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Abstract. The vision of the Semantic Web is becoming a reality with
billions of RDF triples being distributed over multiple queryable end-
points (e.g. Linked Data). Although there has been a body of work on
RDF triples persistent storage, it seems that, considering reasoning de-
pendent queries, the problem of providing an efficient, in terms of per-
formance, scalability and data redundancy, partitioning of the data is
still open. In regards to recent data partitioning studies, it seems reason-
able to think that data partitioning should be guided considering several
directions (e.g. ontology, data, application queries). This paper proposes
several contributions: describe an overview of what a roadmap for data
partitioning for RDF data efficient and persistent storage should contain,
present some preliminary results and analysis on the particular case of
ontology-guided (property hierarchy) partitioning and finally introduce
a set of semantic query rewriting rules to support querying RDF data
needing OWL inferences.

1 Introduction

The generally encountered use of ontologies consists in performing data infer-
ences and validation using a Semantic Web compliant reasoner. The correspond-
ing reasoning mechanism can be used to generate a set of queries executed over
the appropriate data sets. For example, this approach was designed in a medical
application [8] where inferences on chemical molecules were needed to highlight
contra indications, side effects of pharmaceutical products. As mentioned in [8],
results of queries with both inference on property (i.e. rdf:property) and con-
cept (i.e. rdf:class) hierarchies are required by the application as well as by
data quality or data exchange external tools.

In regards to large ontologies (e.g. OpenGalen or SNOMED in the medical do-
main) and data sets (e.g. Linked Data), providing efficient performances to rea-
soning dependent queries is an important issue. We believe that to enable effi-
cient response time to such queries, one has to give a special attention to the
storage system associated to the triples. In fact, RDF is basically a data model
and its recommendation does not guide to a preferred storage solution. The re-
lated work about RDF data management systems can be subdivided into two
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categories: the ones involving a mapping to a Relational DataBase Management
System (RDBMS) and the ones that do not. In this paper, we do not focus on
the latter one.

A set of techniques have been proposed for storing RDF data in relational
databases. Several research groups think that this is likely the best perform-
ing approach for their persistent data store, since a great amount of work has
been done on making relational systems efficient, extremely scalable and robust.
Efficient storage of RDF data has already been discussed in the literature with
different physical organization techniques based on partitioning (cf. Figure 1).

Persistent RDF data storage

No partitioning

Triple table

Partitioning

Guided by Ontology

Concept hierarchy* Property hierarchy

Vertically partitioned table roStore

Hybrid*

Guided by Data

Data itself

Property(-class) table

Queries*

Fig. 1. Physical organization of RDF data based on partitioning. (*) no known study
yet.

On one hand, there exists tools such as Sesame [5], Jena [18], Oracle [6] and
3store [10] which rely on a straightforward mapping of RDF into an RDBMS –
called triple table approach. Each RDF statement of the form (subject, predicate,
object) is stored as an entry of one large table with a three-columns schema (i.e.
a column for each the subject, predicate and object). Indexes are then added for
each of the columns in order to make joins less expensive. However, since the
collection of triples are stored in one single table, the queries may be very slow to
execute. Indeed when the number of triples scales, the table may exceed memory
size (inducing costly disk-RAM transfers). Nevertheless, simple statement-based
queries can be satisfactorily processed by such systems, although they do not
represent the most important way of querying RDF data. Still, this storage system
scales poorly since complex queries with multiple triple patterns require many
self-joins over this single large table as pointed out in [18, 16, 12].

Whereas this specific approach does not use partitioning at all, on the other
hand, some recent research highlighted two efficient main trends depending on
the information one uses to guide the partitioning: guided by (1) the underlying
ontology or (2) the data itself. Intuitively, one would expect that a well suited
data partitioning will induce a better response time to queries (at least select
ones). Indeed, data partitioning will allow queries to be made on smaller sets
of entries which, given an adapted RDF data clustering, should be faster. The
counterpart of this storage system will be some possible worst performance for
data updates.
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Considering partitioning guided by the underlying ontology, most of the re-
cent works focus only on the property hierarchy. Among others, the vertical
partitioning approach suggested by Abadi et al. in [2] is to be mentioned. In
this approach, using a fully decomposed storage model (DSM) [7], the RDF data
is divided into n two columns (subject,object) tables where n is the number of
unique predicates in the data. Each of these resulting tables represents a par-
ticular predicate, with an entry for each statement of the data containing the
corresponding predicate. Sorting the tables according to the subject allows fast
merge joins for reconstructing information about multiple predicates for subsets
of subjects. The vertically partitioned approach offers a support for multi-valued
attributes. Indeed, if a subject has more than one object for a given predicate,
each distinct value is listed in a successive row in the corresponding table. For a
given query, only the predicates involved in that query need to be read. Finally,
the building of the two-columns tables can be done easily – without a cluster-
ing algorithm – by only browsing and relying on the property hierarchy of the
data. As previously mentioned, as a counterpart, data updates/insertions may
be slower in vertically partitioned tables rather than triple ones since multiple
tables need to be accessed for statement about the same subject.

In [2], the authors described how a column-oriented DBMS [15] (i.e., a DBMS
designed especially for the vertically partitioned case, as opposed to a row-
oriented DBMS, gaining benefits of compressibility [3] and performance [1]) can
be extended to implement the vertically partitioned approach. Roughly, this is
done by storing tables as collections of columns rather than collections of rows.
The goal is to avoid transferring entire rows into memory from disk, like in row-
oriented databases, if only a few attributes are accessed per query. Consequently,
in column oriented databases only those columns relevant to a query will be read.
Note that, in an independent evaluation [14] of the techniques presented in [2],
the authors pointed out potential scalability problems for the vertically parti-
tioned approach when the number of predicates in an RDF data set is high. With
a larger number of predicates, the triple table solution manages to outperform
the vertically partitioned one.

Depending on the type of reasoning dependent queries, it may be more effi-
cient to consider an intermediate model between triple tables and vertical parti-
tioning approaches. A first contribution of this work will be to provide an analysis
of the effectiveness of an intermediate approach – also based on property hierar-
chy – where a table is created only for top predicates. Another interesting track
(for future investigation), would be to consider partitioning the data regarding
the concept hierarchy rather than the property one and/or considering both. To
the best of our knowledge, such study has not yet been conducted. Considering
data guided partitioning, one may distinguish two types of guides. First, one
may consider that the RDF data itself may induce an efficient partitioning. The
main achievement for this type of guide is the property table technique which
was introduced later on [17] for improving RDF data organization by allowing
multiple triple patterns referencing the same subject to be retrieved without an
expensive join. In this model, RDF tables are physically stored in a representation
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closer to traditional relational schemas in order to speed up the queries over the
triple stores [17, 6]. Indeed, each named table includes a subject and several fixed
predicates. The main idea is to discover clusters of subjects often appearing with
the same set of predicates.

A variant of the property table named property-class table uses the rdf:type
of subjects to cluster similar sets of subjects together in the same table. The
immediate consequence is that self-joins on the subject column can be avoided.
However, the property table technique has the drawback of generating many
NULL values since, for a given cluster, not all predicates will be defined for all
subjects. A second disadvantage of property table is that multi-valued attributes,
that are furthermore frequent in RDF data, are hard to express. In a data model
without a fixed schema like RDF, it is common to seek for all defined predicates
of a given subject, which, in the property table approach, requires scanning all
tables.

Note that, in this approach, adding predicates requires also to add new tables;
which is clearly a limitation for applications dealing with arbitrary RDF content.
Thus the flexibility in schema is lost and this approach limits the benefits of using
RDF. Moreover, queries with triples patterns that involve multiple property tables
are still expensive because they may require many union clauses and joins to
combine data from several tables and consequently complicate query translation
and plan generation. In summary, property tables are poorly used because of
their complexity and inability to handle multi-valued attributes. Another type
of guide which may worth being studied is queries. Indeed, one may consider an
evolutive storage schema in regards to recent queries made on the data. To the
best of our knowledge, this track of research has also not been considered yet.

In this article, we will concentrate on giving some preliminary results (on
medium-sized datasets) on an intermediate property hierarchy based approach
(that will need to be pursued) – namely RDF Ontology-guided Storage system
(roStore). After presenting the general approach (Section 2), we will, in Section
3, evaluate the efficiency difference with vertically partitioning on the LUBM
benchmark over both row and column oriented databases and on some extra
specific queries highlighting limits of vertically partitioning.

2 The roStore approach

As a first step to an efficient RDF storage road map, we propose an intermediate
ontology-guided approach – namely roStore – which lies between the two ex-
tremes: triple and vertically partitioned tables. The aim of this approach is to
try to analyse the efficiency of a compromise approach where less partitions are
used. Intuitively, such physical organization will take benefits of requiring less
joins in practical queries and with less risk of unmappable table in memory.

As already mentioned, we believe that there should not be a unique generic
solution to RDF storage and that depending on the data itself, the underlying
ontology, application queries, better performance may be obtained by considering
alternative and several dedicated approaches. The major aim of roStore is to
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provide some clue of this belief. We will demonstrate that roStore is one of
them and may, in specific cases, induce better efficiency. In this context, we
consider roStore as one among other interesting physical organizations based
on property hierarchy that should be present in the RDF storage road map.

Our storage approach derives from the vertically partitioned one and extends
this last by putting back together into a single table data related to a top-
property of a property hierarchy. Given a hierarchy, we say that a predicate is
a top-property if it is only an rdf:subPropertyOf of itself. For each such top-
property PT , a three-columns table is created by (1) merging all the two-columns
tables corresponding to predicates being rdf:subPropertyOfPT and (2) adding
a third column indicating from which predicate the entry (subject, object) was
retrieved (cf. Figure 2).

Let us first notice that, providing with this definition, any predicate that
is not an rdf:subPropertyOf of a top-property will still be stored in a two-
columns table. This induces an insignificant expense of the space complexity of
this novel approach. Moreover, in case of a cyclic property hierarchy, all predicates
are necessarily all semantically equivalent. Hence selecting a single canonical
predicate and rewriting triples accordingly is sufficient. Despite the fact that
considering top-property seems to be the most natural, one may, depending
on the topology of the hierarchy, define other physical organizations inducing
better performance too for specific cases. Our preliminiary results demonstrate
that an evolutive physical organizations guided by the queries may be efficient.
The main impact of merging some tables is obtaining better performance of
queries requiring joins over predicates belonging to the same “sub-hierarchy“ of
the property hierarchy. This is typically the case when one wants to retrieve
all the information concerning a family of predicates of the property hierarchy;
since they will be quite related. In the following, we will denote by vpStore

(resp. roStore) the vertically partitioned (resp. our) approach.

Example 1: Let us consider a small data set (Figure 2b) defined over a given
property hierarchy (Figure 2a). With vpStore, the triples would be distributed
over six different tables as displayed in Figure 2c. Comparatively, in roStore,
one obtains only two different tables (Figure 2d): a single relation named after
the top-property pa and a relation named after the property pf.

Thus, if we consider an ontology consisting of n (e.g. 2 in our example)
property hierarchies with an average of k (e.g. 3 in our example) properties
in each hierarchy, the roStore approach will store k times less tables than a
vpStore approach. Moreover, with this approach it is very unlikely to generate
tables with no tuples (e.g. pd with vpStore in Example 1). Moreover, the set of
tuples stored is the same as in vpStore and only their distribution over database
tables is modified (i.e. physical organization).

We now consider the following query: one wants to retrieve all objects involved
in a triple with a predicate of the pa hierarchy. Considering vpStore’s physical
design, the following SQL query is needed:
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(a) property hierarchy:
pf pa

pb pc

pd pe

(b) RDF triples

sub. prop. obj.

a pa b

c pc d

e pb f

a pf d

g pe h

(c) vpStore

sub. obj.

a b

sub. obj.

e f

sub. obj.

c d
pa relation pb relation pc relation
sub. obj. sub. obj.

g h

sub. obj.

a d
pd relation pe relation pf relation

(d) roStore

sub. obj. prop.

a b pa

c d pc

e f pb

g h pe

sub. obj.

a d

pa relation pf relation

Fig. 2. Storage comparison of vpStore and roStore

SELECT object FROM pa UNION (SELECT object FROM pb UNION (SELECT

object FROM pc UNION (SELECT object FROM pd UNION (SELECT object FROM

pe))));

while the same query is answered far more efficiently considering roStore’s
physical design with:

SELECT object FROM pa;

Such example highlights the kind of (1) reasoning dependent queries and (2)
corresponding improvement one can obtain by using an intermediate physical or-
ganization such as roStore over vpStore when property hierarchies are present
in the ontology.

In order to analyse more deeply the corresponding efficiency of roStore ap-
proach, we will first compare it to the vpStore approach on the LUBM bench-
mark and on some specific queries that highlight limits of vertically partitioning.
In this work, as a first contribution, we focus only on select queries. We are
currently investigating the possibly negative impact of partitioning on update

queries. As far as we went on this track, it seems that this impact is reasonable.
First, we will discuss how to take benefits of the ontology based structure of the
data without the needs of heavy inference mechanisms.

Indeed, compared to classical table schema, the ontology is far more mean-
ingfull and can thus be used to enhance the performance even without needing
knowledge inference. We propose an efficient use of Semantic Query Rewriting
(SQR) adaptable to and usable by most of the data storage approaches. Our
semantic query rewriting aims are, first, to guarantee the exhaustiveness of re-
sults returned when requiring data that should include rdf:subClassOf and
rdf:subPropertyOf; and, a query validation mechanism simply based on the
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domain and range information related to predicates, i.e. resp. rdfs:domain and
rdfs:range. One has to note that the mechanisms we propose are not really
needing heavy reasoning nor data inference mechanisms. Indeed, they can be
considered as an efficient use of the right-away available information of the on-
tology.

The semantic aspect of this rewriting is provided by a thorough usage of
the OWL entailment mechanism, on one hand, to detect if the answer set of a
query will be empty or not, on the other hand, to optimize query in order to
guarantee exhaustiveness of the solution returned. The rules can be decomposed
into two sets: (i) a set of rules, denoted subsume, dealing with concept and
property subsumptions; (ii) a set of rules, denoted propertyCheck, dealing with
the rdfs:range and rdfs:domain of a given predicate. The rules processed by
the subsume procedure are using the OWL inferences to compute all the sub-
concepts (resp. sub-properties) of a given concept (resp. property). In fact, the
query studied in Example 1 was already using the subsume procedure.

Example 2: Consider that the rdfs:range of the predicate pb of Exam-
ple 1 is of rdf:type ClassA which is the top-concept in the following concept
hierarchy:

ClassC ⊑ ClassA, ClassB ⊑ ClassA and ClassC ⊑ ¬ClassB

That is ClassA has two sub-concepts which are disjoint. Consider a query
asking for all subjects and objects of triples where pb is the predicate and all sub-
jects belong to the ClassA hierarchy. Using subsume, the query can be translated
in the following SQL query:

SELECT subject, object FROM pa, type WHERE type.subject =

pa.subject AND pa.property = ’pb’ AND type.object IN

(’ClassA’,’ClassB’, ’ClassC’);

Thus this approach enables to generate a singe SQL query whatever the size
of the concept hierarchy is. Note that it also applies to the property hierarchy.

The rules of propertyCheck are being processed as follows: first the SPARQL
query is parsed and for each predicate explicitly mentioned in the query with a
typed (rdf:type) subject or object, we store a structure containing the predicate
name and the rdf:type of the subject and/or object. Then for each subject (resp.
object) in the structure, we search if there is a direct or indirect (via subsump-
tions) correspondence with the type of the rdfs:domain (resp. rdfs:range)
defined in the ontology for this property.

Example 3: Let us consider the property hierarchy of Figure 3, dealing with
contra indications and the corresponding roStore organization.

Moreover, consider the following ontology axioms: (1) rdf:range of disease
ContraIndication is an instance of the Disease concept, (2) Disease ⊑ Top,
(3) Molecule ⊑ Top and (4) Disease ⊑ ¬ Molecule. Intuitively, axioms (2) to
(4) state that the Disease and Molecule concepts are a sub-concept ot the Top
concept and are disjoint. Consider the following SPARQL query:
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contraIndication

diseaseContraIndication moleculeContraIndication stateContraIndication

subject object property

Ibuprofen Ticlopidin moleculeContraIndication

Ibuprofen Clopidrogel moleculeContraIndication

Ibuprofen Breast feeding stateContraIndication

Ibuprofen Pregnant stateContraIndication

Ibuprofen Hypertensive heart diseaseContraIndication

Fig. 3. Sample of the contraIndication relation

SELECT ?s ?o WHERE {?s :diseaseContraIndication ?o.

?o rdf:type :Molecule.}

which asks for subjects and objects involved in triples where the predicate is
diseaseContraIndication and the object has a rdf:type Molecule. Clearly
the answer set to this query is empty since the rdf:domain of the predicate can
not be a Molecule in this ontology.

Example 4: Consider the following query in the context of Example 3:

SELECT ?s ?o WHERE {?s :diseaseContraIndication ?o.

?o rdf:type :Disease.}

The query is satisfiable since there is a model where its answer set is not
empty. Anyhow, the query can be optimized. In fact, it is not necessary to check
the rdf:type of the object because it corresponds exactly to the one defined as
rdf:range in the ontology. Thus this query is rewritten in:

SELECT ?s ?o WHERE {?s :diseaseContraIndication ?o.}

which once translated into SQL does not require any join and will thus perform
far more efficiently than the orginal query. Note that this simplification does not
work for property with multiple-range/domain. Those examples demonstrate
that it is worth to efficiently use the basic knowledge available directly in the
concept and property hierarchies.

3 Evaluation

3.1 Experimental settings

All our experiments have been conducted on four synthetic databases. They all
have been generated from the Lehigh University Benchmark (LUBM) [9] which
has been developed to facilitate the evaluation of Semantic Web repositories in
a standard and systematic way. The RDF data sets generated with LUBM all
commit to a single realistic ontology dealing with the university domain. This
ontology is composed of 43 concepts, 25 object properties (i.e. relating objects
to objects) and 7 data type properties (relating objects to literals).
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This ontology serves as the schema underlying the four data sets we have
created. This is an important requisite for our evaluation since our set of queries
will be executed on all data sets in order to provide information on scalability
issues. Table 1 summarizes the main characteristics of these data sets in terms
of overall number of triples, number of concept and property instances.

Table 1. Synthetic data sets

DB name # Universities # Concept instances # Property instances # Triples

lubm1 1 15195 60859 100868

lubm2 2 62848 189553 236336

lubm5 5 114535 456137 643435

lubm10 10 263427 1052895 1296940

The RDF data sets are later translated into the different physical organiza-
tion models we would like to evaluate. They are decomposed into the two main
approaches vpStore and roStore. In order to emphasize the efficiency of our
solution on queries needing reasoning, we had to test these settings in a context
similar to [2]. More precisely, we evaluated each approach on a row store and a
column store RDBMS. This yields the four following approaches: vpStore resp.
on a row (vpRStore) and column (vpCStore) store and roStore resp. on a row
(roRStore) and column (roCStore) store. Hence a total of sixteen databases
are generated (each data set is implemented on each physical approach).

We have selected postgreSQL and MonetDB as the RDBMS resp. for the
row-oriented and the column-oriented databases. We retained MonetDB instead
of C-store (the column store used for evaluation in [2]) essentially due to (1) the
lack of maintenance of the latter one, (2) the open-source licence of MonetDB
and (3) the fact that MonetDB is considered state of the art in column-oriented
databases. The tests were run on MonetDB server version 5 and postgreSQL
version 8.3.1. The benchmarking system is an Intel Pentium 4 (2.8 GHz) operated
by a Linux Ubuntu 9.10, with 512 Mbytes of memory, 1MB L2 cache and one
disk of 60 Gbyte spinning at 7200rpm. The disk can read cold data at a rate of
approximatively 55MB/sec.

For the vpRStore, there is a clustered B+ tree index on the subject and an
unclustered B+ tree on the object. Similarly, for the roRStore, a clustered B+
tree index is created on the property column and unclustered B+ trees on the
subject and object. As noted in [14], MonetDB does not include user defined
indices. Hence, we relied on the ordering of the data on property, subject and
object values. More precisely, any two columns table of roCStore and vpCStore

is ordered on subject and object ; while any three columns table (of roCStore) is
ordered on property, subject and object.

Our evaluation contains fifteen queries out of which eleven are coming from
the LUBM benchmark and four tackling the LUBM ontology to evaluate some
particular aspects of roStore. An interesting aspect using LUBM Benchmark
queries is that do not aim to emphasize on the performances of a given storage
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model. Moreover, these queries tackle a wide range of possibilities on volume of
input (number of tuples retrieved) and selectivity rate (i.e. number of conditions
in the WHERE clause of a query). Among the eleven evaluated queries, three do
not require any form of reasoning (#1, #2 and #14) and the eight remaining
queries can be divided in two groups whether they are involving reasoning on the
concept hierarchy (#3,#4,#6,#7,#9,#10) or both concept/property hierarchies
(#5,#8). We now present the purpose of each of these queries:

Q1: retrieves instances of the GraduateStudent class who have taken the
course http://www.Department0.University0.edu/GraduateCourse0.

Q2: retrieves three instances of respectively the GraduateStudent,University
and Department concepts for those students that are member of a department,
this department is a sub-organization of a University and this student has an
undergraduate degree from this university.

Q3: selects all kinds of publications which have been authored by a given
assistant professor.

Q4: retrieves all kinds of professors, their name, email address and telephone
number for those professors working for a given department.

Q5: the result contains instances of the Person concept hierarchy for those
persons that are related to a given department by either the memberOf, workingFor
or headOf properties.

Q6: displays URIs of instances of the Student concept hierarchy.

Q7: retrieves instances of all kind of students and all kinds of courses for
courses that are related by the takesCourse property for those courses that are
taught by a given professor.

Q8: displays instances of all kinds of students with their email addresses and
department instances of a given university these students are member of.

Q9: the retrieved dataset contains instances of the Student, Faculty and
Course concept hierarchies for those students that are advised by faculties, have
taken some courses taught by those faculties.

Q10: selects instances of all the Student class hierarchy who have taken a
given course.

Q14: selects all undergraduate students.

We have introduced Q15 to emphasize roStore performances when values
are needed for a property hierarchy. In fact, it retrieves all subjects involved in
triples where the predicate is one of the properties of the memberOf property
hierarchy, i.e. memberOf, headOf and worksFor. This query is similar to Q5 but
does not refer to any concepts.

Finally, the following three queries aim to highlight the efficiency of our SQR
approach. Q16: selects the subject and object in triples where the predicate is
teacherOf and subject is of rdf:type AdministrativeStaff. This query returns
an empty answer set since the rdfs:domain of teacherOf is the Faculty concept
which is disjoint with AdministrativeStaff. In the next section, we confront
the performances of this query to the simple detection of unsatisfiability of our
SQR solution.
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Q17: selects the subject and the object in triples where the predicate is
teacherOf and subject is of rdf:type Faculty. This query requires a join.

Q18: has the same purpose as Q17 but exploits one of our rewriting rules to
improve its performances. In fact, the join in Q17 is not necessary if one knows
that the rdfs:domain of teacherOf is the concept Faculty.

In the experiments, we will store the LUBM ontology in main-memory and
perform reasoning using the Jena framework.We provide more details concerning
the experimental settings and results on the following web site:
http://sites.google.com/site/wwwrostore.

3.2 Experimental results

The results presented in this section correspond to the average of 5 hot runs (i.e.
repeated runs of the same query without stopping the DBMS) of real time (i.e.
execution time of a query defined as the wall clock passed between the server
receiving the query and before returning the results to the client) executions.
All performance times, except for query Q16 and Q17, include the time needed
to perform the inferences. Finally, in order to highlight the differences in terms
of performances between the various approaches, we either present the results
in bar or line diagrams.
Analysis of Q1. Not surprisingly, column stores outperform row stores. Indeed,
the results will only contain a unique column which will clearly benefit column
store advantage. Moreover, since the query does not involve sub-properties, the
performances of vpStore and roStore are quite similar.
Analysis of Q2. This time, the row stores are more efficient than the column
ones. The results require, in this case, to retrieve two columns of three tables,
hence in a row store both columns will be transfered from the hard drive to main
memory in a single step while two transfers will be needed for column stores.
Moreover, two out of these three tables corresponds to predicates being part of
a group of related predicates in the property hierarchies, namely memberOf and
undergraduateDegreeFrom. Since we voluntarily decided to perform no infer-
ences on these two predicates3 (i.e. not including sub-properties in the query),
it is not surprising that vpStore outperforms roStore since each predicate cor-
responds in the vpStore to a table.
Analysis of Q3. Despite the fact that this query has a similar structure as
Q1 (i.e. only two triples are present in the WHERE clause), it requires to retrieve
all concepts of a wide hierarchy. Due to the ordered organization of tuples,
column stores outperform row ones which rely on indices and on a less effective
I/O transfers. In a similar manner to Q1, the difference between vpStore and
roStore is not significant.
Analysis of Q4. Once again, in this query, we do not use inference on the
worksFor predicate to include results on sub-properties of this last. This is mo-
tivated by the will to emphasize on the weaknesses of the roStore approach.
As expected, vpStore is, in this context, outperforming roStore. In fact, even

3 since it will be specifically considered in query Q15.
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Fig. 4. Performance results for Q1 Fig. 5. Performance results for Q2

Fig. 6. Performance results for Q3 Fig. 7. Performance results for Q4

vpRStore is outperforming roCStore; which can be induced by the high selec-
tivity nature of the query (four attributes in result set).

Analysis of Q5. Due to the exploitation of the sub-properties of the predicate
memberOf in this query, it is not surprising that roStore outperforms vpStore.
Indeed in vpStore, the results of the query comes from the union of three distinct
queries (one for each predicates involved) while roStore only requires a single
query.

Analysis of Q6. This query retrieves the subjects from a two columns table (i.e.
type). Because the column stores primarily order these relations on the subject,
they are more efficient than their row store counterparts. This is due to better
I/O efficiency. Similarly to Q3, the roStore approach outperforms vpStore.

Analysis of Q7. Again query processes in roStore (resp. column store) is more
efficient than vpStore (resp. row store). The reasons are similar to the ones for
Q3.

Analysis of Q8. The analysis of the results for this query confirm the ones of
Q5.
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Fig. 8. Performance results for Q5 Fig. 9. Performance results for Q6

Fig. 10. Performance results for Q7 Fig. 11. Performance results of Q8

Analysis of Q9. This query does not require inferences on property hierarchies
but some on several concept ones. As seen previously, in this situation column
stores is more efficient than row stores. On column stores, vpStore and roStore

have close performance results, with roStore slighty better than vpStore.

Analysis of Q10. The results are similar to Q9.

Analysis of Q14. This query has large input and low selectivity with no in-
ferences. As expected, roCStore is faster than vpCstore which is more efficient
than roRStore; the less effective being vpRStore. Note that this is due to dis-
tinguished variable being placed at the subject position of the only triple of the
WHERE clause. A similar query pattern with the distinguished variable mapped
to the object position of a triple would emphasize the superiority of the vpStore
approach.

Analysis of Q15. This query clearly demonstrates the efficiency of roStore

over vpStore. Even the row oriented roStore outperforms the column oriented
vpStore. This is due to the presence of UNION SQL operators in the queries
executed on the vpStore while roStore only requires a complete scan of the
tuples of one table.
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Fig. 12. Performance results for Q9 Fig. 13. Performance results of Q10

Fig. 14. Performance results for Q14 Fig. 15. Performance results of Q15

Analysis of Q16, Q17 and Q18. Finally, queries Q16, Q17 and Q18 emphasize
the importance of reasoning over the ontology before executing queries over any
of the store solutions. Figure 16 displays the duration times for all databases,
ranging from approximately 42ms (column store with 1 university) to 1450ms
(row store with 10 universities). This can be considered rather long to propose
an empty answer set since, according to the ontology, the query is incoherent.
Comparatively, the propertyCheck method we have implemented needs an av-
erage time of 1ms to reply that the query is coherent or not. Hence, a system
implemented on top of an OWL compliant reasoner is able to determine almost
instantly if the answer set is empty.

Moreover, it could also provide some explanations concerning the inconsis-
tency of the query. We believe that such optimization are quite useful especially
when end-users are not confident with all the details of a given ontology. The
performance results of Q17 and Q18 are provided together in Figure 17 in order
to highlight their comparisons. The purpose of Q17 and Q18 is to emphasize the
importance of analyzing predicate rdfs:domain and rdfs:range in a property
table approach. The execution of Q17 does not perform any optimization while
Q18 checks that the concept Faculty is the rdfs:domain of the teacherOf

predicate and hence a join to the rdf:type relation is not necessary.
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Fig. 16. Performance results for Q16 Fig. 17. Q17 and Q18 performance results

Summary: Several conclusions can be drawn from our evaluation. Consid-
ering the adoption of a database solution, we confirm the evaluations of [2] and
[14] stating that column stores outperform row stores for RDF triple storage. The
only exception in our experiments consists in Q2 which is rather due to the
partitioning approach.

Concerning the partitioning approach, all our intuitions were confirmed by
this evaluation. That is roStore outperforms vpStore whenever queries retrieve
information from triples where properties belong a given property hierarchy (e.g.
Q5 and Q15). On the contrary, vpStore is more efficient than roStore where
only a subset of the properties of a property hierarchy are necessary to reply
to a query (e.g. Q2). This result was expected since the roStore approach then
requires to add additional conditions on the properties one wants to retrieve
from a ’top property’ relation.

Finally, the SQR approach seems to be quite useful since it does not slow
down the processing of satisfiable queries and enables to detect unsatisfiable
queries efficiently (e.g. Q17 and Q18). Anyhow, we consider that more evalua-
tions need to be conducted on larger ontologies to confirm these results.

4 Conclusion

The first contribution of this paper is to show that depending on the type of
applications and queries asked to the RDF triple stores, different partitioning
approaches can be considered. Between the two extremes of triple and vertical
partitioning, we introduced the roStore approach which is particularly advanta-
geous for a certain class of queries, i.e. those relying on deep property hierarchies
(e.g. the OpenGalen ontology contains a property hierarchy of depth 6). More-
over, this novel approach is a simple extension to the existing RDF column store
work and can thus be easily adopted by other RDF stores. A second contribu-
tion of this work is to propose a semantic query rewritting solution that can be
adopted by most of the RDF triples we have presented in this paper (triples ta-
bles, vertical partitioning, roStore, property-class tables). This approach seems
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promising since it can be quite useful to detect unsatisfiable queries and opti-
mizing other queries by analyzing property domains and ranges.

Our list of future works is large since we consider that several investigations
need to be performed to complete the road map on efficient and persistent RDF
triple storage. The first directions we would like to follow are ontology schema
evolution in roStore (e.g. a new property hierarchy emerges or is removed from
the ontology) and the consideration of concept hierarchies at the storage and
querying levels.
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