Slack Time Evaluation with RTSJ

Damien Masson and Serge Midonnet
Université Paris-Est
Laboratoire d’'informatique de l'institut Gaspard-Monge
UMR 8049 IGM-Lablnfo
77454 Marne-la-Vallée Cedex 2, France

{masson, midonnet}@univ-mlv.fr

ABSTRACT

We address in this paper the problem of jointly schedul-
ing hard periodic tasks and soft aperiodic events using the
Real-Time Specification for Java (RTSJ). We present the
programming constraints of RTSJ and propose slack time
evaluation and utilization algorithms which take these con-
straints into account. We evaluate these algorithms and
compare their performances with the Background Schedul-
ing (BS) through simulations.

1. INTRODUCTION

The need for more flexibility in real-time systems leads
the community to address the problem of jointly scheduling
hard periodic tasks and soft aperiodic events.

The easiest way to achieve this is to schedule all non-
periodic tasks at a lower priority (assuming that the tasks
are scheduled using a preemptive fixed priority policy). This
policy is known as the Background Servicing (BS).

In order to minimize the aperiodic tasks response times
whilst guaranteeing the feasibility of the periodic tasks, the
periodic task servers were introduced. A server is a periodic
task, for which classical response time determination meth-
ods are applicable (with or without modifications). The
server is in charge of servicing the non-periodic traffic with
a limited capacity.

The Static Slack Stealer, an algorithm to compute the
exact slack available at time t to execute aperiodic tasks at
the highest priority, is proposed in [1]. The optimality of
this approach for maximizing the aperiodic tasks response
times is demonstrated. Unfortunately, the time and memory
complexities does not permit to use it.

We propose in this paper to start from RTSJ constraints
to set up a slack time approximation algorithm. Then we
discuss the slack time utilization issues with RTSJ.

We review in Section 2 the available mechanisms with
RTSJ. Section 3 describes our approximate slack evaluation
algorithm. Section 4 explicits RTSJ constraints to design
slack time evaluation and utilization algorithms. Section

Permission to make digital or hard copies of al or part of this work for
persona or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

SAC’ 08 March 16-20, 2008, Fortaleza, Ceara, Brazil

Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

322

5 presents our simulations methodology and results. We
conclude in Section 6.

2. APERIODIC TASKSAND RTSJ

The RTSJ proposes two classes AsyncEvent and Async-
EventHandler to model respectively an asynchronous event
and its handler(s). The only way to include an handler in
the feasibility process is to treat it as an independent task,
and that implies to know at least its worst-case occurring
frequency.

The RTSJ does not support any particular task server
policy. We propose a solution in [2].

3. AVAILABLE SLACK EVALUATION

Our goal is to construct a slack time evaluation imple-
mentable with a minimal RTSJ compliant virtual machine.

The only instants in the system life time where we can
easily operate are each periodic task instances begin and
end.

We decompose the maximum available slack per task (S73*®)
according to Equation 1 where W;;** is the maximum pos-
sible work at priority i regardless of lower priority processes,
and c¢;(t) is the effective hard real-time work we have to pro-
cess at the instant ¢ at the priority 1.

ve = Wit —ait) (1)

Then the available slack at time ¢ at the highest priority

max

is the minimum of the S;'}

3.1 Datainitialization

Under hypothesis of a synchronous activation of all peri-
odic hard real-time tasks at to, we have:

Wi = d
VWIS = i [#le @
vkeHP (i)

Vi,Ci(tg) = C;

where c¢;, d; and T; are respectively the cost, the deadline
and the period of the periodic task ;. The data initialization
has a time complexity in O(n?), with n the periodic tasks
number.

3.2 Dynamic operations

The data are function of time, so they potentially evolve at
each clock tick. Between two dates t1 and t2, W; is reduced
by ta — t1 for any task and ¢;(t) is reduced for any task
executed during the interval. Eventually, these values can

be increased for the tasks which complete between t; and
t2. However, we only need to update them at each periodic
task instance begin and end and when an aperiodic event
occurs.

1. End of periodic task 7;. Let dt be the elapsed time
since the last update of our data. Then, W; is reduced
by the elapsed time since the last update and increased
by T; minus the interference of tasks with higher prior-
ity. This interference, given by equation 3, has already
be computed during the initialization phase.

L= 3 [%1 o 3)

vkeHP() |k

I; is not the real interference at instant ¢, but the maxi-
mal interference. This bound is reach in the worst case
scenario: the synchronous activation of all the tasks.

Moreover, for all tasks, Wy, is reduced by the elapsed
time, and for all tasks with a lower priority than 7,
Wy, is increased by ¢;. Finally, ¢;(t) is reset to ¢;.

Vi, Wie = Wi —dt
W;rza:c Z Wi,t = 7TLCMC(VV,;¢/7 0) —+ T,L — L_ (4)
V] > 1, Wj,t = W?',t’ + c;
C; (t) = G

2. Beginning of periodic task 7;.

The maximum available process time is reduced by dt
at all priority level. Let j be the previous activity
priority level. If j is in the hard real-time priority
range (noted hrtp), then ¢;(¢) is reduced by dt.

Vk, Wk,t = Wk,t’ — dt
if jE€hrtp,c;(t) = c;(t')—dt (5)
if Wie <ci(t),Wix = ci(t)

3. Soft real-time aperiodic task 7, arrival.

As for the previous cases, the maximum available pro-
cess time is reduced by dt at all priority level as W;
if the previous activity priority, j, is in the hard real-
time priority range. Then, the available slack at the
highest priority is computed.

Vk, Wk,t = Wk:,t' — dt
if j € hrtp,c;(t) = c¢;(t')—dt (6)
Smaac 2 Si,t == él;llln Wi,t — C; (t)
i€hrpr

4. RTSJI CONSTRAINTS

4.1 Slack approximation

In order to act at the beginning and at the end of the peri-
odic tasks instances, we overload the waitForNextPeriod()
method of RealTimeThread. This method is called at the
end of each periodic job and is blocking until the next job
execution.

The slack stealer may be implemented as an AsyncEvent-
Handler bound to a special AsyncEvent and with the max-
imal available priority.

The soft aperiodic events can be implemented with several
AsyncEvent all bound to the AsyncEventHandler represent-
ing the slack stealer. In this way, we can call the slack stealer
every time a soft aperiodic event is released and before and
after each instance of hard periodic tasks.

323

4.2 Slack Utilization

With Java, it is impossible to resume a previously stopped
thread. The RTSJ offers a mechanism to asynchronously
interrupt a RT-thread, but it does not allow to resume it
later. Moreover, in most implementation of RTJVM, the
dynamic change of the priority is not supported.

Due to these limitations, we cannot begin the execution
of a soft task at the highest priority if there is not enough
slack to permit its completion.

When there is available slack, we schedule the execution
of the first soft pending task with a cost lower or equal than
the available slack at the highest priority. When there is no
slack and no pending periodic task, we schedule in BS the
first pending aperiodic task.

5. SIMULATIONS

We simulate the same real-time systems with the three
following aperiodic policies: a BS, a slack stealing with an
exact computation of the slack and one with our approxi-
mation of the slack.

5.1 Methodology

We measure the mean response time of soft tasks with
different aperiodic and periodic loads.

First, we generate groups of ten periodic task sets with
utilization levels of 30, 50, 70 and 90%. The results pre-
sented in this section are based on averages over a group
of ten task sets. Then, we generate groups of ten aperiodic
task sets with a range of utilization levels (plotted on the
x-axis in the following graph). Our simulations end when
all soft tasks have been served.

We experiment on a GPL home made event-based simu-
lator.

5.2 Results

Our simulations show an improvement over a simple BS.
However, we are nearer from a BS than from the same policy
using an exact computation of the slack. Moreover, the
higher the periodic charge is, the worst the results are.

6. CONCLUSIONS

In this paper, we address the problem of jointly scheduling
hard periodic tasks and soft aperiodic events with RT'SJ. We
present the programming constraints of RT'SJ and propose
a simple slack time evaluation algorithm. We describe a
possible implementation of this algorithm. We describe a
RTSJ compliant slack utilization algorithm. We simulate
this algorithm with an exact slack computation and with
our approximation. If we obtain better results than a simple
BS, these simulations point out that our approximation of
the available slack is too large.

7. REFERENCES

[1] J. P. Lehoczky and S. Ramos-Thuel. An optimal
algorithm for scheduling soft-aperiodic tasks fixed
priority preemptive systems. In proceedings of the 13th
IEEE Real-Time Systems Symposium, pages 110-123,
Phoenix, Arizona, December 1992.

[2] D. Masson and S. Midonnet. The design and
implementation of real-time event-based applications
with RTSJ. In WPDRTS (in proceedings of IPDPS),
page 148, Long Beach, CA USA, March 2007.

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

