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Abstract. Arc-annotated sequences are useful for representing struc-
tural information of RNAs and have been extensively used for compar-
ing RNA structures in both terms of sequence and structural similari-
ties. Among the many paradigms referring to arc-annotated sequences
and RNA structures comparison (see [2] for more details), the most im-
portant one is the general edit distance. The problem of computing an
edit distance between two non-crossing arc-annotated sequences was in-
troduced in [5]. The introduced model uses edit operations that involve
either single letters or pairs of letters (never considered separately) and
is solvable in polynomial-time [12].
To account for other possible RNA structural evolutionary events, new
edit operations, allowing to consider either silmutaneously or separately
letters of a pair were introduced in [9]; unfortunately at the cost of com-
putational tractability. It has been proved that comparing two RNA sec-
ondary structures using a full set of biologically relevant edit operations
is NP-complete. Nevertheless, in [8], the authors have used a strong com-
binatorial restriction in order to compare two RNA stem-loops with a
full set of biologically relevant edit operations; which have allowed them
to design a polynomial-time and space algorithm for comparing general
secondary RNA structures.
In this paper we will prove theoretically that comparing two RNA struc-
tures using a full set of biologically relevant edit operations cannot be
done without strong combinatorial restrictions.

1 Introduction

In computational biology, comparison of RNA molecules has recently attracted
a lot of interest due to the rapidly increasing amount of known RNA molecules,
especially non-coding RNAs. Very often, arc-annotated sequences, originally in-
troduced in [5], are used to represent RNA structures. An arc-annotated sequence
is a sequence over a given alphabet together with additional structural informa-
tion specified by arcs connecting pairs of positions. The arcs determine the way
the sequence folds into a three-dimensional space.



The problem of computing an edit distance between two arc-annotated se-
quences was introduced in [5] with a model that used only three edit operations
(deletion, insertion and substitution) either on single letters (letters in the se-
quence with no incident arc) or pairs of letters (letters connected by an arc).
In this model, the two letters of an arc are never considered separately, and
hence the problem of computing the edit distance between two arc-annotated
sequences becomes equivalent (when no pair of arcs are crossing) to the tree edit
distance problem, that can be solved in polynomial-time [12].

To account for other possible RNA structural evolutionary events, new edit
operations, such as creation, deletion or modification of arcs between pairs of
letters, were introduced in [9] at the cost of computational tractability. Indeed,
it has been shown in [4] that in case of non-crossing arcs, the problem of com-
puting the edit distance between two arc-annotated sequences under this model
is NP-hard. Playing the game of applying constraints either on the legal edit
operations or on the allowed alignments, several papers have shed new light on
the borderline between tractability and intractability [8, 2]. Of particular im-
portance, in [8], the authors introduced the notion of conservative edit distance
and mapping between two RNA stem-loops in order to design a polynomial-time
algorithm for comparing general secondary RNA structures using the full set of
biological edit operations introduced in [9]. This algorithm is based on a decom-
position in stem-loop-like substructures that are pairwised compared and used
to compare complete RNA secondary structures. As mentionned in [8], whereas
in the very restrictive case of conservative distance and mapping, the computa-
tion of the general edit distance is polynomial-time solvable, it is not known if
the general, i.e., not conservative, edit distance between two stem-loops can be
also computed in polynomial-time.

In this paper, we will show that this strong combinatorial restriction is ac-
tually necessary for the problem to become polynomial since it is NP-hard in
the general case. Despite the fact that this result may be considered as purely
theoretical, it proves that comparing two RNA structures using a full set of bi-
ologically relevant edit operations cannot be done without strong combinatorial
restrictions.

2 Preliminaries

Given a finite alphabet Σ, an arc-annotated sequence is formally defined by a
pair (S, P ), where S is a string of Σ∗ and P is a set of arcs connecting pairs of
letters of S. In reference to RNA structures, letters are called bases. Bases with
no incident arc are called single bases. In an arc-annotated sequence, two arcs
(i1, j1) and (i2, j2) are crossing, if i1 < i2 < j1 < j2 or i2 < i1 < j2 < j1. An arc
(i1, j1) is embedded into another arc (i2, j2) if i2 < i1 < j1 < j2. Evans [5] (see
[8] for extensions) introduced five different levels of arc structure: Unlimited

– no restriction at all; Crossing – there is no base incident to more than one
arc; Nested – there is no base incident to more than one arc and no two arcs
are crossing; Stem – there is no base incident to more than one arc and given



any two arcs, one is embedded into the other; Plain – there is no arc. There is
an obvious inclusion relation between those levels: Plain ⊂ Stem ⊂ Nested ⊂
Crossing ⊂ Unlimited. An arc-annotated sequence (S1, P1) is said to occur
in another arc-annotated sequence (S2, P2) if one can obtain the former from
the latter by repeatedly deleting bases (deleting a base that is incident to an arc
results in the deletion of the arc).

Among the many paradigms referring to arc-annotated sequences (see [2] for
more details) we focus in this article on the Longest Arc-Preserving Com-

mon Subsequence (Lapcs for short) [5, 10, 11] and the general edit distance
(Edit for short) [9, 3]. Indeed, as shown in [2], those two paradigms are quite
related since the Lapcs problem is a special case of Edit when considering the
complete set of edit operations defined in [9]. Therefore, the hardness results for
Lapcs stands for Edit.

Formally, the Longest Arc-Preserving Common Subsequence problem
is defined as follows: given two arc-annotated sequences (S1, P1) and (S2, P2),
find the longest – in terms of sequence length – common arc-annotated subse-
quence that occurs in both (S1, P1) and (S2, P2). It has been shown in [9] that the
Lapcs problem is NP-hard even for Nested structures, i.e., Lapcs(Nested,
Nested). Still focussing on Nested structures, Alber et al. [1] proved that the
Lapcs(Nested, Nested) problem is solvable in O(3k |Σ|k kn) time, where n is
the maximum length of the two sequences and k is the length of the common
subsequence searched for.

While Lapcs(Stem, Stem) might appear at first sight as yet another re-
finement of Lapcs, we emphasize here that our hardness result implies hardness
of Edit(Stem. Stem) [2]. This latter problem has been shown to be of par-
ticular interest to compare complete RNA secondary structures [8]. Another
consequence of our result is that further research on comparing RNA structures
with a full set of edit operations aiming at polynomial-time solutions will have
to introduce strong combinatorial restrictions.

3 Comparing RNA Stem-Loops is NP-complete

In this section, we prove that Lapcs over stem-loops (Lapcs(Stem,Stem)) is
NP-complete (in Theorem 1); therefore answering an open question of [8]. This
last result induces the NP-hardness of Edit over stem-loops.

Theorem 1. Lapcs(Stem,Stem) is NP-complete.

Corollary 1. Comparing RNA structures with a full set of biologically relevant
edit operations cannot be done without introducing strong combinatorial restric-
tions.

In the following, we consider the decision version of the problem which cor-
responds to deciding if there exists an arc-preserving common subsequence of
length greater or equal to a given parameter k′.



It is easy to see that the Lapcs problem is in NP. In order to prove its
NP-hardness, we define a reduction from the NP-complete 3SAT problem [6]
which is defined as follows: Given a collection Cq = {c1, c2, . . . , cq} of q clauses,
where each clause consists of a set of 3 literals (representing the disjunction of
those literals) over a finite set of n boolean variables Vn = {x1, x2, . . . , xn}, is
there an assignment of truth values to each variable of Vn s.t. at least one of the
literals in each clause is true?

Let (Cq, Vn) be any instance of the 3SAT problem s.t. Cq = {c1, c2, . . . , cq}

and Vn = {x1, x2, . . . , xn}. For convenience, let L
j
i denote the jth literal of the

ith clause (i.e. ci) of Cq. In the following, given a sequence S over an alphabet
Σ, let χ(i, c, S) denote the ith occurrence of the letter c in S.

We build two arc-annotated sequences (S1, P1) and (S2, P2) as follows. An
illustration of a full example is given in Figures 1 and 2, where n = 4 and
q = 3. For readability reasons, the arc-annotated sequences resulting from the
construction have been split into several parts and a schematic overview of the
overall placement of each part is provided.
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j
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Moreover, let S1
M = x1x1x2x2...xnxn and S2

M = x1x1x2x2...xnxn. Notice that,
by construction, there is only one occurrence of each {s1, s2, s3} in C2

i .
For all 1 ≤ i ≤ q, let Qi (resp. Qq+i) be a segment of n + 1 symbols yi

(resp. yq+i). Moreover, for all 1 ≤ i ≤ q, let Wi (resp. Vi) be a segment of
20(max{q, n}2) symbols wi (resp. vi). Let us now define P1 and P2.

For all 1 ≤ i ≤ q − 1, (1) add an arc in P1 between χ(1, xk, C1
i ) (resp.

χ(1, xk, C1
i )) and χ(1, xk, P 1

i+1) (resp. χ(1, xk, P 1
i+1)), ∀1 ≤ k ≤ n (see Figure

1.d and 2.b); (2) add an arc in P2 between χ(j, xk, C2
i ) (resp. χ(j, xk, C2

i )) and
χ((4 − j), xk, P 2

i ) (resp. χ((4 − j), xk, P 2
i )), ∀1 ≤ k ≤ n (see Figure 1.c, 2.a and

2.c); (3) add an arc in P2 between χ(1, R
j
i , C

2
i ) and χ(1, R

j
q+i, P

2
i ), ∀1 ≤ j ≤ 3

(see Figure 1.c, 2.a and 2.c).
Clearly, this construction can be achieved in polynomial-time, and yields to

sequences (S1, P1) and (S2, P2) that are both of type Stem. We now give an
intuitive description of the different elements of this construction.

Each clause ci ∈ Cq is represented by a pair (C1
i , C2

i ) of sequences. The
sequence C2

i is composed of three subsequences representing a selection mech-
anism of one of the three literals of ci. The pair (S1

M , S2
M ) of sequences is a



control mechanism that will guarantee that a variable xk cannot be true and
false simultaneously. Finally, for each clause ci ∈ Cq, the pair (P 1

i , P 2
i ) of se-

quences is a propagation mechanism which aim is to propagate the selection of
the assignment (i.e. true or false) of any literal xk all over Cq. Notice that all
the previous intuitive notions will be detailed and clarified afterwards.

In the rest of this article, we will refer to any such construction as a snail-
construction. In order to complete the instance of the Lapcs(Stem,Stem) prob-
lem, we define the parameter k′ = 40q(max{q, n}2) + 6qn + 8q + n which cor-
responds to the desired length of the solution. In the following, let (S1, P1) and
(S2, P2) denote the arc-annotated sequences obtained by a snail-construction.
We will denote Sd the set of symbols deleted in a solution of Lapcs problem
on (S1, P1) and (S2, P2) (i.e. the symbols that do not belong to the common
subsequence).

We start the proof that the reduction from 3SAT to Lapcs(Stem,Stem) is
correct by giving some properties about any optimal solution.

Lemma 1. In any optimal solution of Lapcs problem on (S1, P1) and (S2, P2),
at least one symbol incident to any arc would be deleted. Moreover, all the symbols
of Vi and Wi, for 1 ≤ i ≤ q, will not be deleted.

Proof. By contradiction, let us suppose that there exist at least one arc s.t. the
two symbols incident to this last are not deleted in a solution of Lapcs problem
on (S1, P1) and (S2, P2). Then, by construction, it induces that at least one
complete sequence Vj or Wj , for a given 1 ≤ j ≤ q, has been deleted. Since
they have the same length, we will consider w.l.o.g. afterwards that Vi has been
deleted. Therefore, since S1 is, by construction, smaller than S2 the length of
this optimal solution is at most |S1| − |Vj | =

∑q
i=1

(|C1
i | + |P 1

i | + |Vi| + |Wi|) +
|S1

M |−|Vj | =
∑q

i=1
((6n+11)+(6n+7)+(20(max{q, n}2))+(20(max{q, n}2)))+

2n− (20(max{q, n}2)) = q[12n+18+40(max{q, n}2)]+ 2n− (20(max{q, n}2)).
Then, in order for this solution to be optimal, one should have q[12n + 18 +
40(max{q, n}2)] + 2n − (20(max{q, n}2)) ≥ 40q(max{q, n}2) + 6qn + 8q + n.
This can be reduced to 6qn + 10q− 20(max{q, n}2) + n ≥ 0. But, one can easily
check that for any n ≥ 3 (which is always the case in 3SAT instances), this is
not true; a contradiction.

Lemma 2. Any optimal solution of Lapcs problem on (S1, P1) and (S2, P2) is
of length 40q(max{q, n}2) + 6qn + 8q + n.

Proof. By construction, in S1 there is (1) ∀1 ≤ i ≤ n, 2q + 1 occurrences of xi

(resp. xi); (2) ∀1 ≤ i ≤ q, 4 occurrences of Qi (resp. Qq+i); (3) ∀1 ≤ i ≤ q, 1
occurrence of each {R1

i , R
2
q+i, R

3
i , R

1
q+i, R

3
q+i, Wi, Vi, s1, s2, s3}; (4) ∀1 ≤ i ≤ q, 2

occurrences of R2
i .

Whereas, in S2, there is (1) ∀1 ≤ i ≤ n, 6q + 1 occurrences of xi (resp. xi);
(2) ∀1 ≤ i ≤ q, 2 occurrences of Qi (resp. Qq+i); (3) ∀1 ≤ i ≤ q, 1 occurrence of
each {R1

i , R
2
i , R

3
i , R

1
q+i, R

2
q+i, R

3
q+i, Wi, Vi, s1, s2, s3}.

Therefore, in any optimal solution there may be only (1) ∀1 ≤ i ≤ n, 2q + 1
occurrences of xi (resp. xi); (2) ∀1 ≤ i ≤ q, 2 occurrences of Qi (resp. Qq+i); (3)
∀1 ≤ i ≤ q, 1 occurrence of each {R1

i , R
2
i , R

3
i , R

1
q+i, R

2
q+i, R

3
q+i, Wi, Vi, s1, s2, s3}.



Fig. 1. Considering Cq = (x1 ∨x2 ∨x3)∧ (x1 ∨x2 ∨x4)∧ (x2 ∨x3 ∨x4). For readability,
all the arcs have not been drawn, consecutive arcs are representing by a unique arc
with lines for endpoints. Symbols over a grey background may be deleted to obtain an
optimal LAPCS. a) A schematic view of the overall arrangement of the components of
the two a.a. sequences. b) Description of S

1
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1
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2

1 and the corresponding arcs in
P1. c) Description of C
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1 , C
2
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1 and the corresponding arcs in P2. d) Description
of C
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2

2 and the corresponding arcs in P1.



Fig. 2. Considering Cq = (x1 ∨x2 ∨x3)∧ (x1 ∨x2 ∨x4)∧ (x2 ∨x3 ∨x4). For readability
all the arcs have not been drawn, consecutive arcs are representing by a unique arc
with lines for endpoints. Symbols over a grey background may be deleted to obtain an
optimal LAPCS. a) Description of C
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2 and the corresponding arcs in P2.
c) Description of C
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3 and the corresponding arcs in P1. d) Description of
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3 and the corresponding arcs in P2.



More precisely, by Lemma 1, and since, by construction, there is an arc in P2

between χ(1, R
j
i , C

2
i ) and χ(1, R

j
q+i, P

2
i ), ∀j ∈ {1, 2, 3}, in any optimal solution,

∀1 ≤ i ≤ q, only half of the {R1
i , R

2
i , R

3
i , R

1
q+i, R

2
q+i, R

3
q+i} may be conserved.

Moreover, any xi (resp. xi) of S1 except in C1
q , is linked by an arc to another

xi (resp. xi), therefore by Lemma 1, in any optimal solution, ∀1 ≤ i ≤ q − 1,
only half of the occurrences of xi (resp. xi) may be conserved.

Finally, in any optimal solution, only half of the occurrences of {xi, xi} and
one over {s1, s2, s3} in C1

q and S1
M may be conserved. Indeed, by construction,

if this is not the case in C1
q (resp. S1

M ), it implies that at least one complete
sequence Qq (resp. V1 or W1) is totally deleted – which is not optimal since it is
of length n + 1 (resp. 20(max{q, n}2)).

On the whole, the maximal total length of any solution is thus equal to
40q(max{q, n}2) + 6qn + 8q + n. Moreover, this solution is composed of (1)
∀1 ≤ i ≤ n, 2q + 1 occurrences of either xi or xi, (2) ∀1 ≤ i ≤ q, 2 occurrences
of Qi and Qq+i, (3) ∀1 ≤ i ≤ q, 1 occurrence of each {Wi, Vi} and either s1, s2

or s3 and (4) ∀1 ≤ i ≤ q, R
j1
i , R

j2
i , R

j3
q+i s.t. {j1, j2, j3} = {1, 2, 3}.

Lemma 3. In any optimal solution of Lapcs problem on (S1, P1) and (S2, P2),
if χ(1, xk, S1

M ) (resp. χ(1, xk, S1
M )) for a given 1 ≤ k ≤ n is deleted then, ∀1 ≤

j ≤ q, χ(1, xk, C1
j ) (resp. χ(1, xk, C1

j )) is deleted.

Proof. By construction, ∀1 ≤ k ≤ n only one of {xk, xk} may be conserved
between S1

M and S2
M since χ(1, xk, S1

M ) < χ(1, xk, S1
M ) whereas χ(1, xk, S2

M ) <

χ(1, xk, S2
M ). By Lemma 1, at least one symbol incident to any arc is deleted.

Therefore, ∀1 ≤ k ≤ n only one of {xk, xk} may be conserved between C1
1 and

C2
1 .

Let us suppose that for a given 1 ≤ k ≤ n, χ(1, xk, S1
M ) is deleted. According

to the proof of Lemma 2, in any optimal solution, ∀1 ≤ k ≤ n exactly one of
{xk, xk} has to be deleted. Then χ(1, xk, P 1

1 ) is deleted whereas χ(1, xk, P 1
1 ) is

conserved.

By construction, in P 2
1 , since according to the proof of Lemma 2, both oc-

currences of Qq+1 and R
j1
1 , R

j2
1 , R

j3
q+1 s.t. {j1, j2, j3} = {1, 2, 3} have to be con-

served, either (1) {R1
1, R

2
1, R

3
q+1}, (2) {R1

1, R
3
1, R

2
q+1} or (3) {R2

1, R
3
1, R

1
q+1} are

conserved.

Let us first consider that {R1
1, R

2
1, R

3
q+1} are conserved. Then one can check

that the only solution is to conserve χ(2, R2
1, C

1
1 ) since otherwise at least half of

the xk’s would not be conserved. Consequently, the only solution is to conserve,
∀1 ≤ k ≤ n, the first (resp. last) occurrence of any xk or xk in C2

1 (resp. P 2
1 ) – i.e.

the occurrences appearing before χ(1, Q1, C
2
1 ) (resp. after χ(2, Qq+1, P

2
1 )). Since

by construction, there is an arc between χ(1, xk, C2
1 ) (resp. χ(1, xk, C2

1 )) and
χ(3, xk, P 2

1 ) (resp. χ(3, xk, P 2
1 )), in order for χ(1, xk, P 1

1 ) to be conserved, one
has to conserved χ(3, xk, P 2

1 ). Thus, by Lemma 1, χ(1, xk, C2
1 ) has to be deleted

and, according to the proof of Lemma 2, χ(1, xk, C2
1 ) has to be conserved.

Let us now consider that {R1
1, R

3
1, R

2
q+1} are conserved. By a similar reason-

ing, one can check that the only solution is to conserve, ∀1 ≤ k ≤ n, the second



occurrence of any xk or xk in C2
1 (resp. P 2

1 ) – i.e. the occurrences appearing be-
tween χ(1, Q1, C

2
1 ) and χ(2, Q1, C

2
1 ) (resp. χ(1, Qq+1, P

2
1 ) and χ(2, Qq+1, P

2
1 )).

Since by construction, there is an arc between χ(2, xk, C2
1 ) (resp. χ(2, xk, C2

1 ))
and χ(2, xk, P 2

1 ) (resp. χ(2, xk, P 2
1 )), in order to χ(1, xk, P 1

1 ) to be conserved, one
has to conserved χ(2, xk, P 2

1 ). Thus, by Lemma 1, χ(2, xk, C2
1 ) has to be deleted

and, according to the proof of Lemma 2, χ(2, xk, C2
1 ) has to be conserved.

Finally, let us consider that {R2
1, R

3
1, R

1
q+1} are conserved. Once again, by a

similar reasoning, one can check that the only solution is to conserve χ(1, R2
1, C

1
1 )

since otherwise at least half of the xk’s would not be conserved. Consequently,
the only solution is to conserve, ∀1 ≤ k ≤ n, the last (resp. first) occurrence of
any xk or xk in C2

1 (resp. P 2
1 ) – i.e. the occurrences appearing after χ(2, Q1, C

2
1 )

(resp. before χ(1, Qq+1, P
2
1 )). Since by construction, there is an arc between

χ(3, xk, C2
1 ) (resp. χ(3, xk, C2

1 )) and χ(1, xk, P 2
1 ) (resp. χ(1, xk, P 2

1 )), in order
to χ(1, xk, P 1

1 ) to be conserved, one has to conserved χ(1, xk, P 2
1 ). Thus, by

Lemma 1, χ(3, xk, C2
1 ) has to be deleted and, according to the proof of Lemma

2, χ(3, xk, C2
1 ) has to be conserved.

Therefore, in the three cases, if for a given 1 ≤ k ≤ n, χ(1, xk, S1
M ) is con-

served then so does χ(1, xk, C1
1 ). It is easy to see that, by a similar reasoning, if

for a given 1 ≤ k ≤ n, χ(1, xk, S1
M ) is conserved then so does χ(1, xk, C1

1 ).

With a similar reasoning, by reccurence, since, ∀1 ≤ i ≤ q, 1 ≤ k ≤ n, there
is an arc in P1 between χ(1, xk, C1

i ) (resp. χ(1, xk, C1
i )) and χ(1, xk, P 1

i+1) (resp.
χ(1, xk, P 1

i+1)), if χ(1, xk, C1
i ) is conserved then χ(1, xk, P 1

i+1) is deleted. And
therefore, with similar arguments, χ(1, xk, C1

i+1) is conserved. Once more, it is
easy to see that this result still holds if χ(1, xk, C1

i ) is conserved.

Theorem 2. Given an instance of the problem 3SAT with n variables and q

clauses, there exists a satisfying truth assignment iff the Lapcs of (S1, P1) and
(S2, P2) is of length k′ = 40q(max{q, n}2) + 6qn + 8q + n.

Proof. (⇒) An optimal solution for Cq = (x1∨x2∨x3)∧(x1∨x2∨x4)∧(x2∨x3∨x4)
– i.e. x1 = x3 = true and x2 = x4 = false – is illustrated in Figures 1 and 2
where any symbol over a grey background have to be deleted. Suppose we have
a solution of 3SAT, that is an assignment of each variable of Vn satisfying Cq.
Let us first list all the symbols to delete in S1.

For all 1 ≤ k ≤ n, if xk = false then delete, ∀1 ≤ j ≤ q, {χ(1, xk, C1
j ),

χ(1, xk, P 1
j )} and χ(1, xk, S1

M ); otherwise delete, ∀1 ≤ j ≤ q, {χ(1, xk, C1
j ),

χ(1, xk, P 1
j )} and χ(1, xk, S1

M ).

For each L
j
i satisfying ci with the biggest index j with 1 ≤ i ≤ q,

if (1) j = 1 then delete {χ(1, R3
i , C

1
i ), χ(1, Qi, C

1
i ), χ(1, R2

i , C
1
i ), χ(2, Qi, C

1
i ),

χ(1, s2, C
1
i ), χ(1, s3, C

1
i ), χ(1, R2

q+i, P
1
i ), χ(1, R1

q+i, P
1
i ), χ(3, Qq+i, P

1
i ),

χ(4, Qq+i, P
1
i )} (cf Figure 1.a);

if (2) j = 2 then delete {χ(1, R2
i , C

1
i ), χ(2, Qi, C

1
i ), χ(1, s1, C

1
i ), χ(1, s3, C

1
i ),

χ(3, Qi, C
1
i ), χ(2, R2

i , C
1
i ), χ(2, Qq+i, P

1
i ), χ(1, R3

q+i, P
1
i ), χ(1, R1

q+i, P
1
i ),

χ(3, Qq+i, P
1
i )} (cf Figure 2.a);



if (3) j = 3 then delete {χ(1, s1, C
1
i ), χ(1, s2, C

1
i ), χ(3, Qi, C

1
i ), χ(2, R2

i , C
1
i ),

χ(4, Qi, C
1
i ), χ(1, R1

i , C
1
i ), χ(1, Qq+i, P

1
i ), χ(2, Qq+i, P

1
i ), χ(1, R3

q+i, P
1
i ),

χ(1, R2
q+i, P

1
i )} (cf Figure 2.c);

Let us now list all the symbols in S2 to be deleted.

For all 1 ≤ k ≤ n, if xk = false then delete χ(1, xk, S2
M ); otherwise delete

χ(1, xk, S2
M ).

For each L
j
i satisfying ci with the biggest index j with 1 ≤ i ≤ q,

if (1) j = 1 then delete ∀1 ≤ k ≤ n {χ(1, R3
i , C

2
i ), χ(1, s2, C

2
i ), χ(2, xk, C2

i ),
χ(2, xk, C2

i ), χ(1, s3, C
2
i ), χ(3, xk, C2

i ), χ(3, xk, C2
i ), χ(1, xk, P 2

i ), χ(1, xk, P 2
i ),

χ(1, R1
q+i, P

2
i ), χ(1, R2

q+i, P
2
i ), χ(2, xk, P 2

i ), χ(2, xk, P 2
i )}. Moreover, if xk = false

with 1 ≤ k ≤ n then delete, {χ(1, xk, C2
i ), χ(3, xk, P 2

i )}; otherwise delete
{χ(1, xk, C2

i ), χ(3, xk, P 2
i )} (cf Figure 1.a);

if (2) j = 2 then delete ∀1 ≤ k ≤ n {χ(1, R2
i , C

2
i ), χ(1, s1, C

2
i ), χ(1, xk, C2

i ),
χ(1, xk, C2

i ), χ(1, s3, C
2
i ), χ(3, xk, C2

i ), χ(3, xk, C2
i ), χ(1, xk, P 2

i ), χ(1, xk, P 2
i ),

χ(1, R1
q+i, P

2
i ), χ(1, R3

q+i, P
2
i ), χ(3, xk, P 2

i ), χ(3, xk, P 2
i )}. Moreover, if xk = false

with 1 ≤ k ≤ n then delete, {χ(2, xk, C2
i ), χ(2, xk, P 2

i )}; otherwise delete
{χ(2, xk, C2

i ), χ(2, xk, P 2
i )} (cf Figure 2.a);

if (3) j = 3 then delete ∀1 ≤ k ≤ n {χ(1, R1
i , C

2
i ), χ(1, s1, C

2
i ), χ(1, xk, C2

i ),
χ(1, xk, C2

i ), χ(1, s2, C
2
i ), χ(2, xk, C2

i ), χ(2, xk, C2
i ), χ(2, xk, P 2

i ), χ(2, xk, P 2
i ),

χ(1, R2
q+i, P

2
i ), χ(1, R3

q+i, P
2
i ), χ(3, xk, P 2

i ), χ(3, xk, P 2
i )}. Moreover, if xk = false

with 1 ≤ k ≤ n then delete, {χ(3, xk, C2
i ), χ(1, xk, P 2

i )}; otherwise delete
{χ(3, xk, C2

i ), χ(1, xk, P 2
i )} (cf Figure 2.c);

By construction, the natural order of the symbols of S1 and S2 allows the cor-
responding set of undeleted symbols to be conserved in a common arc-preserving
common subsequence between (S1, P1) and (S2, P2). Let us now prove that the
length of this last is k′. One can easily check that this solution is composed of
∀1 ≤ k ≤ n, (1) 2q + 1 occurrences of either xk or xk, (2) ∀1 ≤ i ≤ q, 2 occur-
rences of Qi and Qq+i, (3) ∀1 ≤ i ≤ q, 1 occurrence of each {Wi, Vi} and either

s1, s2 or s3 and (4) ∀1 ≤ i ≤ q, R
j1
i , R

j2
i , R

j3
q+i s.t. {j1, j2, j3} = {1, 2, 3}. Thus,

the length of the solution is 40q(max{q, n}2) + 6qn + 8q + n.

(⇐) Suppose we have an optimal solution – i.e. a set of symbols Sd to delete
– for Lapcs of (S1, P1) and (S2, P2). Let us define the truth assignment of Vn

s.t., ∀1 ≤ i ≤ q, if χ(1, sj , C
1
i ) 6∈ Sd then L

j
i is true. Let us prove that it is a

solution of 3SAT.

By construction, if L
j
i = xk (resp. xk) then in C1

i , sj appears between xk and
xk whereas in C2

j it appears after xk (resp. before xk). Thus, if χ(1, sj , C
1
i ) is not

deleted then xk (resp. xk) in C1
i is deleted if L

j
i = xk (resp. xk). Consequently,

according to the proof of Lemma 3, if χ(1, sj , C
1
i ) is not deleted then xk (resp.

xk) in all C1
i′ , with 1 ≤ i′ ≤ q is deleted if L

j
i = xk (resp. xk). Therefore, we can

ensure that one cannot obtain L
j
i and L

j′

i′ being true whereas L
j
i = L

j′

i′ (that is a



variable cannot be simultaneously true and false). By Lemma 2, we can ensure
that for any 1 ≤ i ≤ q exactly one of {s1, s2, s3} is conserved in C1

i . Therefore,
for any clause ci at least one of its literal is set to true. This ensures that our
solution is a solution of 3SAT.

Lemma 4. Lapcs(Stem, Stem) is solvable in O(2k−1 |Σ|k kn)

Proof. We use a straightforward brute-force algorithm for arc-annotated se-
quences [1]: (i) generate all possible sequences of length k with all possible Stem

arc annotations, and (ii) for each of these arc-annotated candidate sequences,
check whether or not it occurs as a pattern in both S1 and S2.

At the heart of this approach is the fact that it can be decided in O(n k) time
whether or not this sequence occurs as an arc-preserving common subsequence
[7]. It is easily seen that the above algorithm reduces to O(2k−1 |Σ|k km) time
for Lapcs(Stem, Stem). Indeed, there exist |Σ|k sequences of length k and
hence, for a given sequence of length k, there exist

(

k
2i

)

different arc-annotations

with i arcs. Therefore, there exist
∑⌊k/2⌋

i=0

(

k
2i

)

= 2k−1 arc-annotations of a given
sequence of length k.

4 Future work

From a computational biology point of view, especially for comparing stems,
one may, however, be mostly interested in the case k (length of the common
subsequence searched) might not be assumed too small compared to n. A first
approach is provided in [1] where it is proved that, given two sequences of length
at most n and nested arc structure, an arc-preserving common subsequence can
be determined (if it exists) in O(3.31k1+k2 n) time; obtained by deleting (together
with corresponding arcs) k1 letters from the first and k2 letters from the second
sequence. Improving the running time of the parameterization in case of stem
arc structures appears to be a promising line of research.
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