Damien Masson
email: damien.masson@univ-paris-est.fr

Serge Midonnet
email: serge.midonnet@univ-paris-est.fr

Userland Approximate Slack Stealer with Low Time Complexity

The aim of our work is to provide a mechanism to deal with soft real-time aperiodic traffic on top of a fixed priority scheduler, without any kind of modification on it. We want to reduce as most as possible the time and implementation complexities of this mechanism. Moreover, the overhead of the framework has to be completely integrated in the feasibility analysis process. We propose a naive but low cost slack time estimation algorithm and discuss the issue of its utilization at the user level. We validate our work by extensive simulations and illustrate its utility by an implementation on top of the Real-Time Specification for Java (RTSJ).

Introduction

The need for more flexibility in real-time systems leads the community to address the problem of jointly scheduling hard periodic tasks and soft aperiodic events.

A solution is to set up a mechanism which allows nonperiodic traffic to be served and analyzed without changing the feasibility conditions of a periodic task.

The easiest way to achieve this is to schedule all nonperiodic tasks at a lower priority (assuming that the tasks are scheduled using a preemptive fixed priority policy). This policy is known as the Background Servicing (BS). If it is very simple to implement, it does not offer satisfying response times for non-periodic tasks, especially if the periodic traffic is important.

Research turns on new scheduling approaches for minimizing the aperiodic tasks response times whilst guaranteeing the feasibility of the periodic tasks.

In this context, the periodic task servers were introduced by LEHOCZKY et al. in [START_REF] Lehoczky | Enhanced aperiodic responsiveness in hard real-time environments[END_REF]. A periodic task server is a periodic task, for which classical response time determination and admission control methods are applicable (with or without modifications). This particular task is in charge of servicing the non-periodic traffic with a limited capacity.

Several types of task server can be found in the literature. They differ by the way the capacity is managed. We can cite the Polling Server policy (PS), the Deferrable Server policy (DS), the Priority Exchange policy (PE) first described by LEHOCZKY et al. in [START_REF] Lehoczky | Enhanced aperiodic responsiveness in hard real-time environments[END_REF] and developed in [START_REF] Strosnider | The deferrable server algorithm for enhanced aperiodic responsiveness in hard real-time environments[END_REF][START_REF] Sprunt | Exploiting unused periodic time for aperiodic service using the extended priority exchange algorithm[END_REF] and the Sporadic Server policy (SS) presented in [START_REF] Sprunt | Aperiodic task scheduling for hard real-time systems[END_REF].

In [START_REF] Lehoczky | An optimal algorithm for scheduling soft-aperiodic tasks fixed priority preemptive systems[END_REF], LEHOCZKY and RAMOS-THUEL propose the Static Slack Stealer, an algorithm to compute the slack: the maximal amount of time available at instant t to execute aperiodic tasks at the highest priority without endangering the periodic tasks. They demonstrate the optimality of this approach in terms of maximizing the aperiodic tasks response times among non clairvoyant algorithms. Unfortunately, they also admit that its time and memory complexities are much too high for it to be usable.

In his PhD thesis work [START_REF] Davis | On Exploiting Spare Capacity in Hard Real-Time Systems[END_REF], DAVIS proposes a dynamic algorithm to compute the exact available slack time. Then he demonstrates that the complexity is too high for a real implementation and proposes two approximate slack time computation algorithms, one based on a static approximation, SASS, and the other which is dynamic, DASS. The dynamic approach presents the advantage to allow gain time 1to be assimilated in the slack and then transparently reallocated for aperiodic traffic.

All these contributions make the assumption that the developer has the hand on the scheduler, and are in substance enhanced scheduling mechanisms. Unfortunately, the scheduler is most of the time a part of the hardware or of the operating system. That is why we propose a framework based upon these algorithms, but adapted to be implemented in userland, on top of the scheduler.

In this paper, we describe and evaluate the slack stealer part of this framework. Our goal is to provide a slack stealer approach not only implementable on top of the system scheduler, but also with a very low overhead integrable in the feasibility analysis process.

To limit this overhead, we propose a very simple slack approximation algorithm of the slack which does not use scheduler or system specific data to perform. Moreover, we modify the way the slack is used in order to integrate the slack gesture cost in the worst case execution time of periodic tasks.

We formalize in Section 2 the task model and general notations. We describe in Section 3 the static and dynamic slack stealers, and the Dynamic Approximate Slack Stealer (DASS). We present our userland slack estimation in Section 4. Then its userland utilization in Section 5. Our simulations methodology is detailed in Section 6 and results are presented in Section 7. We propose to illustrate this work with an RTSJ implementation in Section 8.

Task Model and notations

We consider a process model of a mono processor system, Φ, made up of n periodic tasks, Π = {τ 1 , ..., τ n } scheduled with fixed priorities. Each τ i ∈ Π is a sequence of requests for execution characterized by the tuple τ i = (C i , T i , D i , P i), where C i is the worst case execution time of the request 2 ; T i is its period ; D i its relative deadline with D i ≤ T i and P i its priority, 3 being the highest. Tasks are ordered according to their priority, i.e. P 1 < P 2 < ... < P n . We do not consider blocking factor nor release jitter.

The system also has to serve an unbounded number p of aperiodic requests, Γ = {σ 1 , ..., σ p }. A request σ i ∈ Γ is characterized by a worst case execution time C i 2 .

The highest priority, 1, is reserved for the task T which implements our mechanism. When an aperiodic request is raised, T registers it in a queue. When slack becomes available, enqueued aperiodic tasks can be released by T with the priority 2. They are then scheduled by the system according to this priority.

Static and Dynamic Slack Stealing

The slack stealing technique was first introduced by LE-HOCZKY and RAMOS-THUEL in [START_REF] Lehoczky | An optimal algorithm for scheduling soft-aperiodic tasks fixed priority preemptive systems[END_REF]. It consists in determining how much computation time is available at the highest priority without jeopardizing the execution of the periodic tasks. Then this time can be used for aperiodic servicing. Since our mechanism is inspired by this technique, we review it in this section. 2 for brevity concern, we can denote it cost in this paper

Static Slack Stealing

This slack stealing algorithm is called static because the most significant computations are made off line. However, there is also a run-time phase.

Off line computations

The aim of this first step is to compute for each task a function which gives the task laxity at time t. The laxity of the task τ i at time t is the sum of aperiodic processing which can be process immediately in preference of τ i without compromising the respect of its deadline. These functions are noted A i (t). The function giving the aperiodic processing which can be processed at time t at the highest priority without compromise any deadline is noted A(t). The authors proved Equation 1 and gave an algorithm to compute the A i (t).

A(t) = min 1≤k≤n A k (t) (1)

On line algorithm

A(t) = min 1≤i≤n (A i (t) -I i) -A (2)
At time t, the available laxity is given by Equation 2 where I i is the i-level inactivity and A the sum of the aperiodic processing time. These two values are maintained up to date each time the CPU begins a new activity.

The available laxity can only be increased when a hard periodic task ends. Hence, the laxity is only computed in two cases: if an aperiodic task is released when the aperiodic queue is empty and if a periodic task ends whilst the aperiodic queue is not empty.

Though this first algorithm is optimal (it provides the exact available time), it has time and memory complexities much too high and it is only applicable to simple systems, without synchronization constraints, resources sharing or sporadic hard real-time tasks. Moreover it can not be extended for gain time reclaiming. That is why DAVIS proposes a dynamic algorithm.

Dynamic Slack Stealing

This part of DAVIS thesis was first published with TIN-DELL and BURNS in [START_REF] Davis | Scheduling slack time in fixed priority pre-emptive systems[END_REF]. The first step to determine the available slack time is to compute for each task the maximum guaranteed slack, S max i (t), i.e. the maximum amount of slack time which may be stolen at priority level i, during the interval [t, t + d i (t)), whilst guaranteeing that task τ i meets its deadline. The value d i (t) denotes the remaining time before τ i next deadline.

The interval [t, t + d i (t)) is viewed as a succession of ilevel busy periods 3 and i-level idle periods 4 . Then, S max i (t) is the sum of the i-level idle period lengths. The author provides two equations, one to compute the end of a busy period starting at time t, one to compute the length of an idle period starting at time t. To determine S max i (t), the two equations are recursively applied until the next deadline is reached.

Then, if an aperiodic task is released at time t, let k be the priority of the running hard periodic task, the soft aperiodic task processing can proceed immediately in preference to task τ k for a duration of min This algorithm is not directly usable because of its time complexity. However, the slack computation can be replaced by a slack estimation. The algorithm is then no more optimal but can offer a significant improvement compared to other solutions. DAVIS proposes slack approximation mechanisms, but his algorithms are schedulers, with full knowledge of tasks and current execution parameters. Rather than adapting them, we prefer to set up a naive approximation based on data pieces easily available. Moreover, we want to keep a low computation complexity. Concerning the use of the computed slack, our algorithm is driven by our will to integrate the overhead in the feasibility analysis.

Dynamic Approximate Slack Stealer

Since S i (t) is the sum of the i-level idle period lengths in the interval [t, t + d i (t)), DAVIS proposes to estimate this quantity by computing a bound on the maximal interference the task τ i can suffer in this interval. A bound on this interference is given by the sum of the interferences from each task with a higher priority than τ i . Then Equation 3 gives the interference suffer by a task τ j from a task τ i in an interval [a, b].

I j i (a, b) = c i (t) + f i (a, b)C i + min(C i , (b -x i (a) -f i (a, b)T i) 0) (3)
The function f i (a, b) returns the τ i instance number which can begins and completes in [a, b]. It is given by Equation 4.

f i (a, b) = b -x i (a) T i 0 (4)
The function x i (t) represents the first activation of τ i which follows t. Then the interference is composed by the remaining computation time needed to complete the current pending request, by a number of entire invocations given by f i (a, b), and by a last partial request.

A lower bound on the S i (t) value is given by the length of the interval minus the sum of the interferences from each task with a higher or equal priority than τ i . It is recapitulated by Equation 5.

S i (t) =   d i (t) -t - ∀j≤i I i j (t, d i (t))   0 (5)

Userland algorithm for slack time estimation

We decompose the maximum available slack per task (S max i (t)) into two different pieces of data: first W max i (t), the maximum possible work at priority i regardless of lower priority processes ; second c i (t), the effective hard real-time work we have to process at the instant t. The approximation is performed on the first term. To compute a bound on the available slack at time t at the highest priority, S(t), we then have to compute S i (t) for all priorities and take the minimum. This operation has an O(n) time complexity.

S max i (t) = W max i (t) -c i (t) S max t ≥ S t = min 1≤i≤n W i (t) -c i (t) (6)
So we have to keep up to date for each periodic task the two values W i (t) and c i (t).

Data initialization

Under hypothesis of a synchronous activation of all periodic hard real-time tasks at t 0 , we have:

W max 1 (t 0) = D 1 (7) ∀i, W max i (t 0) = D i - ∀k<i D i T k C k (8) ∀i, c i (t 0) = C i (9)
If we relax the synchronous activation hypothesis, the exact number of τ k activation between the first release of τ i and its first deadline, N b a , should be computed and equation 8 becomes:

∀i, W max i (t 0) = D i - ∀k<i N b a C k (10)
The data initialization has a time complexity in O(n 2), but can be completed before starting the system.

Dynamic operations

The values we want to keep up to date are function of time, so they potentially evolve at each clock tick. Between two dates t 1 and t 2 , if k is the priority level of the executing task, W max i is reduced by dt = (t 2 -t 1) for any task with a higher priority than k, and c i (t) is reduced for τ k . We approximate W max i by considering that it is reduced by dt for all tasks. We correct this pessimistic evaluation when a task τ k ends by adding its cost to W i for all task with a lesser priority than k. We will see in Section 5 that we only need to compute the slack when a task ends. So we just have to update the W i when a task completes and the c i at each context switches. If we do not consider systems with resource sharing, a context switch occurs only when a task begins and when a task ends.

1. End of periodic task τ k . Let dt be the elapsed time since t le the last periodic task ending, i.e. the last update of a W i . Then, W i is reduced by dt for all tasks and W k is increased by T k and reduced by the interference of higher priority tasks during the next period of τ k . We consider an upper bound on the maximal interference the task can suffer during one period. This bound, I * k , given by equation 11, can be computed during the initialization phase. A closer approximation technique is discussed in Section 4.3. Interference suffers by τ k before its next activation is already included in the approximation of W k .

I k ≤ I * k = ∀j<k T k T j C j (11)
Moreover, for all tasks with a smaller priority than τ k ,

W i is increased by C k . Finally, c k (t) is reset to C k . ∀i < k, W i (t) = W i (t le) -dt ∀i > k, W i (t) = W i (t le) -dt + C k i = k, W k (t) = W k (t le) -dt + T k -I * k c k (t) = C k (12)
These operations are summarized in Equation 12. Their time complexity is O(n). We will see in Section 4.3 that the time complexity to obtain the interference is also O(n). This overhead can be a priori added to each periodic task cost since the operations are performed at the end of each instance.

2. Beginning of periodic task τ k .

As in the previous case, the maximum available process time is reduced by dt at each priority levels. However, since we do not need to accurate the

W i values qT τ τ T T i j i j i r u Tj v (k-1)T i Figure 1. Number of T i in T j
before the next task ending, we do not update these values in this case. Since the last update of data (end or begin of periodic request servicing), there is two possibilities. First, the scheduler can have served periodic traffic, say a τ j request. Then c j (t) is reduced by dt. The other possibility is that the system was idle or servicing a soft request. Then there is no need for data update.

If j = 0, c j (t) = c j (t) -dt (13
)
This operation is summarized in Equation 13. This time, the time complexity is O(1) and again, the induced overhead can be added to each periodic task cost.

Soft real-time aperiodic task τ α arrival.

When a soft real-time aperiodic task is released, it is enqueued. Utilization of the slack to serve enqueued aperiodic requests is the topic of Section 5.

Interference upper bound

Let τ i and τ j be two periodic hard real-time tasks with T i < T j . The priorities are assigned with a Rate Monotonic policy. We discuss in this section of I j i (t), the interference task τ j suffers from task τ i . More precisely, we give here a way to determine N a j i (t), the number of activations of task τ i during the current period of task τ j . We have the following properties:

I j i (t) ≤ N a j i (t).c i (14) I j (t) ≤ h∈hp(j) I j h (t) (15)
If we can find the N a j i (t) value in constant time, we can determine a bound for the total interference in O(n) time complexity.

Possible values for N a j

i (t) Let q and r be the quotient and the remainder in the euclidean division of T j by T i . We have T j = qT i + r. Then, for any activation of τ j , let u denotes the time before the next τ i activation, k the number of τ i activations before the next τ j activation and v be equal to T j -(k -1)T i -u. We have

T j = u + (k -1)T i + v, u < T i and v < T i .
Figure 1 resumes these notations.

Theorem 1. There is only two possible values for k, which are q + 1 and q.

Proof of k > q -1.

Suppose k ≤ q -1, k ≤ q -1 ⇒ k -1 ≤ q -2 ⇒ u + (k -1)T i + v < T i + (q -2)T i + T i because u < T i and v < T i .
Then, since we have u + (k -1)T i + v = T j , we get T j < qT i . This is in contradiction with T j = qT i + r, r ≥ 0.

Proof of k < q + 2. Suppose k ≥ q + 2, k ≥ q + 2 ⇒ k -1 ≥ q + 1 ⇒ u + (k -1)T i + v ≥ u + (q + 1)T i + v ⇒ T j ≥ (q + 1)T i , since u ≥ 0 and v ≥ 0.
This is in contradiction with T j = qT i + r, q ≥ 1 and r < T i .

In conclusion, determining the two possible values is a constant time complexity operation, and can be done offline before starting the system.

Determining the next interference

When a task τ j ends at time t, we want to find an upper bound on I i the interference it will suffer from tasks with higher priorities during its next activation. This interference is bounded by the sum of the interferences caused by each task with higher priority. Then the interference caused by task τ i is bounded by kC i , where k is the number of τ i activations during the τ j next period. We demonstrate that k can be equal to q or q + 1, where q is the quotient in the euclidean division of T j by T i .

In order to determine the correct value of k in this particular case, we first determine the value of u. At time t, let u be the difference between b and a, where a is the next T j activation date and b the first T i activation date that follow a. We have:

a = t T j T j b = a T i T i u = b -a
Now, we just have to compare u and r :

Theorem 2. u ≤ r ⇒ k = q + 1 (16) u > r ⇒ k = q (17)
Proof of Equation 16.

k = q + 1 ⇒ k -1 = q ⇒ u + (k -1)T i + v = qT i + u + v ⇒ u + v = r ⇒ u ≤ r since u ≥ 0 and v ≥ 0.
Proof of Equation 17.

k = q ⇒ u + (k -1)T i + v = (q -1)T i + u + v ⇒ u + v -T i = r ⇒ u > r since v < T i .
If we relax the assumption of the rate monotonic priorities assignment, we can have T j < T i . Than we have q = 0 and r = T j . That gives us:

u ≤ T j ⇒ k = 1 u > T j ⇒ k = 0 which is correct.
Choosing the correct value is then a constant time complexity operation. We are able to determine the N a j i (t) value with a O(1) time complexity and then the interference with a O(n) time complexity. Note that the complexity is the same for the exact computation of the interference used by DASS and given by Equation 3. However, the constant number of computations needed is smaller and we do not need any execution related data such as the remaining execution time needed to complete τ i .

Slack utilization in userland

In the slack stealer algorithms proposed by LEHOCZKY and RAMOS-THUEL and then by DAVIS, the slack at the highest priority is computed at the arrival of an aperiodic request, and the request is served in the limit of the slack. In DASS, S i (t) is computed each time a task with a higher or equal priority than τ i ends an execution, and assumed to have decreased by the elapsed time otherwise. Then the slack is computed in O(n) time complexity each time an aperiodic arrives. In our userland context, we oppose two objections to these models.

First, if we consider a request with a cost greater than the available slack, we have to start the service of the request, stop it when the slack is exhausted and then resume it later when more slack is available. This is not a problem if we are writing a scheduler, but becomes quite complex in userland. We can off course play with the priority of the task, but it supposes that the system allows dynamic changes of the priorities. So the first conclusion is that we must wait to have enough slack to schedule the request in one shot.

From that limitation cames the question of the queue policy. Not having enough slack to serve the first arrived aperiodic request does not mean that we not have enough to serve the second one. In our simulations, we test the following policies: first in first out, last in first out, lowest cost first and highest cost first.

The second objection is that we cannot compute the slack each time an aperiodic request arrives. Since the number and the arrival model of the aperiodic requests are unknown and the computation of the slack has an O(n) time complexity, the overhead of this approach cannot be bounded nor incorporated in the feasibility analysis process.

From this second objection cames the question of the best instant to begin a pending request. Several approaches are possible. Two remarks are that the slack can only grows up when a periodic task ends its execution and that in the worst case, after x time unit since the last growth, the slack has decreased by x.

The general conclusion is that we can compute in O(n) time complexity a close approximation of the slack at each periodic task ending, and assume at any other instant that the slack has just decreased by the amount of elapsed time unit. In this way, the slack estimation computation in O(n) can be included in the task costs, and the rough estimation perform each time an aperiodic request arrives is just limited to a constant time complexity, inducing a very low overhead. This overhead is not greater than the unavoidable cost of enqueuing (or rejecting) the aperiodic request.

The use of a slack estimation instead of an exact computation and the fact that we have to wait for having enough slack to complete a request before starting it raises a new issue. Some times, the algorithm can return a slack value of 0 time unit although the system is idle. Alternatively, there can exist some situations where the slack has often a non null but low value. In that sort of situations, our algorithm cannot begins the request while a simple BS could have been able to complete it. To limit the side effect of these situations on the average response time of the aperiodic requests, we test a policy we called "duplicate BS". It consists to duplicate all aperiodic requests. One copy is immediately scheduled with BS and the other copy is enqueued in our mechanism. The first of the two to end interrupts the other one.

We call this userland utilization of the slack associated with our minimal approximation of the available slack the Minimal Approximate Slack Stealer (M ASS) algorithm.

Simulations

The validation of the effectiveness of our slack estimation is the first purpose of our simulations. Despite the simplicity of our algorithm induced by the wanted low overhead, we expect results comparable to an exact slack computation based algorithm. The targeted performance metric is the mean response time of the aperiodic requests. To achieve this goal, we simulate the same systems with aperiodic tasks served according to our slack estimation and with the same aperiodic tasks (same release times and same costs) served according to the approximation of DASS and with an exact computation of the available slack.

The second expecting result is the validation of the userland exploitation of slack time. The only other available algorithm that does not need to customize the scheduler is the Background Scheduling (BS). So we compare our results with the BS. Moreover, in [START_REF] Masson | The design and implementation of real-time event-based applications with rtsj[END_REF] we proposed a framework for implementing task servers with RTSJ on top of the default scheduler. This framework permitted us to write a Polling server and a Deferrable Server, but with modifications on this two algorithms. We denote the modified algorithms MPS and MDS. We also compare our results with this ones to know how the slack stealing based approach performs comparing to server based ones.

Finally, we also want to determine the best queue policy through our simulations.

Methodology

We measure the mean response time of soft tasks with different aperiodic and periodic loads.

First, we generate groups of periodic task sets with utilization levels of 30, 50, 70 and 90%. The results presented in this section are averages over a group of ten task sets. For the same periodic utilization, we repeat generations over a wide range of periodic task set composition, from systems composed by 2 periodic tasks up to systems composed by 100 periodic tasks.

The periods are randomly generated with an exponential distribution in the range [40-2560] time units. Then the costs are randomly generated with an uniform distribution in the range [1-period] In order to test systems with deadlines less than periods, we randomly generate deadlines with an exponential distribution in the range [cost-period]. Priorities are assigned assuming a deadline monotonic policy.

Non feasible systems are rejected, the utilization is computed and systems with an utilization level differing by less than 1% from that required are kept.

For the polling server, we have to find the best period T s and capacity C s couple. We try to maximize the system load U composed by the periodic load U T and the server load U S .

U = U T + U S U = C i T i + C s T s
A feasible system load being bounded by 1, we have Equation 18.

C s T s ≤ 1 - C i T i (18)
To find a lower bound C min s of C s , we first set the period to 2560 (the maximal period). We then search the maximal value for C s in [START_REF] Bollella | The Real-Time Specification for Java[END_REF]16] in order to keep a feasible system. This maximal value is our lower bound on C s .

Then we seek the lower possible

T s value in [C min s /(1 - C i /T i), 2560]. For each T s value tested, we try decreas- ing values of C s in [C min s , T s (1 -C i /T i)].
Note that it is possible to find a capacity lower than the maximal aperiodic tasks cost. In such cases, since we have to schedule the aperiodic tasks in one shot, we have no solution but to background scheduling the tasks with a cost greater than the server capacity.

For the deferrable server, the methodology is similar, except that since the server has a bandwidth preservation behavior, we do not try to minimize the period and we can search the maximal C s value in [START_REF] Bollella | The Real-Time Specification for Java[END_REF]2560].

Finally, we generate groups of ten aperiodic task sets with a range of utilization levels (plotted on the x-axis in the following graphs). Costs are randomly generated with an exponential distribution in the range [START_REF] Bollella | The Real-Time Specification for Java[END_REF][START_REF] Burns | On the Move to Meaningful Internet Systems 2003: Workshop on Java Technologies for Real-Time and Embedded Systems[END_REF][START_REF] Davis | Scheduling slack time in fixed priority pre-emptive systems[END_REF][START_REF] Davis | On Exploiting Spare Capacity in Hard Real-Time Systems[END_REF][START_REF] Lehoczky | An optimal algorithm for scheduling soft-aperiodic tasks fixed priority preemptive systems[END_REF][START_REF] Lehoczky | Enhanced aperiodic responsiveness in hard real-time environments[END_REF][START_REF] Masson | The design and implementation of real-time event-based applications with rtsj[END_REF][START_REF] Sprunt | Exploiting unused periodic time for aperiodic service using the extended priority exchange algorithm[END_REF][START_REF] Sprunt | Aperiodic task scheduling for hard real-time systems[END_REF][START_REF] Strosnider | The deferrable server algorithm for enhanced aperiodic responsiveness in hard real-time environments[END_REF][11][12][13][14][15][16] and arrival times are generated with an uniform distribution in the range . Our simulations end when all soft tasks have been served.

Real-time Simulator

We develop a real-time event-based system simulator. This is a Java program which can simulate the execution of a real-time system and display a temporal diagram of the simulated execution.

This tool is distributed under the General Public License GNU (GPL), and can be found on the following web page: http://igm.univ-mlv.fr/ ˜masson/RTSS In order to evaluate our slack time evaluation, we add a PFP scheduler which schedules aperiodic tasks according to an exact slack computation and another according to our slack evaluation. The policies simulated take into account the restrictions due to the targeted userland implementation. Figures 2 to 9 present our simulations results. On these figures, ESS, DASS and M ASS refer to our slack stealer modified algorithm associated respectively with an exact computation of the available slack time, the slack time approximation given by DASS and our approximation of the available slack time. M P S and M DS designate the modified polling server and deferrable server we developed in a previous work. Finally BS designates the background scheduling associated with a F IF O queue policy and M BS a modified background server which cannot begins a task if a previously started task has not completed. The notation X&BS refers to the policy X with a BS duplication.

Figures 2 to 5 show the M ASS results for all periodic composition systems. We notice that our algorithm performs much better than BS for all policies if the periodic load is low (see Figure 2 and3). However, when the periodic load increases, the BS duplication became unavoidable. With the extreme 90% load (Figure 5), the non BSduplicated curves are not viewable on the same graph than the other and are completely out performed by the BS. The explications of this phenomena can be found in Section 5.

The second thing to note is that the queue policy which offers the best results is the LCF one. Due to space limitations and clarity purpose, we cannot put all our results in this paper, but this trend is confirmed by simulations on M P S, M DS, DASS and ESS. This is for sure amplified by the one shot execution limitation. The shorter a task is, the greater is the probability to have quickly enough slack to schedule it completely. Figures 6 to 9 present the results of the best queue policy for each algorithm (M P S, M DS, M ASS, DASS and ESS). For ESS, since the time complexity is dependant on the number of task, the results do not include systems composed of more than 40 periodic tasks. For all load conditions, servers bring real improvement comparing to BS. The M DS offers better performances than the M P S. Then, M ASS performs better than the servers, DASS better than M ASS and ESS better than DASS. For systems with periodic loads of 30% and 50%, results obtained with M ASS, DASS and ESS are quite similar. Considering the differences between the time complexities of these algorithms (constant, linear and pseudo polynomial), this is a very satisfying result. However M ASS performances degrade when periodic load increases. Nevertheless M ASS remains the best userland-implementable algorithm even for systems with a periodic load of 90%.

Example: RTSJ implementation

To illustrate the relevance of this work, we propose here an RTSJ [START_REF] Bollella | The Real-Time Specification for Java[END_REF] implementation of this slack stealer mechanism. Under RTSJ, it is possible theoretically to change the scheduler, but all the implementation of the specification rely on system scheduler. So if you want to use advance algorithms for jointly scheduling soft and hard real-time tasks in a portable application, you have to do it on top of the basic priority scheduler available by default.

Aperiodic Tasks and RTSJ

The RTSJ proposes two classes AsyncEvent and AsyncEventHandler to model respectively an asynchronous event and its handler(s). The only way to include an handler in the feasibility process is to treat it as an independent task, and that implies to know at least its worst-case occurring frequency.

The RTSJ does not support any particular task server policy. It also provides the so called "Processing Group Parameters" (PGP), which allows programmer to assign resources to a group of tasks. A PGP object is like a Release-Parameters which is shared between several tasks. More specifically, PGP has a cost field which defines a time budget for its associated task set. This budget is replenished periodically, since PGP has also a field period. This mechanism provides a way to set up a task server at a logical level. Unfortunately it does not take into account any server policy. Moreover, as pointed in [START_REF] Burns | On the Move to Meaningful Internet Systems 2003: Workshop on Java Technologies for Real-Time and Embedded Systems[END_REF], it is far too much permissive and it does not provide appropriate schedulability analysis techniques. Finally, since cost enforcement is an optional feature for an RTSJ-compliant virtual Java machine, PGP can have no effect at all. This is the case with the Timesys Reference Implementation of the specification (RI).

In next Section, we describe our previously published task server framework for RTSJ and we show how we can use it to write a slack stealer.

Slack Stealer Implementation with RTSJ

In [START_REF] Masson | The design and implementation of real-time event-based applications with rtsj[END_REF], we proposed an RTSJ extension to use task servers. Since we extend this framework to propose a slack stealer, we first describe it in this section.

Task Servers implementation

Our framework (Task Server Framework) is composed of six new classes: ServableAsyncEvent (SAE), ServableAsyncEventHandler (SAEH), Task-Server, PollingTaskServer, Deferrable-TaskServer and TaskServerParameters. To summarize the mechanism, when an SAE is fired, the servableEventReleased() methods of the bounded servers are called for each of its SAEHs. This method add the SAEH in the associated task server job queue. Depending of the subclass used, the server can be scheduled periodically or aperiodically to serve the aperiodic jobs in his queue. Several queue policies are possible. This allows developers to write different behaviors for different task server policies.

For example, we proposed a PollingTaskServer class which is implemented with a periodic real-time thread and a DeferrableTaskServer class with an asynchronous event handler bounded to a special event.

Slack Stealer is a Task Server

We can add a new class SlackStealerTaskServer to Figure 10. This class extends TaskServer. The slack stealer has to be wake up aperiodically: when an aperiodic task is released while the queue is empty, or when the slack time is increased while the queue is not empty.

The logic of the SlackStealerTaskServer class can be delegated to an AsyncEventHandler bounded to a special AsyncEvent. The method fire() of this event is called in the two situations described above.

This design was used for our deferrable server implementation and validated by execution experiments.

Conclusions

In this paper, we address the problem of jointly scheduling hard periodic tasks and soft aperiodic events when we cannot change the scheduler and when data relative to the current execution state are not accessible.

We briefly review aperiodic server algorithms. We describe the static and the dynamic exact slack computation algorithms, both theoretically optimal, and the Dynamic Approximate Slack Stealer. We present these algorithms limits in our userland context.

We then propose a simple algorithm to compute in linear time a bound on the available slack time. Since this algorithm operates only on periodic tasks beginning and ending, we show that the induced overhead can be included in these tasks worst case execution times.

The remaining side effect of our mechanism is a constant time operation to perform each time an aperiodic request occurs. This is unavoidable, even if the request is scheduled in background.

We simulate our slack stealer associated to an exact computation of the slack time and associated to our slack approximation. In order to limit the side effect of the approximation, we propose a duplication policy that simulations tend to validate. We compare our simulations with simulations on modified Polling and Deferrable servers we proposed in another publication [START_REF] Masson | The design and implementation of real-time event-based applications with rtsj[END_REF]. These modified server algorithms are also targeted for userland implementation. Our slack stealer is always the most efficient algorithm.

In our simulations, we test four aperiodic tasks queue policies and the most efficient one both for task servers and for slack stealers is the one which schedules in priority the aperiodic task with the lowest cost. This is a behavior amplified by the userland restriction: we have to schedule aperiodic tasks in one shot. Even with very high periodic loads (90%), our algorithm still brings improvements comparing with a BS.

To illustrate the aim of this work, we present an example of application: the implementation of portable task servers and slack stealers with the Real-Time Specification for Java.

We do not consider in this work systems where periodic task costs fluctuate. In such systems, a resource reservation has to be made for the worst case scenario. Each time a task completes earlier than in the worst case, gain time is generated. Even if we did not explain it in this paper, gain time can be integrated in the definition of the slack. Actually, this do not suppose any modification on our slack estimation, since it use dynamic pieces of data.

To continue this work, we will have to consider more complex systems, with resource sharing and precedence constraints. We also have to conduct experiments with real life executions in order to evaluate the exact cost of the BS duplication policy.

Figure 9 .

 9 Figure 2. MASS, 30% load

Figure 10 .

 10 Figure 10. Classes to implement the server policies

if a periodic task has a worst case execution time greater than its mean execution time, most of its executions generate reserved but unused time called gain time

periods where the processor is servicing priorities higher or equal to i

processor idle periods or periods where processor serves priorities lower than i