
HAL Id: hal-00620336
https://hal.science/hal-00620336v1

Submitted on 30 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Design and Implementation of Real-time
Event-based Applications with RTSJ

Damien Masson, Serge Midonnet

To cite this version:
Damien Masson, Serge Midonnet. The Design and Implementation of Real-time Event-based Appli-
cations with RTSJ. WPDRTS 2007, Mar 2007, Long Beach, Califonia, USA, United States. pp.1-8,
�10.1109/IPDPS.2007.370340�. �hal-00620336�

https://hal.science/hal-00620336v1
https://hal.archives-ouvertes.fr

The Design and Implementation of Real-time Event-based Applications with
RTSJ

Damien Masson and Serge Midonnet
Université de Marne la Vallée,

Institut Gaspard-Monge, Laboratoire d’informatique, UMRCNRS 8049,
77454 Marne la Vallée Cedex 2, France.

{damien.masson,serge.midonnet}@univ-mlv.fr

Abstract

This paper presents a framework to design real-time
event-based applications using Java. The Real-Time Spec-
ification for Java (RTSJ) is well designed for hard periodic
real-time systems. Though it also proposes classes to model
asynchronous events and deal with sporadic or aperiodic
tasks, it remains insufficient. The literature proposes the
use of periodic servers called task servers to handle non-
periodic traffics in real-time systems. Unfortunately, there
is no support for task servers in RTSJ. In order to fix this
lack, we propose an RTSJ extension model. To validate our
design, we adapt and implement two policies: the polling
server and the deferrable server policies. To show how effi-
cient these policies are, we compare implementation results
and results obtained with a discrete-event-based simulator.

1 Introduction

In order to bring to the real-time community the advan-
tages of the Java language, a Java Specification Request
(JSR-01) was proposed and accepted by the Java Commu-
nity Process (JCP) in 1999. This lead to the Real-Time
Specification for Java (RTSJ), which version 1.0 was re-
leased in November 2001 and first implementation in Jan-
uary 2002. Today, the specification is still evolving and
commercial implementations have come out (Aïcas Jamaï-
caVM or more recently Sun Mackinac).

If this specification is well designed for periodic real-
time systems, the support for non-periodic servicing with
temporal constraints is not fully satisfying. In order to as-
sign time and resource constraints to a group of threads, the
RTSJ proposes the use of "Processing Group Parameters"
(PGP). But as pointed in [1], no guidelines are given on how

1-4244-0910-1/07/$20.00c©2007 IEEE.

to use them, and there is no appropriate schedulability tests
to analyse them. Furthermore, the cost enforcement is an
optional behaviour for an RTSJ compliant virtual machine,
and without this feature, PGP are useless.

That is why we propose in this paper a framework to
design real-time event-based applications using RTSJ.

We present in Section 2 the aperiodic servers mecha-
nisms and we detail the Polling Server and the Deferrable
Server policies. Section 3 describes our framework to allow
the implementation of these servers with RTSJ. Then we
explain our implementation of the Polling Server and the
Deferrable Server policies using this framework in Section
4. In order to evaluate the efficiency of our implementa-
tions, we developed a simulator that we present in Section
5. We give the results of these executions and simulations
in Section 6, and discuss of future improvements in Section
7.

2 Tasks servers: presentation

During years, the assumption was made that real-time
systems have to be only composed of periodic-tasks sets.
This assumption comes from the feasibility analysis theo-
ries. How can we compute response times of tasks which
we cannot predict the arrival of ? This is a too strong re-
striction since many of the real world phenomena are event-
based.

One solution is to set up a mechanism which allows non-
periodic traffic to be served and analysed without changing
the feasibility conditions of a periodic task.

The easiest way to achieve this is to schedule all non-
periodic tasks at a lower priority (we assume that the tasks
are scheduled using a preemptive fixed priority policy). If
it is very simple to implement, it does not offer satisfying
response times for non-periodic tasks, especially if the pe-
riodic traffic is important. That is why periodic task servers
are introduced by Lehoczky et al. in [8].

A periodic task server is a periodic task, for which clas-
sical response time determination and admission control
methods are applicable (with or without modifications).
This particular task is in charge of servicing the non-
periodic traffic with a limited capacity.

Several types of task server can be found in the literature.
They differ by the way the capacity is managed. We can cite
the Polling Serverpolicy (PS), theDeferrable Serverpol-
icy (DS), thePriority Exchangepolicy (PE) first described
by Lehoczky et al. in [8] and developed in [11, 5, 9], the
Sporadic Serverpolicy (SS) presented in [10] and theSlack
Stealingtechniques introduced in [7].

Depending on the server policy, worst-case response
time for the aperiodic tasks can or cannot be computed
on-line when they occur. We have to separate periodic-
tasks feasibility analysis - an offline process which can
give guarantees on periodic-tasks (and servers) execution-
and aperiodic-tasks feasibility analysis - an on-line process
which can give guarantees at run-time on the aperiodic tasks
execution.

2.1 Polling Server Principles

The PS is activated every period with its full capacity.
If there are aperiodic tasks pending, it serves them with re-
spect to its capacity limits and then loses its remaining ca-
pacity until its next activation.

Its most significant advantage is that it can be included
in the feasibility analysis like any periodic task.

Assuming the server is the highest-priority task in the
system, a feasibility test for the aperiodic tasks can be per-
formed on-line. If the server is not the highest priority task,
the complexity of the analysis becomes too high to be per-
formed on-line, and since it cannot be performed off-line
because of the unpredictability of the arrival model of ape-
riodics, it cannot be performed at all.

2.2 Deferrable Server Principles

TheDS is activated as soon as an aperiodic event occurs
(if it has enough capacity). It recovers its capacity every
period.

The DS algorithm offers better average response-times
than thePS, but since it can be activated with a delay, the
feasibility analysis for the periodic tasks must be modified,
as described in [11, 5].

As for the PS algorithm, complexity of the feasibility
analysis for the aperiodics requires that the server runs at
the highest-priority level in the system to guarantee the
response times of aperiodics.

An exhaustive state of the art on this topic can be found
in [2, chapter 5].

3 Tasks servers with Java: design

The RTSJ does not support any particular task server
policy. It proposes two classesAsyncEvent and
AsyncEventHandler to model respectively an asyn-
chronous event and its handler.

The only way to include the handler in the feasibility
process is to treat it as an independent task, and that implies
to know at least its worst-case occurring frequency.

The RTSJ also provides the so called "Processing Group
Parameters" (PGP), which allow programmer to assign re-
sources to a group of tasks. A PGP object is like a
ReleaseParameters which is shared between several
tasks. More specifically, PGP has acost field which de-
fines a time budget for its associated task set. This bud-
get is replenished periodically, since PGP has also a field
period.

This mechanism provides a way to set up a task server
at a logical level. Unfortunately it does not take into ac-
count any server policy. Moreover, as pointed in [1], it is
far too much permissive and it does not provide appropriate
schedulability analysis techniques.

Finally, since cost enforcement is an optional feature for
an RTSJ-compliant virtual Java machine, PGP can have no
effect at all. This is the case with the Timesys Reference
Implementation of the specification (RI).

This is why we propose an RTSJ extension we can use
to design and implement event based applications using
task servers.

Figure 1. Classes to implement the server
policies

Our framework (Task Server Framework) is composed
of six new classes:

• ServableAsyncEvent (SAE)
This AsyncEvent (AE) subclass represents a serv-
able event. Like a normal AE, a SAE can be bound

2

to one or several standard handlers (i.e.Async-
EventHandler) using theaddHandler(Async-
EventHandler handler) method. We over-
load it with the methodaddHandler(Servable-
AsyncEventHandler handler) and we rede-
fine the methodfire().

• ServableAsyncEventHandler (SAEH)
This class does not extendAsyncEventHandler
(AEH), nor implementSchedulable. It embodies
the code which can be associated with an SAE. It can
be bound with one ore many SAE but associated with
a uniqueTaskServer, and when one of the event it
is bound with is released, it is added to the pending-
events list of this server.

• TaskServer
This abstract class represents a task server. It imple-
mentsSchedulable and extendsScheduler. It
is a schedulable object since it is in fact a periodic real-
time thread and it is a scheduler since it has to sched-
ule SAEHs. It has a methodservableEvent-
Released() which takes an AEH. This method is
called by the AEfire() method.

• PollingTaskServer
A subclass ofTaskServerwhich implements thePS
policy.

• DeferrableTaskServer
A subclass ofTaskServer which implements the
DSpolicy.

• TaskServerParameters
A subclass ofReleaseParameters to construct a
TaskServer.

Figure 1 shows dependencies between classes in the Task
Server Framework and standard RTSJ classes.

To summarize the mechanism, when an SAE is fired,
the servableEventReleased() methods of the
bound servers are called for each of its SAEHs. This
allows developers to write different behaviours for different
task server policies: the handlers can be scheduled in a
FIFO order, or any other desired order, depending on the
implemented policy.

This design also allows programmers to use theadd-
Tofeasibility() methods on aTaskServer since
it implementsSchedulable. This approach is compli-
ant with the RTSJ general design, but this is not suffi-
cient. In order to provide a consistent design for the re-
sponse times analysis, each schedulable object should have
agetInterference()method, which would be called
by theScheduler feasibility methods. For example, it is

still possible to compute response times in a system with a
Defferable Server, but the algorithm has to be modi-
fied, and this is not possible in the centralysed RTSJ current
approach. Anyway, this is not the matter of this paper.

4 Tasks servers with Java: Polling Server and
Deferrable Server policies

The main issues during the conception of a task server
are to guarantee the respect of its capacity and to ensure the
capacity enforcement behaviour.

For the first problem, we used theTimed class. This
class allows us to execute therun() method of an
Interruptible object for a given maximum amount
of time. If this maximum is reached before therun()
method completes, theAsynchrouslyInterrupted-
Exception is raised and theinterruptAction()
method is called.

To control the server capacity, we make the assumption
that the server cannot be preempted. Then, we just have to
measure the time passed in the run method of the interrupt-
ible and decrease the remaining capacity accordingly.

Moreover, we are not able to resume a generic thread
(even if it is explicitly interruptible), this is why a handler
cannot be executed on multiple instances of the server. The
system designer is in charge to split the treatment of each
aperiodic event on multiple handlers, each one with a cost
less than or equal to the server capacity (in fact less than
because of the server’s overhead).

So, our implementations of task servers policies are lim-
ited with the following constraints:

• theworst case execution time (wcet) of
a non-periodic event treatment has to be less or equal
to the server capacity;

• the server has to be the highest-priority task in the sys-
tem.

4.1 Polling Servicing

Our class PollingTaskServer encapsulate a
RealtimeThread with PeriodicParameters. The
run() method of the server is delegated to this periodic
real-time thread. When an asynchronous servable event is
fired, its handler is added in a FIFO list. At each periodic
activation, a methodchooseNextEvent() is called.
This method returns anSAEH or null if the server is not
able to serve any pending event with its remaining capacity.
While the chosen event is notnull, it is executed (with the
methoddoInterruptible() of Timed), the capacity
is decreased and thechooseNextEvent() method is
called again.

3

Figure 2. Scenario 1

This method return the first handler in the list which has
a cost lower than the remaining capacity. This implies that
if there is two handlers in the list, if the first - correspond-
ing to the event released first - has a cost greater than the
remaining capacity and if the second has a cost lesser than
the remaining capacity, the event released last is served first.

Examples

Priority Cost / capacity Period

PS High 3 6
τ1 Medium 2 6
τ2 Low 1 6
h1 2
h2 2

Table 1. Tasks’ Properties

In the following examples, the task set is composed of
two real-time periodic tasks,τ1 and τ2, and one polling
serverPS running at the highest priority. These three pe-
riodic threads are synchronously started. There are two
SAEHs,h1 andh2, respectively bound to two SAEse1 and
e2. Table 1 shows the properties of these tasks.

Scenario 1

Look at Figure 2,e1 ande2 are fired respectively at time 0
and 6. Since the server has its entire capacity at these two
instants,h1 andh2 are immediately processed by the server.

Figure 3. Scenario 2

Scenario 2

Look at Figure 3,e1 ande2 are fired respectively at time
2 and 4. We can see thath2 does not begin its execution
at time 8 because the remaining capacity of the server is 1,
which is less than the cost ofh2.

With the realPSpolicy, h2 should begin its execution at
time 8, suspend it at time 9 and resume it at time 12.

Scenario 3

Without changing the code ofh2, we declare it with a cost
of 1. Then, we firee1 and e2 respectively at time 2 and
4. Figure 4 shows thath2 begins its execution at time 8
because its cost parameter is set to 1, that is the remaining
capacity, and is interrupted at time 9 because the server has
consumed all its capacity and becauseh2 has not finished.

With the real policy,h2 should resume its execution at
time 12, but it is not possible with Java.

4.2 Deferrable Server policy

Unlike thePS, theDScan serve an aperiodic task at any
time as it has enough capacity. So therun() method can
no longer be delegated to a periodic real-time thread. In-
stead, it is delegated to an AEH bound to a specific AE we
call wakeUp. Each time an aperiodic event occurs, if the
server is not already running, this event is fired. Moreover,
we add a periodic timer which firewakeUp if the server is
not already running.

The second difference between thePSand theDS is that
an event can begin its execution at the end of a server in-
stance (for thePS, we made the assumption that the capac-
ity is lesser than the period). So if the remaining capacity of

4

Figure 4. Scenario 3

the server is 1 when it has to serve an event with a cost of 2,
if the next refill of the capacity is in a time lesser than 1, the
event can be served. ThechooseNextEvent()method
now compare the current date with the next period: if the
current date plus the chosen event cost is bigger than the
next period of the server, the time budget associated with
the event is equal to the remaining capacity plus the total
capacity of the server.

Finally, as for thePS, it has to be noted that the imple-
mented policy has not the exact behaviour of the realDe-
ferrable Serverdescribed in literature.

5 RTSS: a real-time systems simulator

We develop a real-time event-based system simulator.
This is a Java program which can simulate the execution
of a real-time system and display a temporal diagram of
the simulated execution. For now, three scheduling poli-
cies are implemented: Preemptive Fixed Priority, EDF and
D-OVER.

This tool is distributed under the General Public Licence
GNU (GPL), and can be found on the following web page:
http://igm.univ-mlv.fr/~masson/RTSS

In order to compare with our task servers executions, we
add the polling and the deferrable server policies to RTSS.
The simulated policies are the ones described in literature:
this is not a simulation of our implementations. Moreover,
it does not take into account the servers overhead, nor the
execution overhead.

6 Results

In order to validate our design, we implement thePSand
theDSpolicy in Java and in an event-based simulator. We
randomly generate task systems and we compare the sim-
ulations of these systems with their executions. The exe-
cutions was performed using the reference implementation
(RI) of the RTSJ on a 2 GHz processor INTEL Pentium 4
machine with 500 MB of memory and a rtlinux-free real-
time kernel.

6.1 Real-Time Systems Generation

We develop a package fr.umlv.random-
Generator with a classrandomSystemGenerator
which can take the following parameters:

• taskDensity, the average number of aperiodic events
per server period,

• averageCost, the average cost of aperiodic events,

• stdDeviation, the standard deviation of the aperiodic-
events’ costs

• serverCapacity, the server capacity,

• serverPeriod, the server period,

• nbGeneration, the desired number of generated sys-
tem,

• seed, the random seed, in order to generate the same
systems on multiple platforms.

We generate six sets of ten systems. The first set is de-
fined by the tuple(1, 3, 0, 4, 6, 10, 1983). This tuple per-
mits to generate ten systems where the average number of
aperiodic event per period isone, the costs of the events
arethree time units (tu) (the average costs arethree and
the standard deviations arezero), the servers capacities are
four tu and their periods aresix tu.

In order to test the scalability of the system, we generate
two other sets with the same parameters, except for the av-
erage number of aperiodics per instance: we generate one
set with an average number oftwo and one with an average
number ofthree.

Then we re-generate the same three sets but this time
with standard deviations on the aperiodic events costs of
two.

So we simulate thePSand theDS algorithms on these
sixty systems and we execute them with our modifiedPS
andDS implementation. We limit our simulations and exe-
cutions on ten server periods.

5

(1, 0) (2, 0) (3, 0)
AART 8.86 17.52 23.76
AIR 0.00 0.00 0.00
ASR 0.89 0.63 0.43

(1, 2) (2, 2) (3, 2)
AART 10.24 20.58 25.50
AIR 0.00 0.00 0.00
ASR 0.85 0.50 0.35

Table 2. Measures on Polling Server simula-
tions

We measure the average response time of aperiodics,
the interrupted-aperiodics ratio and the served-aperiodics
ratio for each execution and simulation. Then we com-
pute for each set the average of the average-response-
times (AART), the average of the interrupted-aperiodics
ratios (AIR) and the average of the served-aperiodics ra-
tios (ASR).

TheAART give us a qualitative metric: the shorter the
response times are, the more efficient the policy is. The
AIR permit to estimate the overhead of the task server,
since an event can be interrupted only if the server has theo-
retically enough resources to serve the event, but not enough
in practice. Moreover, they can be used to adjust the accept-
ability threshold on the aperiodics’ costs. Finally, theASR

are usefull to estimate the efficiency lost between our im-
plementations and the theoritical algorithms of theDS/PS
policies.

6.2 Polling Server results

6.2.1 Simulations

The measures on ourPSsimulations can be found on ta-
ble 2. We can observe that the response times are a little
greater when the event costs are not homogeneous. This is
partly due to a bad-design issues on our costs generations:
if a cost lower than 0.1ms is generated, we set it to 0.1ms.
So the average cost has no longer the correct value. Even
without this drawback, it can be explained by the fact that
the highest cost a task has, the highest are the chances that
the the server serve it in more than one instance, increasing
its response time because of the server idle times.

6.2.2 Executions

Table 3 presents our Measures on the executions of our
PS implementation. We have first to comment the average
served ratios. They are lesser than the simulation ones. This
is due to our not-resumable thread limitation: even if the
server still has capacity, it has to delay the execution of task
with a cost greater than its remaining capacity. This impact

(1, 0) (2, 0) (3, 0)
AART 12.24 20.80 25.05
AIR 0.01 0.01 0.00
ASR 0.75 0.44 0.30

(1, 2) (2, 2) (3, 2)
AART 6.55 7.15 12.54
AIR 0.17 0.24 0.29
ASR 0.48 0.34 0.30

Table 3. Measures on Polling Server execu-
tions

is reduced in the case of non-homogeneous task sets. In-
deed, our server is able to execute a task released later if
its cost is lesser than the capacity. For example, if the event
queue contains two tasksτ1 andτ2, with c1 = 3 andc2 = 1,
if the remaining capacity of the server is2, thenτ2 can be
executed instantaneously, even if it has been released after
τ1.

This server optimisation has an another consequence: the
response times of events with low cost are improved. In the
same time, there is more unserved task during the execu-
tion than during the simulation. In addition of the events
which cannot be scheduled during the first ten periods of the
server, there is the interrupted tasks, i.e. the ones which had
overrun their costs due to the server’s overhead. These in-
terrupted tasks are mostly the ones with greater costs. These
two facts lead to a far better average response time of served
events in the execution than in the simulation. The lesser
the costs are, the better the response times will be, as the
chances to be not interrupted.

It has to be noted that the average interrupt ratio is very
low for the homogeneous task sets. This is due to a simple
fact: the server can only serve one event per period, since
its capacity is4 and the costs of the event are all3. So
each task has an additional time budget of1s before being
interrupted.

6.3 Deferrable Server

6.3.1 Simulations

Our simulations measures on theDS are presented on ta-
ble 4. We can make the same observation than for thePS:
the response times are a bit greater with the non homoge-
neous task set than with the homogeneous ones. Reasons
are the same as in the previous case, increased because the
deferrable server has a served ratio more important than the
polling. This is due to its ability to serve each event as soon
as it is released: the average response times are better than
the polling ones and the events released during its tenth pe-
riod can be served if there is no other pending events.

6

(1, 0) (2, 0) (3, 0)
AART 5.30 13.44 19.83
AIR 0.00 0.00 0.00
ASR 0.94 0.67 0.46

(1, 2) (2, 2) (3, 2)
AART 6.36 17.40 21.71
AIR 0.00 0.00 0.00
ASR 0.94 0.56 0.38

Table 4. Measures on Deferrable Server sim-
ulations

(1, 0) (2, 0) (3, 0)
AART 6.90 14.55 20.58
AIR 0.00 0.00 0.00
ASR 0.84 0.56 0.39

(1, 2) (2, 2) (3, 2)
AART 8.02 13.47 16.91
AIR 0.14 0.26 0.27
ASR 0.66 0.43 0.30

Table 5. Measures on Deferrable Server exe-
cutions

6.3.2 Executions

Finally, the measures on the executions of ourDS imple-
mentation can be found on table 5. Due to the ability of
the server to serve the lower cost events in advance if their
capacity is reduced and due to the lower served ratio, the
response times of the execution are lower than the ones of
the simulation for the non homogeneous task sets. We can
note that the served ratios are very close to the simulations
ones, that validates our implementations of task servers. We
have to keep in mind that the simulations does not take into
account the execution overhead.

7 Future Works and Improvements

The performance of our implementations can be im-
proved. First, we have to reduce the average interrupted-
aperiodics ratio (AIR). An interruption can have two dif-
ferent reasons: the task overruns its worst case execution
time (WCET) - we cannot do anything - or the remaining
capacity is too close to the cost of the event. Indeed, even if
the server has to be the highest priority task in the system,
there is also more highest priority tasks: the timers charged
to fire the asynchronous events. We could decide that these
timers have lower priority, but, in the case of thePS, this
means that their executions will also be delayed until the
next server period. Moreover, we could no longer measure

the response times of the events. That is why we had not
done it.

We can avoid some interruptions in delaying the ex-
ecution of events handlers with a cost too close of the
remaining capacity.

The over point we want to address is the on-line com-
putation of event response times. Since the servers have to
execute at the highest priority, a response time computation
can reasonably be performed on-line at the arrival time of
the event.

With thePSstandard algorithm, assuming that the tasks
are served in ascending deadline order and that thePS is
running at the highest priority, the response timeRa of a
taskJa - which is released at timera - can be computed
on-line (at timera) with the following equations:

Ra =

(

t + Cape(t, dki) − ra if Cape(t, dk) ≤ cs(t)

(Fk + Gk)Ts + Rk − ra else.
(1)

Fk =

—

Cape(t, dk) − cs(t)

Cs

�

(2)

Gk =

‰

t

Ts

ı

(3)

Rk = Cape(t, dk) − cs(t) − FkCs (4)

whereCape(t, dk) is the sum of the costs of the tasks
with a deadline smaller thanJk, Fk the number of server
instances needed to serveCape(t, dk), Gk the instance
which begins to serveCape(t, dk) andRk the time needed
in the last instance to finish to serveCape(t, dk).

But our implementation suffers of some limitations:
since a Java thread, even real-time, is not resumable, our
PSonly begins to serve a task if it has enough capacity to
finish to serve it.

Taking into account these limitations, we can formulate
the response timeRa of an aperiodic eventJa released at
timera as:

Ra = (IaTs + Cpa + Ca) − ra (5)

whereIa is the instance of the server whereJa handler
will be execute in,Cpa the cumulative cost of the previous
handlers scheduled in the same instance andCa the cost of
Ja.

To easily computeJa andCpa, we propose a minor mod-
ification on our task servers implementations. Instead of put
the events handlers in a simple FIFO list, we can set up a
structure with a list of lists of handlers. Each list only con-
tains a number of handlers which can be served in one single
instance of the server. In addition, we can maintain another
list of RelativeTimes which represents the cumulative
costs of each handlers list. Now,Ia can be compute with
the position in the list of lists of handlers whereJa has been

7

added andCpa is the corresponding cost in the list of costs.
Of course, this proposition will increase the time requested
to register the release of a servable asynchronous event, but
permits to compute in a constant time the response time of
the event, and possibly to cancel its execution.

8 Related Works

The RTSJ is still subject to a lot of research, on the spec-
ification itself (JSR-282) as well as on specific extensions
like the Distributed Real-time Specification (JSR-50) and
the Safety Critical Java Technology (JSR-302). We can cite
a recent publication of the JSR 282 in which the addition
of several methods in theRealtimeThread class is sug-
gested [6]. Other authors propose the use of model check-
ing technics in order to highlight some issues in the RTSJ
cost monitoring and enforcement model [3] and to analyse
the behaviour for non-periodic real-time threads in the RTSJ
[4]. In this paper, we have described the limitations of the
RTSJ in regard to the support for aperiodic tasks.

9 Conclusions

The RTSJ does not support any aperiodic-task server
mechanism. In this paper, we have proposed a framework
to fill in this lack. In order to illustrate the use of this frame-
work, we have adapted two task server policies: the Polling
Server and the Deferrable Server ones. To validate our im-
plementations, we also have implemented a simulator and
a real-time system generator. We have compared the ex-
ecutions of6 sets of10 real-time systems with their sim-
ulations. We have observed better response times in our
executions with served ratios very close to the ones from
the simulations. There is still an important interrupted task
ratio, but we have presented its causes and proposed a solu-
tion which we still have to test. Moreover, the simulations
do not take into account the server overhead nor the costs of
the events’ release.

Finally, we have showed that we can easily implement
a feasibility test at run-time for the aperiodic events, with
a constant complexity. The implementation of this test, its
integration in the RTSJ design and its confrontation with the
response-times measured during the executions will make
the object of our future works on this topic.

References

[1] A. Burns and A. J. Wellings. Processing group parametersin
the real-time specification for java. InOn the Move to Mean-
ingfull Internet Systems 2003: Workshop on Java Technolo-
gies for Real-Time and Embedded Systems, volume LNCS
2889, pages 360–370. Springer, 2003.

[2] G. C. Buttazzo. Hard Real-Time Computing Systems:
Predictable Scheduling Algorithms And Applications, vol-
ume 23 ofReal-Time Systems Series. Springer Verlag, sec-
ond edition, October 2004.

[3] O. M. dos Santos and A. Wellings. Cost monitoring and en-
forcement in the real-time specification for java - a formal
evaluation. InRTSS ’05: Proceedings of the 26th IEEE In-
ternational Real-Time Systems Symposium, pages 177–186,
Washington, DC, USA, 2005. IEEE Computer Society.

[4] O. M. dos Santos and A. Wellings. Formal analysis of aperi-
odic and sporadic real-time threads in the rtsj. InJTRES ’06:
Proceedings of the 4th international workshop on Java tech-
nologies for real-time and embedded systems, pages 10–19,
Paris, France, 2006. ACM Press.

[5] T. M. Ghazalie and T. P. Baker. Aperiodic servers in a dead-
line scheduling environment.Real-Time Syst., 9(1):31–67,
1995.

[6] JSR-282 Expert Group. SI 1.4: Supporting Sporadic and
Aperiodic Releases in Real-Time Threads.http://jcp.
org/en/jsr/detail?id=282, 2006.

[7] J. P. Lehoczky and S. Ramos-Thuel. An optimal algorithm
for scheduling soft-aperiodic tasks fixed priority preemptive
systems. Inproceedings of the 13th IEEE Real-Time Systems
Symposium, pages 110–123, Phoenix, Arizona, December
1992.

[8] J. P. Lehoczky, L. Sha, and J. K. Strosnider. Enhanced aperi-
odic responsiveness in hard real-time environments. InIEEE
Real-Time Systems Symposium, pages 110–123, San jose,
California, December 1987. IEEE Computer Society.

[9] B. Sprunt, J. P. Lehoczky, and L. Sha. Exploiting unused
periodic time for aperiodic service using the extended pri-
ority exchange algorithm. InReal-Time Systems Sympo-
sium, 1988., Proceedings., number 0-8186-4894-5, pages
251–258, Huntsville, AL, USA, December 1988.

[10] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task schedul-
ing for hard real-time systems.Real-Time Systems: The
International Journal of Time-Critical Computing Systems,
1:27–60, 1989.

[11] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The de-
ferrable server algorithm for enhanced aperiodic responsive-
ness in hard real-time environments.IEEE Trans. Comput.,
44(1):73–91, 1995.

8

