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Abstract

The aim of our work is to provide a mechanism to deal
with soft real-time aperiodic traffic on top of a fixed priority
scheduler, without any kind of modification on it. We want
to reduce as most as possible the time and implementation
complexities of this mechanism. Moreover, the overhead of
the framework has to be completely integrated in the fea-
sibility analysis process. We propose a naive but low cost
slack time estimation algorithm and discuss the issue of its
utilization at the user level. We validate our work by exten-
sive simulations and illustrate its utility by an implementa-
tion on top of the Real-Time Specification for Java (RTSJ).

1 Introduction

The need for more flexibility in real-time systems leads
the community to address the problem of jointly scheduling
hard periodic tasks and soft aperiodic events.

A solution is to set up a mechanism which allows non-
periodic traffic to be served and analyzed without changing
the feasibility conditions of a periodic task.

The easiest way to achieve this is to schedule all non-
periodic tasks at a lower priority (assuming that the tasks are
scheduled using a preemptive fixed priority policy). This
policy is known as theBackground Servicing (BS). If it is
very simple to implement, it does not offer satisfying re-
sponse times for non-periodic tasks, especially if the peri-
odic traffic is important.

Research turns on new scheduling approaches for mini-
mizing the aperiodic tasks response times whilst guarantee-
ing the feasibility of the periodic tasks.

In this context, the periodic task servers were introduced
by LEHOCZKY et al. in [6]. A periodic task server is a
periodic task, for which classical response time determina-
tion and admission control methods are applicable (with or

without modifications). This particular task is in charge of
servicing the non-periodic traffic with a limited capacity.

Several types of task server can be found in the literature.
They differ by the way the capacity is managed. We can cite
thePolling Serverpolicy (PS), theDeferrable Serverpolicy
(DS), thePriority Exchangepolicy (PE) first described by
LEHOCZKY et al. in [6] and developed in [10, 8] and the
Sporadic Serverpolicy (SS) presented in [9].

In [5], L EHOCZKY and RAMOS-THUEL propose the
Static Slack Stealer, an algorithm to compute the slack:
the maximal amount of time available at instantt to exe-
cute aperiodic tasks at the highest priority without endan-
gering the periodic tasks. They demonstrate the optimality
of this approach in terms of maximizing the aperiodic tasks
response times among non clairvoyant algorithms. Unfor-
tunately, they also admit that its time and memory complex-
ities are much too high for it to be usable.

In his PhD thesis work [4], DAVIS proposes a dynamic
algorithm to compute the exact available slack time. Then
he demonstrates that the complexity is too high for a real
implementation and proposes two approximate slack time
computation algorithms, one based on a static approxima-
tion, SASS, and the other which is dynamic,DASS. The dy-
namic approach presents the advantage to allow gain time1

to be assimilated in the slack and then transparently reallo-
cated for aperiodic traffic.

All these contributions make the assumption that the
developer has the hand on the scheduler, and are in sub-
stance enhanced scheduling mechanisms. Unfortunately,
the scheduler is most of the time a part of the hardware or of
the operating system. That is why we propose a framework
based upon these algorithms, but adapted to be implemented
in userland, on top of the scheduler.

In this paper, we describe and evaluate the slack stealer
part of this framework. Our goal is to provide a slack

1if a periodic task has a worst case execution time greater thanits mean
execution time, most of its executions generate reserved but unused time
calledgain time



stealer approach not only implementable on top of the sys-
tem scheduler, but also with a very low overhead integrable
in the feasibility analysis process.

To limit this overhead, we propose a very simple slack
approximation algorithm of the slack which does not use
scheduler or system specific data to perform. Moreover, we
modify the way the slack is used in order to integrate the
slack gesture cost in the worst case execution time of peri-
odic tasks.

We formalize in Section 2 the task model and general
notations. We describe in Section 3 the static and dynamic
slack stealers, and the Dynamic Approximate Slack Stealer
(DASS). We present our userland slack estimation in Sec-
tion 4. Then its userland utilization in Section 5. Our simu-
lations methodology is detailed in Section 6 and results are
presented in Section 7. We propose to illustrate this work
with an RTSJ implementation in Section 8.

2 Task Model and notations

We consider a process model of a mono processor sys-
tem, Φ, made up ofn periodic tasks,Π = {τ1, ..., τn}
scheduled with fixed priorities. Eachτi ∈ Π is a se-
quence of requests for execution characterized by the tu-
ple τi = (Ci, Ti, Di, P i), whereCi is the worst case ex-
ecution time of the request2; Ti is its period ;Di its rela-
tive deadline withDi ≤ Ti andPi its priority, 3 being the
highest. Tasks are ordered according to their priority, i.e.
P1 < P2 < ... < Pn. We do not consider blocking factor
nor release jitter.

The system also has to serve an unbounded numberp of
aperiodic requests,Γ = {σ1, ..., σp}. A requestσi ∈ Γ is
characterized by a worst case execution timeCi

2.
The highest priority,1, is reserved for the taskT which

implements our mechanism. When an aperiodic request is
raised,T registers it in a queue. When slack becomes avail-
able, enqueued aperiodic tasks can be released byT with
the priority 2. They are then scheduled by the system ac-
cording to this priority.

3 Static and Dynamic Slack Stealing

The slack stealing technique was first introduced by LE-
HOCZKY and RAMOS-THUEL in [5]. It consists in deter-
mining how much computation time is available at the high-
est priority without jeopardizing the execution of the peri-
odic tasks. Then this time can be used for aperiodic servic-
ing. Since our mechanism is inspired by this technique, we
review it in this section.

2for brevity concern, we can denote itcostin this paper

3.1 Static Slack Stealing

This slack stealing algorithm is called static because the
most significant computations are made off line. However,
there is also a run-time phase.

3.1.1 Off line computations

The aim of this first step is to compute for each task a
function which gives the task laxity at timet. The laxity
of the taskτi at time t is the sum of aperiodic process-
ing which can be process immediately in preference ofτi

without compromising the respect of its deadline. These
functions are notedAi(t). The function giving the ape-
riodic processing which can be processed at timet at the
highest priority without compromise any deadline is noted
A(t). The authors proved Equation 1 and gave an algorithm
to compute theAi(t).

A(t) = min
1≤k≤n

Ak(t) (1)

3.1.2 On line algorithm

A(t) = min
1≤i≤n

(Ai(t) − Ii) −A (2)

At time t, the available laxity is given by Equation 2
whereIi is thei-level inactivity andA the sum of the ape-
riodic processing time. These two values are maintained up
to date each time the CPU begins a new activity.

The available laxity can only be increased when a hard
periodic task ends. Hence, the laxity is only computed
in two cases: if an aperiodic task is released when the
aperiodic queue is empty and if a periodic task ends whilst
the aperiodic queue is not empty.

Though this first algorithm is optimal (it provides the ex-
act available time), it has time and memory complexities
much too high and it is only applicable to simple systems,
without synchronization constraints, resources sharing or
sporadic hard real-time tasks. Moreover it can not be ex-
tended for gain time reclaiming. That is why DAVIS pro-
poses a dynamic algorithm.

3.2 Dynamic Slack Stealing

This part of DAVIS thesis was first published with TIN-
DELL and BURNS in [3]. The first step to determine the
available slack time is to compute for each task the maxi-
mum guaranteed slack,Smax

i (t), i.e. the maximum amount
of slack time which may be stolen at priority leveli, during
the interval[t, t + di(t)), whilst guaranteeing that taskτi

meets its deadline. The valuedi(t) denotes the remaining
time beforeτi next deadline.



The interval[t, t + di(t)) is viewed as a succession ofi-
levelbusy periods3 andi-level idle periods4. Then,Smax

i (t)
is the sum of thei-level idle period lengths. The author
provides two equations, one to compute the end of a busy
period starting at timet, one to compute the length of an
idle period starting at timet. To determineSmax

i (t), the
two equations are recursively applied until the next deadline
is reached.

Then, if an aperiodic task is released at timet, let k
be the priority of the running hard periodic task, the soft
aperiodic task processing can proceed immediately in
preference to taskτk for a duration ofmin

∀j≥k
Smax

j (t).

This algorithm is not directly usable because of its time
complexity. However, the slack computation can be re-
placed by a slack estimation. The algorithm is then no
more optimal but can offer a significant improvement com-
pared to other solutions. DAVIS proposes slack approxima-
tion mechanisms, but his algorithms are schedulers, with
full knowledge of tasks and current execution parameters.
Rather than adapting them, we prefer to set up a naive ap-
proximation based on data pieces easily available. More-
over, we want to keep a low computation complexity. Con-
cerning the use of the computed slack, our algorithm is
driven by our will to integrate the overhead in the feasibility
analysis.

3.3 Dynamic Approximate Slack Stealer

SinceSi(t) is the sum of the i-level idle period lengths
in the interval[t, t+di(t)), DAVIS proposes to estimate this
quantity by computing a bound on the maximal interference
the taskτi can suffer in this interval. A bound on this inter-
ference is given by the sum of the interferences from each
task with a higher priority thanτi. Then Equation 3 gives
the interference suffer by a taskτj from a taskτi in an in-
terval[a, b].

Ij
i (a, b) = ci(t) + fi(a, b)Ci+

min(Ci, (b − xi(a) − fi(a, b)Ti)0) (3)

The function fi(a, b) returns theτi instance number
which can begins and completes in[a, b]. It is given by
Equation 4.

fi(a, b) =

⌊

b − xi(a)

Ti

⌋

0

(4)

The functionxi(t) represents the first activation ofτi

which follows t. Then the interference is composed by the

3periods where the processor is servicing priorities higheror equal toi
4processor idle periods or periods where processor serves priorities

lower thani

remaining computation time needed to complete the current
pending request, by a number of entire invocations given by
fi(a, b), and by a last partial request.

A lower bound on theSi(t) value is given by the length
of the interval minus the sum of the interferences from each
task with a higher or equal priority thanτi. It is recapitu-
lated by Equation 5.

Si(t) =



di(t) − t −
∑

∀j≤i

Ii
j(t, di(t))





0

(5)

4 Userland algorithm for slack time estima-
tion

We decompose the maximum available slack per task
(Smax

i (t)) into two different pieces of data: firstWmax
i (t),

the maximum possible work at priorityi regardless of lower
priority processes ; secondci(t), the effective hard real-time
work we have to process at the instantt. The approximation
is performed on the first term. To compute a bound on the
available slack at timet at the highest priority,S(t), we
then have to computeSi(t) for all priorities and take the
minimum. This operation has anO(n) time complexity.

Smax
i (t) = Wmax

i (t) − ci(t)
Smax

t ≥ St = min
1≤i≤n

Wi(t) − ci(t) (6)

So we have to keep up to date for each periodic task the
two valuesWi(t) andci(t).

4.1 Data initialization

Under hypothesis of a synchronous activation of all pe-
riodic hard real-time tasks att0, we have:

Wmax
1 (t0) = D1 (7)

∀i,Wmax
i (t0) = Di −

∑

∀k<i

⌈

Di

Tk

⌉

Ck (8)

∀i, ci(t0) = Ci (9)

If we relax the synchronous activation hypothesis, the
exact number ofτk activation between the first release ofτi

and its first deadline,Nba, should be computed and equa-
tion 8 becomes:

∀i,Wmax
i (t0) = Di −

∑

∀k<i

NbaCk (10)

The data initialization has a time complexity inO(n2),
but can be completed before starting the system.



4.2 Dynamic operations

The values we want to keep up to date are function of
time, so they potentially evolve at each clock tick. Between
two datest1 andt2, if k is the priority level of the executing
task,Wmax

i is reduced bydt = (t2 − t1) for any task with
a higher priority thank, andci(t) is reduced forτk. We
approximateWmax

i by considering that it is reduced bydt
for all tasks. We correct this pessimistic evaluation when
a taskτk ends by adding its cost toWi for all task with a
lesser priority thank. We will see in Section 5 that we only
need to compute the slack when a task ends. So we just
have to update theWi when a task completes and theci at
each context switches. If we do not consider systems with
resource sharing, a context switch occurs only when a task
begins and when a task ends.

1. End of periodic task τk. Let dt be the elapsed time
sincetle the last periodic task ending, i.e. the last up-
date of aWi. Then,Wi is reduced bydt for all tasks
andWk is increased byTk and reduced by the inter-
ference of higher priority tasks during the next period
of τk. We consider an upper bound on the maximal in-
terference the task can suffer during one period. This
bound,I∗k , given by equation 11, can be computed dur-
ing the initialization phase. A closer approximation
technique is discussed in Section 4.3. Interference suf-
fers byτk before its next activation is already included
in the approximation ofWk.

Ik ≤ I∗k =
∑

∀j<k

⌈

Tk

Tj

⌉

Cj (11)

Moreover, for all tasks with a smaller priority thanτk,
Wi is increased byCk. Finally, ck(t) is reset toCk.

∀i < k, Wi(t) = Wi(tle) − dt
∀i > k, Wi(t) = Wi(tle) − dt + Ck

i = k,

{

Wk(t) = Wk(tle) − dt + Tk − I∗k
ck(t) = Ck

(12)

These operations are summarized in Equation 12.
Their time complexity isO(n). We will see in Sec-
tion 4.3 that the time complexity to obtain the inter-
ference is alsoO(n). This overhead can be a priori
added to each periodic task cost since the operations
are performed at the end of each instance.

2. Beginning of periodic task τk.

As in the previous case, the maximum available pro-
cess time is reduced bydt at each priority levels. How-
ever, since we do not need to accurate theWi values

qT

τ

τ

T

T

i

j

i

j

i r u

Tj

v(k−1)Ti

Figure 1. Number of Ti in Tj

before the next task ending, we do not update these
values in this case. Since the last update of data (end or
begin of periodic request servicing), there is two pos-
sibilities. First, the scheduler can have served periodic
traffic, say aτj request. Thencj(t) is reduced bydt.
The other possibility is that the system was idle or ser-
vicing a soft request. Then there is no need for data
update.

If j 6= 0, cj(t) = cj(t) − dt (13)

This operation is summarized in Equation 13. This
time, the time complexity isO(1) and again, the in-
duced overhead can be added to each periodic task
cost.

3. Soft real-time aperiodic task τα arrival.

When a soft real-time aperiodic task is released, it is
enqueued. Utilization of the slack to serve enqueued
aperiodic requests is the topic of Section 5.

4.3 Interference upper bound

Let τi andτj be two periodic hard real-time tasks with
Ti < Tj . The priorities are assigned with a Rate Monotonic
policy. We discuss in this section ofIj

i (t), the interference
taskτj suffers from taskτi. More precisely, we give here
a way to determineNaj

i (t), the number of activations of
task τi during the current period of taskτj . We have the
following properties:

Ij
i (t) ≤ Naj

i (t).ci (14)

Ij(t) ≤
∑

h∈hp(j)

Ij
h(t) (15)

If we can find theNaj
i (t) value in constant time, we can

determine a bound for the total interference inO(n) time
complexity.

4.3.1 Possible values for Naj
i (t)

Let q and r be the quotient and the remainder in the eu-
clidean division ofTj by Ti. We haveTj = qTi + r. Then,



for any activation ofτj , let u denotes the time before the
nextτi activation,k the number ofτi activations before the
nextτj activation andv be equal toTj − (k− 1)Ti −u. We
haveTj = u + (k − 1)Ti + v, u < Ti andv < Ti.

Figure 1 resumes these notations.

Theorem 1. There is only two possible values fork, which
are q + 1 andq.

Proof ofk > q − 1.
Supposek ≤ q − 1,
k ≤ q − 1 ⇒ k − 1 ≤ q − 2 ⇒
u + (k − 1)Ti + v < Ti + (q − 2)Ti + Ti

becauseu < Ti andv < Ti.
Then, since we haveu + (k − 1)Ti + v = Tj , we getTj <
qTi.
This is in contradiction withTj = qTi + r, r ≥ 0.

Proof ofk < q + 2.
Supposek ≥ q + 2,
k ≥ q + 2 ⇒ k − 1 ≥ q + 1 ⇒
u + (k − 1)Ti + v ≥ u + (q + 1)Ti + v ⇒
Tj ≥ (q + 1)Ti, sinceu ≥ 0 andv ≥ 0. This is in contra-
diction withTj = qTi + r, q ≥ 1 andr < Ti.

In conclusion, determining the two possible values is a
constant time complexity operation, and can be done off-
line before starting the system.

4.3.2 Determining the next interference

When a taskτj ends at timet, we want to find an upper
bound onIi the interference it will suffer from tasks with
higher priorities during its next activation. This interference
is bounded by the sum of the interferences caused by each
task with higher priority. Then the interference caused by
task τi is bounded bykCi, wherek is the number ofτi

activations during theτj next period. We demonstrate that
k can be equal toq or q + 1, whereq is the quotient in the
euclidean division ofTj by Ti.

In order to determine the correct value ofk in this par-
ticular case, we first determine the value ofu. At time t, let
u be the difference betweenb anda, wherea is the nextTj

activation date andb the firstTi activation date that follow
a. We have:

a =

⌈

t

Tj

⌉

Tj

b =

⌈

a

Ti

⌉

Ti

u = b − a

Now, we just have to compareu andr :

Theorem 2.

u ≤ r ⇒ k = q + 1 (16)

u > r ⇒ k = q (17)

Proof of Equation 16.
k = q + 1 ⇒ k − 1 = q ⇒
u + (k − 1)Ti + v = qTi + u + v ⇒
u + v = r ⇒
u ≤ r sinceu ≥ 0 andv ≥ 0.

Proof of Equation 17.
k = q ⇒
u + (k − 1)Ti + v = (q − 1)Ti + u + v ⇒
u + v − Ti = r ⇒
u > r sincev < Ti.

If we relax the assumption of the rate monotonic priori-
ties assignment, we can haveTj < Ti. Than we haveq = 0
andr = Tj . That gives us:

u ≤ Tj ⇒ k = 1

u > Tj ⇒ k = 0

which is correct.

Choosing the correct value is then a constant time com-
plexity operation. We are able to determine theNaj

i (t)
value with aO(1) time complexity and then the interference
with a O(n) time complexity. Note that the complexity is
the same for the exact computation of the interference used
by DASS and given by Equation 3. However, the constant
number of computations needed is smaller and we do not
need any execution related data such as the remaining exe-
cution time needed to completeτi.

5 Slack utilization in userland

In the slack stealer algorithms proposed by LEHOCZKY

and RAMOS-THUEL and then by DAVIS, the slack at the
highest priority is computed at the arrival of an aperiodic
request, and the request is served in the limit of the slack.
In DASS, Si(t) is computed each time a task with a higher
or equal priority thanτi ends an execution, and assumed
to have decreased by the elapsed time otherwise. Then the
slack is computed inO(n) time complexity each time an
aperiodic arrives. In our userland context, we oppose two
objections to these models.

First, if we consider a request with a cost greater than the
available slack, we have to start the service of the request,
stop it when the slack is exhausted and then resume it later
when more slack is available. This is not a problem if we are
writing a scheduler, but becomes quite complex in userland.
We can off course play with the priority of the task, but



it supposes that the system allows dynamic changes of the
priorities. So the first conclusion is that we must wait to
have enough slack to schedule the request in one shot.

From that limitation cames the question of the queue pol-
icy. Not having enough slack to serve the first arrived ape-
riodic request does not mean that we not have enough to
serve the second one. In our simulations, we test the fol-
lowing policies:first in first out, last in first out, lowest cost
first andhighest cost first.

The second objection is that we cannot compute the slack
each time an aperiodic request arrives. Since the number
and the arrival model of the aperiodic requests are unknown
and the computation of the slack has anO(n) time com-
plexity, the overhead of this approach cannot be bounded
nor incorporated in the feasibility analysis process.

From this second objection cames the question of the
best instant to begin a pending request. Several approaches
are possible. Two remarks are that the slack can only grows
up when a periodic task ends its execution and that in the
worst case, afterx time unit since the last growth, the slack
has decreased byx.

The general conclusion is that we can compute inO(n)
time complexity a close approximation of the slack at
each periodic task ending, and assume at any other instant
that the slack has just decreased by the amount of elapsed
time unit. In this way, the slack estimation computation
in O(n) can be included in the task costs, and the rough
estimation perform each time an aperiodic request arrives
is just limited to a constant time complexity, inducing a
very low overhead. This overhead is not greater than the
unavoidable cost of enqueuing (or rejecting) the aperiodic
request.

The use of a slack estimation instead of an exact compu-
tation and the fact that we have to wait for having enough
slack to complete a request before starting it raises a new
issue. Some times, the algorithm can return a slack value of
0 time unit although the system is idle. Alternatively, there
can exist some situations where the slack has often a non
null but low value. In that sort of situations, our algorithm
cannot begins the request while a simpleBS could have
been able to complete it. To limit the side effect of these
situations on the average response time of the aperiodic re-
quests, we test a policy we called “duplicate BS”. It consists
to duplicate all aperiodic requests. One copy is immediately
scheduled withBS and the other copy is enqueued in our
mechanism. The first of the two to end interrupts the other
one.

We call this userland utilization of the slack associated
with our minimal approximation of the available slack the
Minimal Approximate Slack Stealer (MASS) algorithm.

6 Simulations

The validation of the effectiveness of our slack estima-
tion is the first purpose of our simulations. Despite the sim-
plicity of our algorithm induced by the wanted low over-
head, we expect results comparable to an exact slack com-
putation based algorithm. The targeted performance met-
ric is the mean response time of the aperiodic requests. To
achieve this goal, we simulate the same systems with ape-
riodic tasks served according to our slack estimation and
with the same aperiodic tasks (same release times and same
costs) served according to the approximation ofDASSand
with an exact computation of the available slack.

The second expecting result is the validation of the user-
land exploitation of slack time. The only other available
algorithm that does not need to customize the scheduler is
the Background Scheduling (BS). So we compare our re-
sults with the BS. Moreover, in [7] we proposed a frame-
work for implementing task servers with RTSJ on top of the
default scheduler. This framework permitted us to write a
Polling server and a Deferrable Server, but with modifica-
tions on this two algorithms. We denote the modified al-
gorithmsMPSandMDS. We also compare our results with
this ones to know how the slack stealing based approach
performs comparing to server based ones.

Finally, we also want to determine the best queue policy
through our simulations.

6.1 Methodology

We measure the mean response time of soft tasks with
different aperiodic and periodic loads.

First, we generate groups of periodic task sets with uti-
lization levels of 30, 50, 70 and 90%. The results presented
in this section are averages over a group of ten task sets. For
the same periodic utilization, we repeat generations over a
wide range of periodic task set composition, from systems
composed by 2 periodic tasks up to systems composed by
100 periodic tasks.

The periods are randomly generated with an exponen-
tial distribution in the range [40-2560] time units. Then
the costs are randomly generated with an uniform distri-
bution in the range [1-period] In order to test systems with
deadlines less than periods, we randomly generate deadlines
with an exponential distribution in the range [cost-period].
Priorities are assigned assuming a deadline monotonic pol-
icy.

Non feasible systems are rejected, the utilization is com-
puted and systems with an utilization level differing by less
than 1% from that required are kept.

For the polling server, we have to find the best period
Ts and capacityCs couple. We try to maximize the system



load U composed by the periodic loadUT and the server
loadUS .

U = UT + US

U =
∑ Ci

Ti

+
Cs

Ts

A feasible system load being bounded by1, we have
Equation 18.

Cs

Ts

≤ 1 −
∑ Ci

Ti

(18)

To find a lower boundCmin
s of Cs, we first set the period

to 2560 (the maximal period). We then search the maximal
value forCs in [1, 16] in order to keep a feasible system.
This maximal value is our lower bound onCs.

Then we seek the lower possibleTs value in[Cmin
s /(1−

∑

Ci/Ti), 2560]. For eachTs value tested, we try decreas-
ing values ofCs in [Cmin

s , Ts(1 −
∑

Ci/Ti)].
Note that it is possible to find a capacity lower than the

maximal aperiodic tasks cost. In such cases, since we have
to schedule the aperiodic tasks in one shot, we have no so-
lution but to background scheduling the tasks with a cost
greater than the server capacity.

For the deferrable server, the methodology is similar, ex-
cept that since the server has a bandwidth preservation be-
havior, we do not try to minimize the period and we can
search the maximalCs value in[1, 2560].

Finally, we generate groups of ten aperiodic task sets
with a range of utilization levels (plotted on the x-axis in the
following graphs). Costs are randomly generated with an
exponential distribution in the range [1-16] and arrival times
are generated with an uniform distribution in the range [1-
100000]. Our simulations end when all soft tasks have been
served.

6.2 Real-time Simulator

We develop a real-time event-based system simulator.
This is a Java program which can simulate the execution
of a real-time system and display a temporal diagram of the
simulated execution.

This tool is distributed under the General Public License
GNU (GPL), and can be found on the following web page:
http://igm.univ-mlv.fr/ ˜ masson/RTSS

In order to evaluate our slack time evaluation, we add a
PFP scheduler which schedules aperiodic tasks according
to an exact slack computation and another according to our
slack evaluation. The policies simulated take into account
the restrictions due to the targeted userland implementation.

7 Results

Figures 2 to 9 present our simulations results. On these
figures,ESS, DASS andMASS refer to our slack stealer
modified algorithm associated respectively with an exact
computation of the available slack time, the slack time ap-
proximation given byDASS and our approximation of
the available slack time.MPS andMDS designate the
modified polling server and deferrable server we devel-
oped in a previous work. FinallyBS designates the back-
ground scheduling associated with aFIFO queue policy
andMBS a modified background server which cannot be-
gins a task if a previously started task has not completed.
The notationX&BS refers to the policyX with a BS du-
plication.

Figures 2 to 5 show theMASS results for all periodic
composition systems. We notice that our algorithm per-
forms much better thanBS for all policies if the periodic
load is low (see Figure 2 and 3). However, when the pe-
riodic load increases, theBS duplication became unavoid-
able. With the extreme 90% load (Figure 5), the non BS-
duplicated curves are not viewable on the same graph than
the other and are completely out performed by theBS. The
explications of this phenomena can be found in Section 5.

The second thing to note is that the queue policy which
offers the best results is theLCF one. Due to space lim-
itations and clarity purpose, we cannot put all our results
in this paper, but this trend is confirmed by simulations on
MPS, MDS, DASS andESS. This is for sure amplified
by the one shot execution limitation. The shorter a task is,
the greater is the probability to have quickly enough slack
to schedule it completely.

Figures 6 to 9 present the results of the best queue pol-
icy for each algorithm (MPS, MDS, MASS, DASS and
ESS). For ESS, since the time complexity is dependant
on the number of task, the results do not include systems
composed of more than 40 periodic tasks. For all load
conditions, servers bring real improvement comparing to
BS. TheMDS offers better performances than theMPS.
Then,MASS performs better than the servers,DASS bet-
ter thanMASS andESS better thanDASS. For systems
with periodic loads of 30% and 50%, results obtained with
MASS, DASS andESS are quite similar. Considering
the differences between the time complexities of these al-
gorithms (constant, linear and pseudo polynomial), this isa
very satisfying result. HoweverMASS performances de-
grade when periodic load increases. NeverthelessMASS
remains the best userland-implementable algorithm even for
systems with a periodic load of 90%.
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Figure 2. MASS, 30% load
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Figure 3. MASS, 50% load
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Figure 4. MASS, 70% load
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Figure 5. MASS, 90% load
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Figure 6. Best policies, 30% load
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Figure 7. Best policies, 50% load
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Figure 8. Best policies, 70% load
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8 Example: RTSJ implementation

To illustrate the relevance of this work, we propose here
an RTSJ [1] implementation of this slack stealer mecha-
nism. Under RTSJ, it is possible theoretically to change the
scheduler, but all the implementation of the specification
rely on system scheduler. So if you want to use advance al-
gorithms for jointly scheduling soft and hard real-time tasks
in a portable application, you have to do it on top of the ba-
sic priority scheduler available by default.

8.1 Aperiodic Tasks and RTSJ

The RTSJ proposes two classesAsyncEvent and
AsyncEventHandler to model respectively an asyn-
chronous event and its handler(s). The only way to include
an handler in the feasibility process is to treat it as an inde-
pendent task, and that implies to know at least its worst-case
occurring frequency.

The RTSJ does not support any particular task server pol-
icy. It also provides the so called “Processing Group Param-
eters” (PGP), which allows programmer to assign resources
to a group of tasks. A PGP object is like aRelease-
Parameters which is shared between several tasks. More
specifically, PGP has acost field which defines a time
budget for its associated task set. This budget is replen-
ished periodically, since PGP has also a fieldperiod . This
mechanism provides a way to set up a task server at a log-
ical level. Unfortunately it does not take into account any
server policy. Moreover, as pointed in [2], it is far too much
permissive and it does not provide appropriate schedulabil-
ity analysis techniques. Finally, since cost enforcement is
an optional feature for an RTSJ-compliant virtual Java ma-
chine, PGP can have no effect at all. This is the case with
the Timesys Reference Implementation of the specification
(RI).

In next Section, we describe our previously published
task server framework for RTSJ and we show how we can
use it to write a slack stealer.

8.2 Slack Stealer Implementation with
RTSJ

In [7], we proposed an RTSJ extension to use task
servers. Since we extend this framework to propose a slack
stealer, we first describe it in this section.

8.2.1 Task Servers implementation

Our framework (Task Server Framework) is composed
of six new classes: ServableAsyncEvent (SAE),
ServableAsyncEventHandler (SAEH), Task-
Server , PollingTaskServer , Deferrable-
TaskServer andTaskServerParameters .

Figure 10. Classes to implement the server
policies

Figure 10 shows dependencies between classes in the
Task Server Framework and standard RTSJ classes.

To summarize the mechanism, when an SAE is fired, the
servableEventReleased() methods of the bounded
servers are called for each of its SAEHs. This method add
the SAEH in the associated task server job queue. Depend-
ing of the subclass used, the server can be scheduled peri-
odically or aperiodically to serve the aperiodic jobs in his
queue. Several queue policies are possible. This allows de-
velopers to write different behaviors for different task server
policies.

For example, we proposed aPollingTaskServer
class which is implemented with a periodic real-time thread
and a DeferrableTaskServer class with an asyn-
chronous event handler bounded to a special event.

8.2.2 Slack Stealer is a Task Server

We can add a new classSlackStealerTaskServer to
Figure 10. This class extendsTaskServer . The slack
stealer has to be wake up aperiodically: when an aperiodic
task is released while the queue is empty, or when the slack
time is increased while the queue is not empty.

The logic of theSlackStealerTaskServer class
can be delegated to anAsyncEventHandler bounded
to a specialAsyncEvent . The methodfire() of this
event is called in the two situations described above.

This design was used for our deferrable server imple-
mentation and validated by execution experiments.

9 Conclusions

In this paper, we address the problem of jointly schedul-
ing hard periodic tasks and soft aperiodic events when we
cannot change the scheduler and when data relative to the
current execution state are not accessible.



We briefly review aperiodic server algorithms. We de-
scribe the static and the dynamic exact slack computation
algorithms, both theoretically optimal, and the Dynamic
Approximate Slack Stealer. We present these algorithms
limits in our userland context.

We then propose a simple algorithm to compute in linear
time a bound on the available slack time. Since this algo-
rithm operates only on periodic tasks beginning and ending,
we show that the induced overhead can be included in these
tasks worst case execution times.

The remaining side effect of our mechanism is a constant
time operation to perform each time an aperiodic request
occurs. This is unavoidable, even if the request is scheduled
in background.

We simulate our slack stealer associated to an exact com-
putation of the slack time and associated to our slack ap-
proximation. In order to limit the side effect of the approx-
imation, we propose a duplication policy that simulations
tend to validate. We compare our simulations with simu-
lations on modified Polling and Deferrable servers we pro-
posed in another publication[7]. These modified server al-
gorithms are also targeted for userland implementation. Our
slack stealer is always the most efficient algorithm.

In our simulations, we test four aperiodic tasks queue
policies and the most efficient one both for task servers and
for slack stealers is the one which schedules in priority the
aperiodic task with the lowest cost. This is a behavior am-
plified by the userland restriction: we have to schedule ape-
riodic tasks in one shot. Even with very high periodic loads
(90%), our algorithm still brings improvements comparing
with aBS.

To illustrate the aim of this work, we present an example
of application: the implementation of portable task servers
and slack stealers with the Real-Time Specification for Java.

We do not consider in this work systems where periodic
task costs fluctuate. In such systems, a resource reservation
has to be made for the worst case scenario. Each time a task
completes earlier than in the worst case, gain time is gener-
ated. Even if we did not explain it in this paper, gain time
can be integrated in the definition of the slack. Actually,
this do not suppose any modification on our slack estima-
tion, since it use dynamic pieces of data.

To continue this work, we will have to consider more
complex systems, with resource sharing and precedence
constraints. We also have to conduct experiments with real
life executions in order to evaluate the exact cost of the BS
duplication policy.
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