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Abstract without modifications). This particular task is in charge of
servicing the non-periodic traffic with a limited capacity.

The aim of our work is to provide a mechanism to deal  Several types of task server can be found in the literature.
with soft real-time aperiodic traffic on top of a fixed prigrit ~ They differ by the way the capacity is managed. We can cite
scheduler, without any kind of modification on it. We want thePolling Servepolicy (PS, theDeferrable Servepolicy
to reduce as most as possible the time and implementation(DS), the Priority Exchangepolicy (PE) first described by
complexities of this mechanism. Moreover, the overhead ofLEHOCZKY et al. in [6] and developed in [10, 8] and the
the framework has to be completely integrated in the fea- Sporadic Servepolicy (SS) presented in [9].
sibility analysis process. We propose a naive but low cost In [5], LEHOCZKY and RaMOS-THUEL propose the
slack time estimation algorithm and discuss the issue of itsStatic Slack Stealeran algorithm to compute the slack:
utilization at the user level. We validate our work by exten- the maximal amount of time available at instantb exe-
sive simulations and illustrate its utility by an implement  cute aperiodic tasks at the highest priority without endan-
tion on top of the Real-Time Specification for Java (RTSJ). gering the periodic tasks. They demonstrate the optimality

of this approach in terms of maximizing the aperiodic tasks
response times among non clairvoyant algorithms. Unfor-
tunately, they also admit that its time and memory complex-
1 Introduction ities are much too high for it to be usable.
In his PhD thesis work [4], BvIS proposes a dynamic

The need for more flexibility in real-time systems leads algorithm to compute the exact available slack time. Then
the community to address the problem of jointly scheduling he demonstrates that the complexity is too high for a real
hard periodic tasks and soft aperiodic events. implementation and proposes two approximate slack time

A solution is to set up a mechanism which allows non- computation algorithms, one based on a static approxima-
periodic traffic to be served and analyzed without changing tion, SASSand the other which is dynamiDASS The dy-
the feasibility conditions of a periodic task. namic approach presents the advantage to allow gairt time

The easiest way to achieve this is to schedule all non-to be assimilated in the slack and then transparently reallo
periodic tasks at a lower priority (assuming that the tasks a cated for aperiodic traffic.
scheduled using a preemptive fixed priority policy). This All these contributions make the assumption that the
policy is known as thdackground Servicing (BSIf it is developer has the hand on the scheduler, and are in sub-
very simple to implement, it does not offer satisfying re- stance enhanced scheduling mechanisms. Unfortunately,
sponse times for non-periodic tasks, especially if the-peri the scheduler is most of the time a part of the hardware or of
odic traffic is important. the operating system. That is why we propose a framework

Research turns on new scheduling approaches for mini-based upon these algorithms, but adapted to be implemented
mizing the aperiodic tasks response times whilst guarantee in userland, on top of the scheduler.
ing the feasibility of the periodic tasks. In this paper, we describe and evaluate the slack stealer

In this context, the periodic task servers were introduced part of this framework. Our goal is to provide a slack
by ,LEHOCZKY et al'_ in [6] A penodlc taSI_( SEIVer 1s a lif a periodic task has a worst case execution time greateritharean
periodic task, for which classical response time determina eyecution time, most of its executions generate reservedriuged time
tion and admission control methods are applicable (with or calledgain time




stealer approach not only implementable on top of the sys-3.1 Static Slack Stealing
tem scheduler, but also with a very low overhead integrable

in the feasibility analysis process. This slack stealing algorithm is called static because the
To limit this overhead, we propose a very simple slack most significant computations are made off line. However,

approximation algorithm of the slack which does not use there is also a run-time phase.

scheduler or system specific data to perform. Moreover, we

modify the way thg slack is used in order t.o inFegrate thg 311 Off line computations

slack gesture cost in the worst case execution time of peri-

odic tasks. The aim of this first step is to compute for each task a
We formalize in Section 2 the task model and general function which gives the task laxity at time The laxity

notations. We describe in Section 3 the static and dynamicOf the taskr; at time ¢ is the sum of aperiodic process-

slack stealers, and the Dynamic Approximate Slack Stealering which can be process immediately in preference;of

(DASS). We present our userland slack estimation in Sec- without compromising the respect of its deadline. These

tion 4. Then its userland utilization in Section 5. Our simu- functions are noted!;(t). The function giving the ape-

lations methodology is detailed in Section 6 and results areriodic processing which can be processed at tinag the

presented in Section 7. We propose to illustrate this work highest priority without compromise any deadline is noted

with an RTSJ implementation in Section 8. A(t). The authors proved Equation 1 and gave an algorithm

to compute thed;(1).

2 Task Model and notations A(t) = min Ag(t) (1)

1<k<n

We consider a process model of a mono processor sys312 On linealgorithm
tem, ®, made up ofn periodic tasksJI = {r,....,7,}

scheduled with fixed priorities. Each € II is a se- At) = min (Ai(t) —-T;) - A )
guence of requests for execution characterized by the tu- =

ple 7; = (Cy, Ty, D;, Pi), whereC; is the worst case ex- At time t, the available laxity is given by Equation 2
ecution time of the reque”stTi is its period ;D; its rela- whereZ,; is thei-level inactivity and.A the sum of the ape-

tive deadline withD; < T; and P; its priority, 3 being the riodic processing time. These two values are maintained up
highest. Tasks are ordered according to their priority, i.e to date each time the CPU begins a new activity.
P, < P, < ... < P,. We do not consider blocking factor The available laxity can only be increased when a hard
nor release jitter. periodic task ends. Hence, the laxity is only computed
The system also has to serve an unbounded numbgr in two cases: if an aperiodic task is released when the
aperiodic request§; = {01, ...,0,}. Arequests; € T'is aperiodic queue is empty and if a periodic task ends whilst
characterized by a worst case execution tithé. the aperiodic queue is not empty.
The highest priority], is reserved for the task which o _ ) ) ) )
implements our mechanism. When an aperiodic request is 1 hough this first algorithm is optimal (it provides the ex-
raised.T registers it in a queue. When slack becomes avail- 2t available time), it has time and memory complexities

able, enqueued aperiodic tasks can be releaset Wjth much too high and it is only applicable to simple systems,
the priority 2. They are then scheduled by the system ac- without synchronization constraints, resources sharing o
cording to this priority. sporadic hard real-time tasks. Moreover it can not be ex-

tended for gain time reclaiming. That is whyalds pro-
poses a dynamic algorithm.
3 Static and Dynamic Slack Stealing

3.2 Dynamic Slack Stealing

The slack stealing technique was first introduced by L
Hoczky and RAMOS-THUEL in [5]. It consists in deter- This part of Dnvis thesis was first published withii-
mining how much computation time is available at the high- DELL and BURNS in [3]. The first step to determine the
est priority without jeopardizing the execution of the peri available slack time is to compute for each task the maxi-
odic tasks. Then this time can be used for aperiodic servic-mum guaranteed slack;"**(¢), i.e. the maximum amount
ing. Since our mechanism is inspired by this technique, we Of slack time which may be stolen at priority leveduring
review it in this section. the interval[t,t + d;(t)), whilst guaranteeing that task
meets its deadline. The valuk(¢) denotes the remaining
2for brevity concern, we can denotecibstin this paper time beforer; next deadline.




The intervallt, t + d,(t)) is viewed as a successionief  remaining computation time needed to complete the current
levelbusy perioddandi-levelidle period4. Then,Sme(t) pending request, by a number of entire invocations given by
is the sum of thd-level idle period lengths. The author f;(a,b), and by a last partial request.
provides two equations, one to compute the end of a busy A lower bound on theS;(t) value is given by the length
period starting at time, one to compute the length of an of the interval minus the sum of the interferences from each
idle period starting at time. To determineS]"**(t), the task with a higher or equal priority than. It is recapitu-
two equations are recursively applied until the next demdli  lated by Equation 5.

is reached.

Then, if an aperiodic task is released at timdet &
be the priority of the running hard periodic task, the soft Si(t) = | di(t) —t — Z I;ﬁ(t,di(t)) (5)
aperiodic task processing can proceed immediately in vi<i

preference to task, for a duration ogni;}ﬂ STE(t). 0
J=Z

This algorithm is not directly usable because of its time 4 QSerIand algorithm for slack time estima-

complexity. However, the slack computation can be re- 110N
placed by a slack estimation. The algorithm is then no
more optimal but can offer a significant improvement com-  We decompose the maximum available slack per task
pared to other solutions. AV1s proposes slack approxima- (Smaz(t)) into two different pieces of data: fir§t;ma=(¢),
tion mechanisms, but his algorithms are schedulers, withthe maximum possible work at priorityegardless of lower
full knowledge of tasks and current execution parameters.priority processes ; secomg(t), the effective hard real-time
Rather than adapting them, we prefer to set up a naive apwork we have to process at the instantThe approximation
proximation based on data pieces easily available. More-is performed on the first term. To compute a bound on the
over, we want to keep a low computation complexity. Con- available slack at time at the highest priority,S(¢), we
cerning the use of the computed slack, our algorithm is then have to computs;(t) for all priorities and take the
driven by our will to integrate the overhead in the feastili ~ minimum. This operation has &(n) time complexity.
analysis.

SPE(t) Wimas(t) — ci(t)
3.3 Dynamic Approximate Slack Stealer Smaer > 8 = min W;(t) — ¢i(t) (6)

1<i<n

SinceS;(t) is the sum of the i-level idle period lengths 50 we have to keep up to date for each periodic task the
inthe intervallt, t 4 d;(t)), DAVIS proposes to estimate this  two valuesiv; (¢) andc; ().

guantity by computing a bound on the maximal interference
the taskr; can suffer in this interval. A bound on this inter-
ference is given by the sum of the interferences from each
task with a higher priority tham;. Then Equation 3 gives

4.1 Data initialization

the interference suffer by a task from a taskr; in an in- Under hypothesis of a synchronous activation of all pe-
terval[a, b]. riodic hard real-time tasks &§, we have:
Wi (to) = Di @)
j . , , _
e = e e i) - - Y |2 @
min(C;, (b — zi(a) — fi(a,b)T3),) (3) Vh<i | Tk
Via (& (tO) = C; (9)

The function f;(a,b) returns ther; instance number

which can begins and completes fim b]. It is given by If we relax the synchronous activation hypothesis, the

Equation 4. exact number of, activation between the first releasermpf
b—zi(a) and its first deadlineNb,, should be computed and equa-
fi(a,b) = LTJ (4)  tion 8 becomes:
g 0
The functionz;(t) represents the first activation of Vi, W™ (ty) = D; — Z Nb,Cy (10)
which followst¢. Then the interference is composed by the Vhei

3periods where the processor is servicing priorities higherqual to o . . 9
4processor idle periods or periods where processor servestips The data initialization has a t'me complexity (n°),
lower thani but can be completed before starting the system.



4.2 Dynamic operations

The values we want to keep up to date are function of
time, so they potentially evolve at each clock tick. Between
two dateg; andt, if & is the priority level of the executing
task, W™** is reduced byit = (t2 — t1) for any task with
a higher priority thark, and¢;(t) is reduced forr,. We
approximatéd/"** by considering that it is reduced by
for all tasks. We correct this pessimistic evaluation when
a taskr, ends by adding its cost td/; for all task with a
lesser priority thark. We will see in Section 5 that we only
need to compute the slack when a task ends. So we just
have to update th&’; when a task completes and theat
each context switches. If we do not consider systems with
resource sharing, a context switch occurs only when a task
begins and when a task ends.

1. End of periodic task 7. Let dt be the elapsed time
sincet,. the last periodic task ending, i.e. the last up-
date of alW,;. Then,W; is reduced byit for all tasks
and Wy, is increased by}, and reduced by the inter-
ference of higher priority tasks during the next period
of 7. We consider an upper bound on the maximal in-
terference the task can suffer during one period. This
bound,/;, given by equation 11, can be computed dur-
ing the initialization phase. A closer approximation

technique is discussed in Section 4.3. Interference suf- 3

fers byt before its next activation is already included
in the approximation ofV.

T
L<r=% {Tﬂ C; (11)
vi<k ' 7

Moreover, for all tasks with a smaller priority thap,
W, is increased by, Finally, ¢x(t) is reset taCy.

Vi <k, Wi(t) = Wi(tie) —

Visk Wi(t) = Witie) — dt—s—Ck

i—k Wi(t) = Wi(tie) —dt+ Ty — I}
- Ck(t) Cy,

(12)

These operations are summarized in Equation 12.
Their time complexity isO(n). We will see in Sec-
tion 4.3 that the time complexity to obtain the inter-
ference is als@)(n). This overhead can be a priori

Figure 1. Number of T; in T}

before the next task ending, we do not update these
values in this case. Since the last update of data (end or
begin of periodic request servicing), there is two pos-
sibilities. First, the scheduler can have served periodic
traffic, say ar; request. Ther;(t) is reduced byit.

The other possibility is that the system was idle or ser-
vicing a soft request. Then there is no need for data
update.

If j#0,

This operation is summarized in Equation 13. This
time, the time complexity i€)(1) and again, the in-
duced overhead can be added to each periodic task
cost.

¢j(t) = ¢;(t) — dt (13)

. Soft real-time aperiodic task 7, arrival.

When a soft real-time aperiodic task is released, it is
enqueued. Utilization of the slack to serve enqueued
aperiodic requests is the topic of Section 5.

4.3 Interference upper bound

Let 7; and7; be two periodic hard real-time tasks with
T; < T}. The priorities are assigned with a Rate Monotonic
policy. We discuss in this section f (¢)
task7; suffers from taskr;. More precisely, we give here
a way to determineVa? (¢), the number of activations of
task; during the current period of task. We have the
following properties:

, the interference

II(t) < Nal(t).c (14)
Lty < Y L@ (15)
hehp(j)

If we can find theNa? (¢) value in constant time, we can

added to each periodic task cost since the operationsyetermine a bound for the total interferencechin) time

are performed at the end of each instance.

2. Beginning of periodic task 7.

As in the previous case, the maximum available pro-
cess time is reduced hj at each priority levels. How-
ever, since we do not need to accurate lifigvalues

complexity.

431 Possblevaluesfor Na(t)

Let ¢ andr be the quotient and the remainder in the eu-
clidean division off; by T;. We havel’; = ¢T; + r. Then,



for any activation ofr;, let u denotes the time before the Theorem 2.

nextr; activation,k the number of; activations before the
nextr; activation and be equal tdl’; — (k —1)7; — u. We
haveT; = u+ (k—1)T; + v,u < T; andv < T;.

Figure 1 resumes these notations.

Theorem 1. There is only two possible values forwhich
areq + 1 andg.

Proof ofk > g — 1.
Suppose: < q — 1,
k<q—-1=k—-1<qg—-2=
u—l—(k—l)Ti—&-v <Ti+(q—2)Ti+Ti
because: < T; andv < T;.
Then, since we have + (k — 1)T; +v = T}, we getT; <
This is in contradiction witl; = ¢7; +r, r > 0.
O

Proof ofk < g + 2.

Supposé: > g + 2,

k>q+2=k—-1>qg+1=

ut+ (k-1 +v>u+ (¢g+ )T +v=

T; > (¢ + 1)T;, sinceu > 0 andv > 0. This is in contra-
diction withT; = ¢T; +r, ¢ > 1 andr < T;. O

In conclusion, determining the two possible values is a

ulr = k=q+1

= k=g

(16)
u>r (17)
Proof of Equation 16.

k=q+1=k—-1=q=
ut+(k—1)T,+v=q¢l;+u+v=

utv=r=

u < rsincew > 0 andv > 0. O

Proof of Equation 17.

k=q=

u+(k—1)T,+v=(—- )T +u+v=
utv—T,=r=

u > r sincev < T;. O

If we relax the assumption of the rate monotonic priori-
ties assignment, we can ha¥ie < 7;. Than we haveg = 0
andr = Tj;. That gives us:

u>T; = k=0

which is correct.

Choosing the correct value is then a constant time com-

constant time complexity operation, and can be done off- Plexity operation. We are able to determine ther; (t)

line before starting the system.

4.3.2 Determining the next interference

value with a0 (1) time complexity and then the interference
with a O(n) time complexity. Note that the complexity is
the same for the exact computation of the interference used
by DASS and given by Equation 3. However, the constant

number of computations needed is smaller and we do not
need any execution related data such as the remaining exe-
cution time needed to completg

When a task; ends at timef, we want to find an upper
bound onI; the interference it will suffer from tasks with
higher priorities during its next activation. This intedace
is bounded by the sum of the interferences caused by each

task with higher priority. Then the interference caused by 5 Slack utilization in userland
task 7; is bounded bykC;, wherek is the number ofr;

activations during the; next period. We demonstrate that In the slack stealer algorithms proposed yHoczKy

k can be equal tq or ¢ + 1, whereq is the quotient in the
euclidean division of’; by 7;.

In order to determine the correct value /ofn this par-
ticular case, we first determine the valueuofAt time ¢, let
u be the difference betweémanda, wherea is the nextl’;
activation date and the firstT; activation date that follow
a. We have:

t
« = |g|m
a
- [t
u = b—a

Now, we just have to compareandr :

and RAMOS-THUEL and then by Bvis, the slack at the
highest priority is computed at the arrival of an aperiodic
request, and the request is served in the limit of the slack.
In DASS S;(t) is computed each time a task with a higher
or equal priority thanr; ends an execution, and assumed
to have decreased by the elapsed time otherwise. Then the
slack is computed ir0(n) time complexity each time an
aperiodic arrives. In our userland context, we oppose two
objections to these models.

First, if we consider a request with a cost greater than the
available slack, we have to start the service of the request,
stop it when the slack is exhausted and then resume it later
when more slack is available. This is not a problem if we are
writing a scheduler, but becomes quite complex in userland.
We can off course play with the priority of the task, but



it supposes that the system allows dynamic changes of thédd Simulations
priorities. So the first conclusion is that we must wait to

have enough slack to schedule the requestin one shot. The validation of the effectiveness of our slack estima-

From that limitation cames the question of the queue pol- tion is the first purpose of our simulations. Despite the sim-
icy. Not having enough slack to serve the first arrived ape- plicity of our algorithm induced by the wanted low over-
riodic request does not mean that we not have enough tohead, we expect results comparable to an exact slack com-
serve the second one. In our simulations, we test the fol-putation based algorithm. The targeted performance met-
lowing policies:first in first out last in first out lowest cost  ric is the mean response time of the aperiodic requests. To
firstandhighest cost first achieve this goal, we simulate the same systems with ape-
kriodic tasks served according to our slack estimation and
P/vith the same aperiodic tasks (same release times and same
costs) served according to the approximatiolDéfSSand
with an exact computation of the available slack.

g The second expecting resultis the validation of the user-
land exploitation of slack time. The only other available
algorithm that does not need to customize the scheduler is

From this second Objection cames the queStion of thethe Background Schedu“ng (BS) So we compare our re-
best instant to begin a pending request. Several approachesy|ts with the BS. Moreover, in [7] we proposed a frame-
are possible. Two remarks are that the slack can only growsywork for implementing task servers with RTSJ on top of the
up when a periodic task ends its execution and that in thedefault scheduler. This framework permitted us to write a
worst case, after time unit since the last growth, the slack  polling server and a Deferrable Server, but with modifica-
has decreased hy tions on this two algorithms. We denote the modified al-

The general conclusion is that we can comput&im) gorithmsMPSandMDS We also compare our results with

time complexity a close approximation of the slack at this ones to know how the slack stealing based approach
each periodic task ending, and assume at any other instanerforms comparing to server based ones.

that the slack has just decreased by the amount of elapsed Finally, we also want to determine the best queue policy
time unit. In this way, the slack estimation computation through our simulations.

in O(n) can be included in the task costs, and the rough

estimation perform each time an aperiodic request arrivesg,1  Methodology

is just limited to a constant time complexity, inducing a

very low overhead. This overhead is not greater than the
unavoidable cost of enqueuing (or rejecting) the aperiodic
request.

The second objection is that we cannot compute the slac
each time an aperiodic request arrives. Since the numbe
and the arrival model of the aperiodic requests are unknown
and the computation of the slack has @) time com-
plexity, the overhead of this approach cannot be bounde
nor incorporated in the feasibility analysis process.

We measure the mean response time of soft tasks with
different aperiodic and periodic loads.

First, we generate groups of periodic task sets with uti-
lization levels of 30, 50, 70 and 90%. The results presented

The use of a slack estimation instead of an exact compu-in this section are averages over a group of ten task sets. For
tation and the fact that we have to wait for having enough the same periodic utilization, we repeat generations over a
slack to complete a request before starting it raises a newyide range of periodic task set composition, from systems

issue. Some times, the algorithm can return a slack value Ofcomposed by 2 periodic tasks up to systems composed by
0 time unit although the system is idle. Alternatively, there 100 periodic tasks.

can exist some situations where the slack has often a non Tne periods are randomly generated with an exponen-

null but low value. In that sort of situations, our algorithm ja| gistribution in the range [40-2560] time units. Then
cannot begins the request while a sim@lé' could have e costs are randomly generated with an uniform distri-
been able to complete it. To limit the side effect of these pytion in the range [1-period] In order to test systems with
situations on the average response time of the aperiodic reyeadiines less than periods, we randomly generate desdline
quests, we test a policy we called “duplicate BS”. It consists yith an exponential distribution in the range [cost-pe}iod

to duplicate gll aperiodic requests. One. copy is immeQiateI Priorities are assigned assuming a deadline monotonic pol-
scheduled withBS and the other copy is enqueued in our icy.

mechanism. The first of the two to end interrupts the other

Non feasible systems are rejected, the utilization is com-
one.

puted and systems with an utilization level differing bysles
We call this userland utilization of the slack associated than 1% from that required are kept.

with our minimal approximation of the available slack the For the polling server, we have to find the best period

Minimal Approximate Slack Stealefi{ ASS) algorithm. T, and capacity’; couple. We try to maximize the system



load U composed by the periodic lodd; and the server
loadUg.

Ur +Us
3 Gi G
T, T
A feasible system load being bounded bywe have

Equation 18.
Cs Cz
2 <] = -
T <1T2T,

To find a lower bound™" of Cy, we first set the period
to 2560 (the maximal period). We then search the maximal
value forC; in [1, 16] in order to keep a feasible system.
This maximal value is our lower bound @ry.

Then we seek the lower possiliie value in[C™" /(1 —
> C;/T;),2560]. For eachl’s value tested, we try decreas-
ing values ofCy in [C™™ Ty(1 — > C;/T7)].

Note that it is possible to find a capacity lower than the

(18)

7 Results

Figures 2 to 9 present our simulations results. On these
figures,ESS, DASS andM AS'SS refer to our slack stealer
modified algorithm associated respectively with an exact
computation of the available slack time, the slack time ap-
proximation given byDASS and our approximation of
the available slack timeM PS and M DS designate the
modified polling server and deferrable server we devel-
oped in a previous work. Finallj3S designates the back-
ground scheduling associated withFd F'O queue policy
and M BS a modified background server which cannot be-
gins a task if a previously started task has not completed.
The notationX & BS refers to the policyX with a BS du-
plication.

Figures 2 to 5 show th&/ AS'S results for all periodic
composition systems. We notice that our algorithm per-
forms much better tha® S for all policies if the periodic

maximal aperiodic tasks cost. In such cases, since we havd©ad is low (see Figure 2 and 3). However, when the pe-

to schedule the aperiodic tasks in one shot, we have no s

0_r|0dic load increases, thBS duplication became unavoid-

lution but to background scheduling the tasks with a cost @0l€: With the extreme 90% load (Figure 5), the non BS-

greater than the server capacity.

For the deferrable server, the methodology is similar, ex-
cept that since the server has a bandwidth preservation be

havior, we do not try to minimize the period and we can
search the maximal'; value in[1, 2560].

duplicated curves are not viewable on the same graph than
the other and are completely out performed byffe The
explications of this phenomena can be found in Section 5.

The second thing to note is that the queue policy which
offers the best results is theC'F' one. Due to space lim-

Finally, we generate groups of ten aperiodic task setsjtations and clarity purpose, we cannot put all our results

with a range of utilization levels (plotted on the x-axishet

in this paper, but this trend is confirmed by simulations on

following graphs). Costs are randomly generated with an yypg A7DS, DASS andESS. This is for sure amplified

exponential distribution in the range [1-16] and arrivaidis

are generated with an uniform distribution in the range [1-

by the one shot execution limitation. The shorter a task is,
the greater is the probability to have quickly enough slack

100000]. Our simulations end when all soft tasks have beent schedule it completely.

served.

6.2 Real-time Simulator

Figures 6 to 9 present the results of the best queue pol-
icy for each algorithmi{/ PS, M DS, M ASS, DASS and
ESS). For ESS, since the time complexity is dependant
on the number of task, the results do not include systems

We develop a real-time event-based system simulator.composed of more than 40 periodic tasks. For all load
This is a Java program which can simulate the executionconditions, servers bring real improvement comparing to
of a real-time system and display a temporal diagram of the 5. The M/ DS offers better performances than thePsS.

simulated execution.

Then,M AS'S performs better than the servef3ASS bet-

This tool is distributed under the General Public License ter thanA/ ASS and ES'S better thanD ASS. For systems

GNU (GPL), and can be found on the following web page:
http://ligm.univ-mlv.fr/ ~masson/RTSS

with periodic loads of 30% and 50%, results obtained with
MASS, DASS and ESS are quite similar. Considering
the differences between the time complexities of these al-

In order to evaluate our slack time evaluation, we add a gorithms (constant, linear and pseudo polynomial), thés is
PFP scheduler which schedules aperiodic tasks accordingery satisfying result. Howevell ASS performances de-
to an exact slack computation and another according to ourgrade when periodic load increases. NevertheldsSS
slack evaluation. The policies simulated take into accountremains the best userland-implementable algorithm even fo

the restrictions due to the targeted userland implememtati

systems with a periodic load of 90%.



Mean Reponse Time of Soft Tasks

Mean Reponse Time of Soft Tasks

Mean Reponse Time of Soft Tasks

Mean Reponse Time of Soft Tasks

MASS - 30% periodic utilization (Average over all compositions)

110 T T T T T T T T T T T
MASS - FIFO —+—
100 - MASS - LCF -~ q
MASS - FIFO&BS &
MASS - LCF&BS -6
BS - FIFO - -e
R
60 - B
50 B
30 1
20 1
10 B
Percentage total utilisation
Figure 2. MASS, 30% load
MASS - 50% periodic utilization (Average over all compositions)
250 T T T T T T T T
MASS - FIFO —+—
200 B
)
150 PPt 4
.
100 L B
50 B
Percentage total utilisation
Figure 3. MASS, 50% load
MASS - 70% periodic utilization (Average over all compositions)
450 — T T T T T T T
MASS - FIFO —+—
MASS - LCF -~ .
400 - MASS - FIFO&BS --&
fes TEses 2
MASS - LCF&BS -6~
350 - MBS - LCF —-4— e 1
300
250 |- B
150 -
100
Percentage total utilisation
Figure 4. MASS, 70% load
MASS - 90% periodic utilization (Average over all compositions)
1400

MASS - LIFO&BS —+— ) ) '

MASS - FIFO&BS

1300 - MASS - LCF&BS - 1
BS - FIFO -8

1200 MBS - LCF -2

1100 4

1000 -

Percentage total utiisation

Figure 5. MASS, 90% load
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Figure 6. Best policies, 30% load
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Figure 7. Best policies, 50% load
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Figure 8. Best policies, 70% load
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8 Example: RTSJ implementation
‘ Scheduler ‘ AsyncEvent Schedulable
To illustrate the relevance of this work, we propose here gy  + &+ &
an RTSJ [1] implementation of this slack stealer mecha- " [
nism. Under RTSJ, it is possible theoretically to change the |
scheduler, but all the implementation of the specification |ServableAsyncEventHandler | |ServableAsyncEvent | | TaskServer

rely on system scheduler. So if you want to use advance al-

gorithms for jointly scheduling soft and hard real-timekss ’—l
in a portable application, you have to do it on top of the ba-

sic priority scheduler available by default.

Deferrable—
server

PollingServer

8.1 Aperiodic Tasks and RTSJ
Figure 10. Classes to implement the server

The RTSJ proposes two classésyncEvent and policies
AsyncEventHandler to model respectively an asyn-
chronous event and its handler(s). The only way to include
an handler in the feasibility process is to treat it as an-inde
pendent task, and that implies to know at least its worst-cas  Figure 10 shows dependencies between classes in the
occurring frequency. Task Server Framework and standard RTSJ classes.

The RTSJ does not Support any particu'ar task server po'_ To Summal’ize the meChanism, When an SAE iS fil‘ed, the
icy. It also provides the so called “Processing Group Param-ServableEventReleased() methods of the bounded
eters” (PGP), which allows programmer to assign resourcesservers are called for each of its SAEHs. This method add
to a group of tasks_ A PGP Object iS |ike%|ease_ the SAEH in the associated task server jOb queue. Depend-
Parameters which is shared between several tasks. More ing of the subclass used, the server can be scheduled peri-
specifically, PGP has eost field which defines a time  odically or aperiodically to serve the aperiodic jobs in his
budget for its associated task set. This budget is replen-dueue. Several queue policies are possible. This allows de-
ished periodically, since PGP has also a figétiod . This velopers to write different behaviors for different taskvee
mechanism provides a way to set up a task server at a logolicies.
ical level. Unfortunately it does not take into account any ~ For example, we proposedRollingTaskServer
server p0||cy Moreover, as pointed in [2]’ itis far too much class which is implemented with a periOdiC real-time thread
permissive and it does not provide appropriate schedulabil and a DeferrableTaskServer class with an asyn-
ity analysis techniques. Finally, since cost enforcement is chronous event handler bounded to a special event.
an optional feature for an RTSJ-compliant virtual Java ma-
chine, PGP can have no effect at all. This is the case withg 2o  gack Stealer isa Task Server
the Timesys Reference Implementation of the specification
(RI). We can add a new clasiackStealerTaskServer to

In next Section, we describe our previously published Figure 10. This class extend@askServer . The slack
task server framework for RTSJ and we show how we canstealer has to be wake up aperiodically: when an aperiodic

use it to write a slack stealer. task is released while the queue is empty, or when the slack
time is increased while the queue is not empty.
8.2 Slack Stealer Implementation with The logic of theSlackStealerTaskServer class
RTSJ can be delegated to aksyncEventHandler  bounded

to a specialAsyncEvent . The methodire() of this
In [7], we proposed an RTSJ extension to use task eventis called in the two situations described above.
servers. Since we extend this framework to propose a slack This design was used for our deferrable server imple-

stealer, we first describe it in this section. mentation and validated by execution experiments.

8.2.1 Task Serversimplementation 9 Conclusions

Our framework (Task Server Framework) is composed

of six new classes: ServableAsyncEvent (SAE), In this paper, we address the problem of jointly schedul-
ServableAsyncEventHandler (SAEH), Task- ing hard periodic tasks and soft aperiodic events when we
Server , PollingTaskServer , Deferrable- cannot change the scheduler and when data relative to the

TaskServer andTaskServerParameters . current execution state are not accessible.



We briefly review aperiodic server algorithms. We de-
scribe the static and the dynamic exact slack computation
algorithms, both theoretically optimal, and the Dynamic
Approximate Slack Stealer. We present these algorithms
limits in our userland context.

We then propose a simple algorithm to compute in linear
time a bound on the available slack time. Since this algo-
rithm operates only on periodic tasks beginning and ending,
we show that the induced overhead can be included in these
tasks worst case execution times.

The remaining side effect of our mechanism is a constant
time operation to perform each time an aperiodic request
occurs. This is unavoidable, even if the request is schddule
in background.

We simulate our slack stealer associated to an exact com-
putation of the slack time and associated to our slack ap-
proximation. In order to limit the side effect of the approx-
imation, we propose a duplication policy that simulations
tend to validate. We compare our simulations with simu-
lations on modified Polling and Deferrable servers we pro-
posed in another publication[7]. These modified server al-
gorithms are also targeted for userland implementatiom. Ou
slack stealer is always the most efficient algorithm.

In our simulations, we test four aperiodic tasks queue
policies and the most efficient one both for task servers and
for slack stealers is the one which schedules in priority the
aperiodic task with the lowest cost. This is a behavior am-
plified by the userland restriction: we have to schedule ape-
riodic tasks in one shot. Even with very high periodic loads
(90%), our algorithm still brings improvements comparing
with a BS.

To illustrate the aim of this work, we present an example
of application: the implementation of portable task sesver
and slack stealers with the Real-Time Specification for Java

We do not consider in this work systems where periodic
task costs fluctuate. In such systems, a resource reservatio
has to be made for the worst case scenario. Each time a task
completes earlier than in the worst case, gain time is gener-
ated. Even if we did not explain it in this paper, gain time
can be integrated in the definition of the slack. Actually,
this do not suppose any modification on our slack estima-
tion, since it use dynamic pieces of data.

To continue this work, we will have to consider more
complex systems, with resource sharing and precedence
constraints. We also have to conduct experiments with real
life executions in order to evaluate the exact cost of the BS
duplication policy.
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