of each task by Cep + Cbp. A
more elegant way to proceed is to use additional methods in
the Scheduler class to add the computation before and after
all the Schedulable executions, and to add a new parameter
to the Scheduler class which represents the context switch
cost.

4.2 Using the Slack
A slack stealer can be viewed as a task server with a ca-

pacity which is always equal to the available slack. Thus
when an aperiodic task arrives, the slack can be estimated
in a constant time operation. After that, as with the task
servers, multiple policies are possible.

We can add a new class SlackStealer to Figure 2. This
class extends TaskServer. The slack stealer has to be ac-
tivated aperiodically: when an aperiodic task is released
while the queue is empty, and when the slack time is in-
creased while the queue is not empty. So we can use the
same mechanism we used for writing the code of the De-

ferrableServer: The logic of the SlackStealerTaskServer
class can be delegated to an AsyncEventHandler associated
to a special AsyncEvent.

However, the slack stealer approach is not really similar
to that of the server. The server is similar to a reservation
approach whilst the slack stealer uses the unused available
resources. So we prefer to rename our class TaskServer in
EventManager.

5. SOME RESULTS
Figure 5 exposes some simulation results with modified

server and RTSJ compliant slack stealer algorithms. MASS
designates the algorithm implementable with RTSJ using
the slack approximation while ESS and DASS designate the
same algorithm with respectively an exact knowledge of the
available slack and a slack approximation obtained by DASS
algorithm.

We compared a lot of queuing policies, and the best one
consisted of first scheduling the task with the lowest cost.
We named this policy LCF (Lower Cost First).

The use of the BS-duplication is noted “&BS”.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 35 40 45 50 55 60 65 70 75 80 85 90

M
ea

n
R

ep
on

se
 T

im
e

of
 S

of
t T

as
ks

Percentage total utilisation

6 tasks - Best of each policy family - 30% periodic utilisation - D < T

ESS LCF & BS
MASS LCF & BS
DASS LCF & BS

MPS LCF & BS
MDS LCF & BS

BS LCF

 0

 50

 100

 150

 200

 55 60 65 70 75 80 85 90

M
ea

n
R

ep
on

se
 T

im
e

of
 S

of
t T

as
ks

Percentage total utilisation

6 tasks - Best of each policy family - 50% periodic utilisation - D < T

ESS LCF & BS
MASS LCF & BS
DASS LCF & BS

MPS LCF & BS
MDS LCF & BS

BS LCF

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 75 80 85 90 95

M
ea

n
R

ep
on

se
 T

im
e

of
 S

of
t T

as
ks

Percentage total utilisation

6 tasks - Best of each policy family - 70% periodic utilisation - D < T

ESS LCF & BS
MASS LCF & BS
DASS LCF & BS

MPS LCF & BS
MDS LCF & BS

BS LCF

 0

 200

 400

 600

 800

 1000

 1200

 1400

 90 95 100

M
ea

n
R

ep
on

se
 T

im
e

of
 S

of
t T

as
ks

Percentage total utilisation

6 tasks - Best of each policy family - 90% periodic utilisation - D < T

ESS LCF & BS
MASS LCF & BS
DASS LCF & BS

MPS LCF & BS
MDS LCF & BS

BS LCF

Figure 5: RTSJ compliant Slack Stealer and Task

servers algorithms

We measured the mean response time of aperiodic tasks
with different aperiodic and periodic loads.

First, we generated groups of ten periodic task sets with
utilization levels of 30, 50, 70 and 90%. The results pre-
sented are averages over a group of ten task sets.

We conduct the experiments with a variable number of
periodic tasks from 2 to 100. The periods are randomly
generated with an exponential distribution in the range [40-
2560] time units. Then the costs are randomly generated
with an exponential distribution in the range [1-period] and
deadlines with an exponential distribution in the range [cost-
period]. Priorities are assigned assuming a Deadline Mono-
tonic Policy.

Non feasible systems are rejected, the utilization is com-
puted and systems with an utilization level differing by less
than 1% from that required are kept.

Then, we generate groups of ten aperiodic tasks sets with
a range of utilization levels (plotted on the X-axis in the
following graphs). Costs are randomly generated with an
exponential distribution in the range [1-16] and arrival times
are generated with a uniform distribution in the range [1-
100000]. Our simulations end when all soft tasks have been
served.

The figure presents the best policy for each algorithm
(BS, MPS, MDS, MASS, DASS and ESS) on systems with
Di < Ti for all periodic tasks. Equivalent results are ob-
tained on systems with Di = Ti. For all load conditions,
servers bring real improvement compared to BS. The DS of-
fers better performances than the PS. MASS performs better
than the DS, DASS better than MASS and ESS better than
DASS. For systems with periodic loads of 30% and 50%, re-
sults obtained with MASS, DASS and ESS are quite similar.
Considering the differences between these algorithms’ time
complexities (linear with very low constant, linear with a
high constant and pseudo polynomial), this is a very satis-
fying result. However MASS performances degrade quickly
than DASS ones when periodic load increases. Nevertheless
MASS remains a really good implementable algorithm even
for systems with a periodic load of 90%.

6. FEASIBILITY ANALYSIS DESIGN
The feasibility process in the RTSJ is not suitable for

mixed task systems. Indeed, the problem is that the meth-
ods are part of the scheduler class and this has several dis-
advantages.

The choice of feasibility analysis (FA) algorithms depends
on the type of application. A simple statistical condition can
be suitable for a multimedia application. Here, a deadline
miss can be acceptable, if the analysis ensures that after m
periods, k instances of the task can be executed.

In other cases, a necessary but non sufficient condition on
the feasibility can be acceptable. For example if a detection
mechanism and a temporal fault gesture is set up at run-
time, or if the worst case execution times are known to have
been over-evaluated.

For other applications, a sufficient test is needed, a test
which can be necessary or not.

However, the FA is highly dependent on the scheduling al-
gorithm. So in our opinion, the feasibility analyzer has to be
a separate object by itself, but must be integrated into the
scheduler object as a parameter, which the developers can
change according to the target application they are writing.

Of course, this is already possible with the current spec-
ification by overriding the Scheduler and changing the FA
methods, but this is not really a coherent approach. Indeed,
the FA does not have to affect the scheduling behavior, and
changing the analysis algorithm should not mean changing
the scheduler object since the task scheduled will remain the
same.

So we propose the addition of an interface Feasibility-

Analyzer in the RTSJ. A field of Scheduler can be typed
with this interface, and all the methods relative to the FA
delegated to it.

Then it is possible to change the default FA on demand.
This interface should have the methods addToFeasibil-

ity(Schedulable s) and boolean isFeasible(). We pro-
pose two other interfaces extending FeasibilityAnalyzer:
SufficientTest and NecessaryTest. Then we can set up
a fourth interface SufficientAndNecessaryTest which ex-
tends the others two.

In this way, if a class can use any FA policy, it can just
type its field FeasibilityAnalyzer, but all the other de-
grees of precision can be enforced just by the correct choice
of the type.

We can easily write the class LoadCondition as an im-
plementation of NecessaryTest. This class must compute
the system load (for fixed priority scheduled systems : U =
P

Ci/Ti).

For the fixed priority preemptive case, which is the only
scheduling policy imposed for an RTSJ compliant JVM, we
can add the abstract class ResponseTimeAnalysis as an
implementation of the interface SufficientAndNecessary-

Test, and finally the class FixedPriorityRTAnalysis as its
subclass.

Possible methods for this abstract class are RelativeTime

computeLevelIBusyPeriod(int i) which computes the i-
level busy period and computeResponseTime(int i, int q)

which computes the response time of the instance q of the
task τi.

7. CONCLUSIONS
In this paper, we have shown how an aperiodic event

traffic can be handled using the RTSJ implementation in
a portable way. We have presented the necessary adaption
of existing algorithms in order to take into account the con-
straints brought about by the use of the Java language. We
have presented a set of modifications to the RTSJ Speci-
fication and a unified event management framework. This
framework enables RTSJ programmers to write a simple and

Figure 6: Extensions to the RTSJ we propose

portable application code.

We now recapitulate the modifications and additions which
we consider to be relevant in order to improve the specifica-
tion. Then, the RTSJ extension proposed is the following:

• add void computeBefore(Runnable logic, Relative-

Time cost) and void computeAfter(Runnable logic,

RelativeTime cost) methods in Scheduler abstract
class. With these methods the scheduler automatically
adds logic parameter before or after each instance of
periodic or non periodic tasks handled. The parameter
cost is the logic worst case execution time;

• add the boolean field monitorCPUTime and the two
methods RelativeTime getConsumedCPUTime(Sched-

ulable s) and getTotalCPUTime(Schedulable s) to
the class Scheduler, in order to allow the CPU time
consumption monitoring when the underlying operat-
ing system does not directly provide this feature;

• add a contextSwitchCost field typed RelativeTime

and its getter method to the Scheduler abstract class,
in order to integrate the context switch cost, the logic
added by the previously proposed methods and the
optional CPU monitoring mechanism to the feasibility
analysis;

• add new classes ServableAsyncEvent and Servable-

AsyncEventHandler. The first extends the class Async-
Event and models an event which can be associated
both to regular schedulable handlers and special han-
dlers associated to an event manager;

• add the new abstract class EventManager, and its im-
plementations PollingServer, DeferrableServer, Sl-
ackStealer. We can provide the Java code for these
three classes;

• add the interfaces FeasibilityAnalyzer, Sufficient-
Test, NecessaryTest and SufficientAndNecessary-

Test;

• add the abstract class ResponseTimeAnalysis and its
subclass FixedPriorityRTAnalysis;

• integrate these feasibility relative classes and interfaces
into the Scheduler abstract class as a field and with
setter/getter methods. Delegate the behaviors of ex-
isting feasibility analysis methods to this field.

Figure 6 recapitulates these propositions in a UML dia-
gram.

In future work, we have to investigate on the interactions
between the memory parameters and the feasibility analyzer
object. We also have to clarify the behavior of the proposed
CPU time user land module when resource sharing is al-
lowed.

Acknowledgments
We want to thank Sian Cronin and Aurore Sibois for
their valuable advices and English corrections.

8. REFERENCES
[1] Alan Burns and Andy Wellings. Processing group

parameters in the real-time specification for java. In
On the Move to Meaningfull Internet Systems 2003:
Workshop on Java Technologies for Real-Time and
Embedded Systems, volume LNCS 2889, pages
360–370. Springer, 2003.

[2] Robert Ian Davis. On Exploiting Spare Capacity in
Hard Real-Time Systems. PhD thesis, University of
York, 1995.

[3] T. M. Ghazalie and Theodore P. Baker. Aperiodic
servers in a deadline scheduling environment.
Real-Time Systems, 9(1):31–67, 1995.

[4] John P. Lehoczky and Sandra Ramos-Thuel. An
optimal algorithm for scheduling soft-aperiodic tasks
fixed priority preemptive systems. In proceedings of
the 13th IEEE Real-Time Systems Symposium, pages
110–123, Phoenix, Arizona, December 1992.

[5] John P. Lehoczky, Lui Sha, and Jay K. Strosnider.
Enhanced aperiodic responsiveness in hard real-time
environments. In IEEE Real-Time Systems
Symposium, pages 110–123, San jose, California,
December 1987. IEEE Computer Society.

[6] Damien Masson and Serge Midonnet. Fault tolerance
with real-time java. In WPDRTS’06 (in proceedings of
the 20st IEEE International Parallel & Distributed
Processing Symposium), page 172, Rhodes Island,
Greece, April 2006.

[7] Damien Masson and Serge Midonnet. The design and
implementation of real-time event-based applications
with RTSJ. In WPDRTS’07 (in proceedings of the 21st
IEEE International Parallel & Distributed Processing
Symposium), page 148, Long Beach, CA USA, March
2007.

[8] Damien Masson and Serge Midonnet. Slack time
evaluation with RTSJ. In Proceedings of the 23rd
Annual ACM Symposium on Applied Computing,
pages 322–323, Fortaleza, Ceará, Brazil, March 2008.
Short paper and poster.

[9] Brinkley Sprunt, Lui Sha, and John P. Lehoczky.
Aperiodic task scheduling for hard real-time systems.
Real-Time Systems: The International Journal of
Time-Critical Computing Systems, 1:27–60, 1989.

[10] Jay K. Strosnider, John P. Lehoczky, and Lui Sha.
The deferrable server algorithm for enhanced aperiodic
responsiveness in hard real-time environments. IEEE
Trans. Comput., 44(1):73–91, 1995.

