
HAL Id: hal-00620347
https://hal.science/hal-00620347

Submitted on 19 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improvement of schedulability bound by task splitting in
partitioning scheduling

Frédéric Fauberteau, Serge Midonnet, Laurent George

To cite this version:
Frédéric Fauberteau, Serge Midonnet, Laurent George. Improvement of schedulability bound by task
splitting in partitioning scheduling. 1st International Real-Time Scheduling Open Problems Seminar
(RTSOPS’10), Jul 2010, Brussels, Belgium. pp.20-21. �hal-00620347�

https://hal.science/hal-00620347
https://hal.archives-ouvertes.fr


Improvement of schedulability bound by task splitting in partitioning
scheduling

Frédéric Fauberteau
Université Paris-Est

LIGM, UMR CNRS 8049
Email: fauberte@univ-mlv.fr

Serge Midonnet
Université Paris-Est

LIGM, UMR CNRS 8049
Email: midonnet@univ-mlv.fr

Laurent George
ECE, LACSC

37, quai de Grenelle,
75015 Paris, France

Email: lgeorge@ieee.org

Abstract

We focus on the class of static-priority partitioning scheduling algorithm on multiprocessor. We are
interested in improving the schedulability of these algorithms by splitting the tasks which cannot be
successfully allocated on processors.

1. Context

Unless P = NP , no polynomial time algorithm exists to solve the MULTIPROCESSOR-TASK-PARTITIONING
problem. Indeed, this problem can be transformed from BIN-PACKING problem which is NP-hard in the strong
sense. Fortunately, there are several heuristics which solve BIN-PACKING problem and they may be adapted to
produce partitioned schedulings. For instance, the algorithm FBB-FDD is based on First-Fit Decreasing [1] and
the algorithm RM-DU-NFS is based on Next-Fit [2].

We are interested in proposing a partitioning algorithm which is robust to task Worst Case Execution Time
(WCET) overruns faults with the same objective as in [3]. This partitioning tends to maximize the capacity of the
system to handle the WCET overruns by offering the maximum Allowance to each faulty task of the system. The
Allowance of a task is the execution duration which can be added to its WCET such that all the deadlines in the
system are met [4].

We have shown in [5] that the Worst-Fit heuristic offers good results in order to maximize the robustness of
a partitioned system. Worst-Fit selects the least loaded processor (in terms of utilization) which can accept a
task. Unfortunately, the performances of Worst-Fit in terms of schedulability are less efficient than those of the
heuristics widely used in partitioning algorithms (First-Fit Decreasing/Best-Fit/Next-Fit). In order to improve the
schedulability bound of Worst-Fit and potentially those of the other heuristics, we propose to split the tasks which
cannot be allocated one a single processor. Contrary to the portioned scheduling approach proposed in [6] and [7],
we don’t migrate a job from a processor to another during its execution but we allocate jobs on different processors
such that the migrations occur at job boundaries [8].

2. Task splitting approach

Description. Let Π be a multiprocessor composed by m identical processors denoted by Π = {π1, . . . , πm}.
Let τ be a set of tasks made of n periodic (or sporadic) real-time tasks denoted τ = {τ1, . . . , τn}. Each task is
characterized by its WCET, its deadline and its period (or minimum interarrival time). We consider a partitioning
algorithm denoted A which allocates the tasks of τ on Π. A is designed as follows:

• τ is sorted according to a decreasing order policy (for instance Decreasing Utilization),
• a heuristic chooses the processor on which a given task should be allocated,
• a schedulability test is used to decide whether the task can be allocated on the processor chosen by the heuristic.

The resulting algorithm A produces a partition of τ on Π. If A fails to allocate the task τi, the set of pending tasks
{τi, . . . , τn} is unallocated.

In order to schedule these unallocated tasks, two approaches can be considered: portioned scheduling and
scheduling at job boundaries (i.e. restricted migration). To illustrate the first one, we show in Figure 1 four tasks



1

2

3

0 2 4 6 8 10 12 14 16 18 20 22

2 4 6 8 10 12 14 16 18 20 22

2 4 6 8 10 12 14 16 18 20 22

P 1

P 2

P 3

1 1 1 1 1 1 1

2 2 2 2 2

3 3 3 3

4

4

4

4

4

4 4

4

4

4

4

4

Figure 1. Portioned scheduling.

1

1 1

1

1 1

1

2 2

2

2

2 2

3

3

3

3 34

4 4

4

0 2 4 6 8 10 12 14 16 18 20 22

2 4 6 8 10 12 14 16 18 20 22

2 4 6 8 10 12 14 16 18 20 22

P 1

P 2

P 3

Figure 2. Scheduling at job boundaries.

{τ1(2, 3), τ2(3, 4), τ3(3, 5), τ4(3, 6)} scheduled on three processors. No partition can be found because ui + uj >
1, ∀i 6= j, i, j ∈ {1, 2, 3, 4} (ui = WCET

period ). In this example, the tasks are allocated in decreasing utilization order
and τ4 is the last one. Therefore τ4 is portioned and its jobs are scheduled on the three processors.

This approach can be difficult to implement because it is not easy to split a job in many parts. A job consists in
pieces of code which can contain indivisible sections. Moreover, a large number of migrations occurs since a job
can migrate several times. The second approach is attractive because the migrations are at job boundaries. Therefore
no migration overhead are incurred if the consecutive jobs of a task don’t share any data. We propose to plit a task
in several k subtasks. Each subtask has the same WCET and deadline as its parent task but the subtasks are less
frequently activated (their periods are multiplied). k − 1 subtasks are unsynchronized with an offset to avoid the
jobs overlaps. We represent in Figure 2 the same example as in Figure 1. For instance, the subtasks τ11 (0, 2, 3, 9)
on P1, τ21 (3, 2, 3, 9) on P3 and τ31 (6, 2, 3, 9) on P3 produce the same execution as τ3 (2, 3) (where (w, x, y, z)
is (offset, WCET, deadline, period)).

Open problem. We consider the case where a partitioning algorithm doesn’t succeed to partition the set τ of tasks.
Our aim is to build an algorithm which can split the pending tasks in subtasks such that a feasible partition of
τ can be found. If no pending task can be split, already allocated tasks can be split until a feasible partition is
found. The problem is to build an algorithm which finds a valid splitting scheme if such a scheme exists such that
a feasible partition can be found.

Insights. We want to build an algorithm which splits the tasks such that the migration occurs at job boundaries. A
first approach is to build a static-priority restricted migration scheduler. This scheduler allocates jobs of the tasks
when they are activated on a ready processor according to a static-priority scheme. By logging the allocations made
by this scheduler, we can build our splitting scheme. Notice that, this approach can be complex because it may
require the consideration of an interval of study which can be exponential. Moreover, it is not obvious to decide
on which processor a task must be activated to minimize the number of subtasks.

References

[1] N. W. Fisher, S. K. Baruah, and T. P. Baker, “The partitioned scheduling of sporadic tasks according to static-priorities,”
in Proceedings of the 18th Euromicro Conference on Real-time Systems (ECRTS). Dresden, Germany: IEEE Computer
Society, July 2006, pp. 118–127.

[2] B. Andersson and J. Jonsson, “Preemptive multiprocessor scheduling anomalies,” in Proceedings of the 16th International
Parallel and Distributed Processing Symposium (IPDPS). Fort Lauderdale, Florida, USA: IEEE Computer Society, April
2002, pp. 12–19.

[3] R. I. Davis and A. Burns, “Robust priority assignment for fixed priority real-time systems,” in Proceedings of the 28th IEEE
Real-Time Systems Symposium (RTSS). Tucson, Arizona, USA: IEEE Computer Society, December 2007, pp. 3–14.

[4] L. Bougueroua, L. George, and S. Midonnet, “Dealing with execution-overruns to improve the temporal robustness of real-
time systems scheduled FP and EDF,” in Proceedings of the 2nd International Conference on Systems (ICONS). Sainte-Luce,
Martinique: IEEE Computer Society, April 2007, p. 8pp.

[5] F. Fauberteau, S. Midonnet, and L. George, “A robust partitioned scheduling for real-time multiprocessor systems,” in
Proceedings of the 7th IFIP TC 10 Working Conference on Distributed and Parallel Embedded Systems (DIPES). Brisbane,
Australia: Springer Science and Business Media, September 2010, pp. 193–204.

[6] S. Kato and N. Yamasaki, “Portioned static-priority scheduling on multiprocessors,” in Proceedings of the 22th IEEE
International Parallel and Distributed Processing Symposium (IPDPS). Miami, Florida, USA: IEEE Computer Society,
April 2008, pp. 1–12.



[7] S. Kato and N. Yamasaki, “Semi-partitioned fixed-priority scheduling on multiprocessors,” in Proceedings of the 15th
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). San Francisco, California, USA: IEEE
Computer Society, April 2009, pp. 23–32.

[8] S. K. Baruah and J. Carpenter, “Multiprocessor fixed-priority scheduling with restricted interprocessor migrations,” in
Proceedings of the 15th Euromicro Conference on Real-time Systems (ECRTS). Porto, Portugal: IEEE Computer Society,
July 2003, pp. 195–202.


