Michel Chilowicz

Étienne Duris

Gilles Roussel

LDTA 2008

Keywords: program transformation, factorization, inlining, outlining, similarity metrics, software plagiarism

The high availability of a huge number of documents on the Web makes plagiarism very attractive and easy. This plagiarism concerns any kind of document, natural language texts as well as more structured information such as programs. In order to cope with this problem, many tools and algorithms have been proposed to find similarities. In this paper we present a new algorithm designed to detect similarities in source codes. Contrary to existing methods, this algorithm relies on the notion of function and focuses on obfuscation with inlining and outlining of functions. This method is also efficient against insertions, deletions and permutations of instruction blocks. It is based on code factorization and uses adapted pattern matching algorithms and structures such as suffix arrays.

Introduction

Current similarity detection techniques on source codes are mainly inspired from computer genomic algorithms [START_REF] Prechelt | Finding plagiarism among a set of programs JPlag[END_REF][START_REF] Schleimer | Winnowing: local algorithms for document fingerprinting[END_REF][START_REF] Irving | Plagiarism and collusion detection using the Smith-Waterman algorithm[END_REF] in which factorization and development (outlining and inlining) have not been widely explored. In this paper, we present a new similarity detection technique based on the factorization of source code that permits finding similarities and quantify them at a function-level thanks to a synthetized graph-call of the programs.

This technique consists in splitting each original function into sub-functions, sharing as much sub-functions as possible between original functions. The whole source code is then represented by a call graph: the vertices are the functions and the edges are the function calls. Thus, similar functions should derive in an identical, or comparable, set of sub-functions, i.e., leaves of the call graph. Depending on the measurement used to evaluate (sub-)function similarities, this technique may not be sensible to insertion, deletion, inversion, inlining or outlining of source code which are the most common methods of obfuscation.

The rest of this paper is organized as follows. Section 2 gives an overview of the whole detection process. The main steps of the factorization algorithm and call graph analysis are detailed in section 3 and 4. Related work and benchmarks are discussed in sections 5 and 6. The paper then presents a conclusion and introduces some future work.

Overview

Our work is directed towards finding similarities in source code in procedural languages at the level of function. Our aim is to experiment a similarity detection technique based on function transformations. Indeed, to be insensitive to outlining, inlining and source block displacements, we manipulate abstractions of the programs that are call graphs. Initially, the call graph is the one of the original program. Next, by using several algorithms, the call graph is enriched with new synthetic sub-functions that represent the granularity of similarities.

From source code to token sequences and call graph

From the original source code of a program, a lexical analysis provides us with a sequence of tokens. In this sequence, the concrete lexical tokens are represented by abstract parameterized tokens. Some tokens, such as function parameters or variable declarations are discarded. It is also possible to use normalization techniques, based on syntactic or semantic properties, to filter and enhance the result. For instance, the sequence we process is independent of the identifiers of variables and functions in order to defeat the simplest obfuscations2 . Since the tokens could be scattered and merged into synthetic sub-functions by the factorization process, each token is associated with its position (project, file, line number of the token) in the source code in order to backtrace information. A segment tree [START_REF] Cormen | Introduction to Algorithms[END_REF] is used to store this information, and is updated to take into account synthetic sub-functions.

After the normalization and the tokenization step, each function of the source code is represented as a sequence of two kinds of parameterized abstract tokens: a primitive token is a reserved keyword of the language, a constant or a variable identifiers and a call token, noted f , models a call3 to a function f . We respectively note Σ p and Σ c the sets of primitive and call tokens. For instance, figure 2 gives the token sequence and alphabets obtained from the C function f 2 of the figure 1.

Each original function of the source code being represented as a sequence of tokens, the next step of our algorithm is then to identify common factors in these functions and to factorize them in some new outlined synthetic functions. However, several factorizations are possible and they potentially require heavy computations. To cope with these problems, we use classical pattern matching data-structures, such as suffix arrays, and some new dedicated structures, such as the parent interval table, allowing our algorithms to be efficient.

The factorization process

To be able to efficiently identify common factors (identical substrings of tokens) in token sequences of functions, we use the suffix array structure [START_REF] Manber | Suffix arrays: a new method for on-line string searches[END_REF].

To minimize the number of synthetic outlined functions, we first seek if a (part of a) small function could be found in a larger one. At first sight, the notion of small could be perceived as the length of the factor (number of tokens); we rather use the notion of weight function w, that may include more parameters 4 . We note F 0 = {f 1 , . . . , f n } the set of all original functions, sorted by increasing weight. Thus, for each function f k ∈ F 0 we scan the functions F 0 <k = {f 1 , . . . , f k-1 } (functions whose weight are smaller than the weight of f k) to find pairs of factors (u 1 , u 2) with u 1 ∈ fact (F 0 <k) (u 1 is a factor of a function f j ∈ F 0 <k , i.e., j < k) and u 2 ∈ fact ({f k }) such as u 1 = u 2 . Thereafter, the occurrence u 1 is outlined into a new synthetic function g = u 1 whereas the occurrence u 2 from f k is replaced by the call token g . We note that the function f j of u 1 is unchanged at this step, to allow larger factors to be identified in a further f l for l > k. The next iteration of the algorithm will allow the entire sequence of g to be identified as common with the factor u 1 of f j , and the replacement of u 1 by g will occur at this time. Anyway, if the factor u 1 covers an entire function f j , there is no need to create a new function g. These operations of search and replacement of factors by call tokens are undertaken for all of the functions from F 0 . Thus, for the next iteration, a new set of functions F 1 ⊇ F 0 can be deduced from F 0 adding the new outlined functions and ordering the resulting set by increasing weight.

Several iterations of this algorithm are needed to achieve better precision for the call graph, in particular to detect shorter redundancies. Nevertheless, at the end of each iteration, we are able to evaluate a score of similarity between two functions. This score is based on the number and the weight of common leaves of the call-graph that are attainable from each of these functions. To ease the evaluation, only two kinds of functions are considered according to their content: either they only contain primitive tokens or only call tokens. A mixed function is transformed into a function containing only call tokens via an outlining of all subsequences of primitive tokens.

Example

For a better understanding, we introduce a small example explicited on figure 1: a bubble-sort in C where the recursive function subsort (f 2) calls the functions exchange (f 1) and min index (f 3). The function inlined subsort (f 4) could be considered as an obfuscated version of f 2 after the inlining of f 3 and f 1 . Actually, from such a source code, our algorithm first produces a sequence of abstract tokens. For example the dictionaries Σ p , Σ c and the raw sequence of abstract tokens extracted from f 2 are explicited on figure 2. Note that variable declaration tokens have been omitted. The first iteration of the algorithm searches matches in F 0 = {f 1 , . . . , f 4 } (we chose function indices with respect to increasing weight of functions, i.e. number of tokens in our example). During the examination of f 4 two matches in f 3 (new function Φ 1) and in f 1 (new function Φ 2) are found. The functions Φ 1 and Φ 2 are outlined and replaced by their call tokens in f 4 . Depending on the chosen weight-threshold for match reporting, another function Φ 3 corresponding to the lines 16 and 23 could be outlined. Here we consider instead that these lines yield two distinct primitive-token functions (leaves) f ′ 2 = f 2 [START_REF] Kurtz | Reducing the space requirement of suffix trees[END_REF] and f ′ 4 = f 4 [START_REF] Schleimer | Winnowing: local algorithms for document fingerprinting[END_REF]. In order to ensure that f 3 only contains call tokens, a new function f ′ 3 is also outlined, corresponding to the line 8 of f 3 : thus, f 3 only contains two call tokens to Φ 1 and f ′ 3 . Finally, at the end of the first iteration, the set of functions ordered by increasing weight is

F 1 = {f ′ 3 , f ′ 2 , f ′ 4 , Φ 2 , f 1 , f 4 , f 2 , Φ 1 , f 3 }.
During the second iteration, Φ 2 is found and replaced by a call token while examining f 1 and Φ 1 is found in f 3 . We then obtain the call graph explicited on figure 1 at the end of the second iteration.

This graph allows us to define three kinds of metrics, or scores, based on the number and the weight of leaves attainable from each function. We define more precisely in section 4 the score of inclusion (sc incl) of a function into the other, the score of coverage (sc cover) of a function by another one and finally the score of similarity (sc simil) between two functions. For example, for functions f 2 and f 4 , we obtain following values:

sc incl (f 2 , f 4) ≈ 0.88 > sc cover (f 2 , f 4) ≈ 0.85 > sc simil (f 2 , f 4) ≈ 0.76.

Factorization algorithm

In this section, we focus on the algorithms and data-structures involved in the factorization of a given function f i using most-weighted non-overlapping factors of F <i . Realistic examples generate long sequences with a lot of tokens. For concision and in order to easily exhibit interesting cases, we will use a simplistic5 but illustrative running example with the alphabet {a, b} for primitive tokens and with five initial functions of F 0 :

f 1 = aba f 2 = aaba f 3 = bbaba f 4 = bababa f 5 = abaabbababa
We will show how f 5 could be factorized as aba • ab • bababa, and then be considered as constituted by sub-functions f 1 [0..2], f 2 [1..2] and f 4 [0..5].

Working with suffix array

First of all, we have to identify common factors (sub-sequences of tokens) in functions. Indeed, while inspecting the sequence of tokens of f 5 , we want to know which parts of others functions are candidates for a match. To deal with this problem, our algorithms rely on a suffix array [START_REF] Manber | Suffix arrays: a new method for on-line string searches[END_REF], i.e., an indexed table containing all suffixes of the functions, sorted according to a given order on the tokens, e.g. lexicographical. Various suffix array construction algorithms may be used such as the direct linear model of Kärkkäinen and Sanders [START_REF] Kärkkäinen | Simple linear work suffix array construction[END_REF]. The main advantage of this structure is its small size since for a string of length n only log 2 n bits are needed for each suffix whereas the better known construction of suffix tree requires at least 10 bytes by indexed token [START_REF] Kurtz | Reducing the space requirement of suffix trees[END_REF].

Figure 3 gives a representation of the suffix array for our running example, where each suffix appears only once: when the same suffix appears in several functions, we only show in this figure the smallest function index and position, and increment the rank in the array for each occurrence of this suffix. For the sake of clarity, it also shows the corresponding sequences, even if they are actually not stored: a suffix starting at position p of function f i is simply designated by the pair of integers (i, p). We also need the reverse suffix array, not represented here: given function index i and a position p defining a suffix of this function, it provides its rank in the suffix array.

Searching Factors through Parent Interval Table

The key idea of the suffix array structure is that suffixes sharing the same prefix are stored at consecutive ranks. Thus, the notion of rank interval makes sense: for instance, all factors starting with aba could be found in the interval [8..15]. Nevertheless, intuitively, we are looking in a "long" function for factors of "shorter" functions. Thus, if we search factors of the complete function f 5 = abaabbababa in the suffix array, we find the interval (singleton) [13..13] corresponding to the function f 5 itself. This is not a suffix of a function of smaller index, and we have to successively consider all shorter prefixes of this sequence until finding a rank interval concerning a function of smaller index.

To efficiently search for a maximal factor, we introduce a new data structure: the Parent Interval Table (PIT). It is deduced from the complete interval tree of the suffix array, i.e., a suffix tree without its leaves. To each suffix s, the PIT associates a set of data ([k..h], l, α, ρ). In the suffix array, k and h (k = h) are the ranks of the first and the last suffixes that share the longest common prefix (lcp) with s; l is the value of this lcp of the interval [k..h]. Finally, α is the minimal index of the functions associated to its interval, and ρ is the rank of the longest suffix extracted from the function of index α in the interval. Figure 4 shows the structure represented by the PIT for our example. To find the maximal-lcp interval in the suffix array, different strategies may be used. The simplest is to build the complete interval tree of the suffix array, saving the parent pointers between intervals. Another way is to save only the needed intervals. An interval is needed if and only if its α-value is strictly smaller than the α-value of one of its children. We use a dedicated algorithm (not detailed here) to compute the PIT and the needed intervals on the branches thanks to the LCP table, already computed in linear time [START_REF] Rick | Simple and fast linear space computation of longest common subsequences[END_REF]. This algorithm uses a simple sequential reading of the LCP table with a stack simulating the current branch of the interval tree. It runs in linear time, with a memory complexity in the height of the interval tree (linear in the worst case).

Our algorithm identifies all the maximal factors of a function f i that match with parts of functions of F <i . Thus, for each position p in f i , it looks for a factor of a function in F <i sharing the longest prefix with f i [p..]. To find it, the information ([k..h], l, α, ρ) is retrieved from the PIT for the suffix f i [p..]:

• If α < i, then ρ is the rank in the suffix table of a function (f α , q) such as f α [q..q + l -1] is a maximal factor of f i [p..]. For instance, for f 5 [3..], (abbababa), the PIT yields the information ([8..16], 2, 1, 8): since α = 1 < 5 and ρ = 8 is the rank of (f 1 , 0) we found f 1 [0..0 + 2 -1] (ab) as a maximal factor of f 5 [3..].

• If α ≥ i, and since we are only looking for factors in F <i , we must examine the parent interval of smaller lcp, i.e., a parent node in the PIT, until finding an interval whose minimal function index is smaller than i.

Eliminating overlapping factors

Once a set of maximal factors is associated with f i , one for each position, overlapping between them is expected. For the example of f 5 , these factors appear in the three left-most column of the combinations of (parts of) these factors are allowed to cover the function f i . For instance, f 5 could be covered by ab.aa.bbaba.ba or by aba.ab.bababa.

To retain a factorization of f i using most-weighted 6 non-overlapping factors, all the matched factors are placed in a priority queue, and the mostweighted ones will be successively selected, as indicated by the numbered arrows in the figure 5. For each selected factor, we must remove all intersecting parts from all other candidate factors before selecting the next factor.

To achieve this, a segment tree [START_REF] Cormen | Introduction to Algorithms[END_REF] is created and fed with the intervals of positions of the factors found on f i . A range tree is an adaptation of a balanced binary tree: each node is a interval whose key is the low bound. This structure can be used to find k intersecting factors in O (max(k, log |f i |)). For each iteration we extract the most-weighted factor u from the priority queue and search all the intersecting factors V = v 1 , . . . , v |V | in the range tree. Since we use an homogeneous weight function 7 , u is not a strict factor of any factors of V (∀v ∈ V, w(u) ≥ w(v)). For each factor v k ∈ V , we remove it from the priority queue and from the range tree. If it is not a factor of u but shares an intersecting part on the left or on the right, we remove the intersecting part of v k with u to obtain v ′ k that is added in the range tree. Since there is at most one match for each position in f i , the most-weighted matches must be selected between at most |f i | matches. For each selected match there is at most |f i | -1 intersecting factors, each of them needed a time in O (log |f i |) to update the range tree and the queue. So the global 6 The weight function is defined on Σ * . In a first approach we define the weight function w(u ∈ Σ *) = w(u 0) + w(u 1) + • • • + w(u |u|-1) and a constant weight vector associating to each primitive token a constant value. To infer the weights of the call tokens, we establish for each function f the set of reachable leaf functions lf (f) according to the call graph of the previous iteration (see 4.1) and compute the sum of the weights of these reachable leaf functions. Thus the weight of a call token reflect the amount of coverage of code of its underlying called function. 7 A weight function w is homogeneous iff ∀(x, y) ∈ Σ 2 such as x ∈ fact (y), w(x) ≤ w(y).

W that associates to a set of leaf functions the sum of their weights. These data are used to introduce a concrete definition of the amount of information I contained in projects or shared between functions:

I :          I(f) = W (lf (f)) I(f 1 ∩ f 2) = W (lf (f 1) ∩ lf (f 2)) I(f 1 ∪ f 2) = W (lf (f 1) ∪ lf (f 2))
Then we deduce a valuation for the metrics sc incl , sc cover and sc simil :

     sc incl sc cover sc simil      : (f 1, f 2) -→ W (lf (f 1) ∩ lf (f 2)) •      1/ min [W (lf (f 1)) , W (lf (f 2))] 1/ max [W (lf (f 1)) , W (lf (f 2))] 1/W (lf (f 1) ∪ lf (f 2))     
These metrics have different purposes. sc incl is useful to quantify plagiarism: if sc incl (f 1, f 2) = 1, then one of the internal functions shares all its reachable leaf functions with the other like in case of small functions copied from larger ones or the contrary. For instance, this score detects a plagiarism between the functions f 4 and Φ 1 of figure 1. sc cover quantifies the amount of coverage of the leaf functions of the heaviest function (in terms of the sum of the weights of the reachable leafs) by those of the lightest. Finally sc simil (f 1, f 2) measures the amount of similarity between f 1 and f 2:

sc simil (f 1, f 2) = 1 iff lf (f 1) = lf (f 2).
Since reachable functions are represented by sets, without order consideration in the defined family of metrics, two algorithmically distinct functions may be considered similar. This method may report false-positive matches, in particular if the length of leaf functions is not lower-bounded 8 .

For a graph of n functions, computing the weight vector and the similarity matrix requires the knowledge of the reachable leafs of each function (determined in O (n 2) through a graph-walk) and the computation of the intersection of the reachable leaves of each pair of function (in O (n)). Finally, the computation of a similarity matrix between all functions takes a temporal complexity in the worst case of O (n 3).

Clustering of similar functions

After each iteration, we introduce a clusterization process on the internal functions to obtain equivalent classes of functions. Each call token is replaced by a member of its equivalence class. This induces a simplification of the call graph with the removal of other functions of the class and some unshared leaf functions. In the example of figure 1, f 2 and f 4 may be clustered into an 8 If the leaf functions are reduced to primitive instructions all functions may be similar.

equivalent class with the removal of {f ′ 2 , f ′ 3 } or {f ′ 4 } depending on the removed function (f 2 or f 4). For the next iteration a new total order on Σ c is deduced. Here a call token to f 2 or f 4 will be considered equivalent. For instance, if two sequences f 2 f 2 f 4 and f 4 f 4 f 2 are encountered, they cannot be reported as a match. But if f 2 and f 4 are sufficiently similar to be clustered, they will be renamed and the two sequences will exactly match at the next iteration. Clustering introduces false-positives but increases the recall.

We also consider a clusterization process on the leaf functions in order to treat as similar near sequences of primitive tokens to cope with local additions, deletions or substitutions of tokens.

Related work

Many research work has already focused on the detection of similarities. Among them, some look for similarities in free texts [START_REF] Clough | Old and new challenges in automatic plagiarism detection[END_REF], in this section, however, we will focus on research work that search similarities in source code. These work may be divided into two main groups depending on their aim.

The first group of work focuses on software engineering. It attempts to find exact matching in order to factorize redundant cut-and-paste or to follow the evolutions between different versions of one project. Usually they do not address the problem of obfuscation. In this context exact methods of pattern matching [START_REF] Baker | On finding duplication and near-duplication in large software systems[END_REF][START_REF] Ducasse | A language independent approach for detecting duplicated code[END_REF][START_REF] Burd | Evaluating clone detection tools for use during preventative maintenance[END_REF] and complex algorithms on the abstract syntax trees [START_REF] Baxter | Clone detection using abstract syntax trees[END_REF] or the dependency graphs [START_REF] Horwitz | Interprocedural slicing using dependence graphs[END_REF][START_REF] Krinke | Identifying similar code with program dependence graphs[END_REF] may be applied. Several tools such as CCFinder [4] or CloneDR [6] are used to implement these approaches.

The second group of work focuses on plagiarism detection. Its objectives are to detect similarities in the potential presence of intentional obfuscation. The oldest of these works [START_REF] Parker | Computer algorithms for plagiarism detection[END_REF][START_REF] Verco | Software for detecting suspected plagiarism: Comparing structure and attribute-counting systems[END_REF] that use different program metrics to compare whole programs are usually defeated by simple transformations. Consequently, techniques have been used to get around this problem. Several of these techniques [START_REF] Prechelt | Finding plagiarism among a set of programs JPlag[END_REF][START_REF] Schleimer | Winnowing: local algorithms for document fingerprinting[END_REF] are based on Karp-Rabin fingerprints of token n-grams [START_REF] Karp | Efficient randomized pattern-matching algorithms[END_REF]. Two popular applications accessible on the Web are used to implement these approaches. Moss [18] selects and stores fingerprints in a database through the Winnowing process [START_REF] Schleimer | Winnowing: local algorithms for document fingerprinting[END_REF] in order to compare it to a large number of programs. JPlag [START_REF] Jplag | [END_REF] extends matching code zones for identical fingerprints with the Greedy String Tiling algorithm [START_REF] Wise | Running karp-rabin matching and greedy string tiling[END_REF]. SourceSecure [START_REF] Ouddan | A multilanguage source code retrieval system using structural-semantic fingerprints[END_REF] considers alignment of semantic fingerprints of salient elements in code generated by grammaractions rules. Another approach [START_REF] Chen | Shared information and program plagiarism detection[END_REF] implemented by the web-service SID [START_REF]SID[END_REF] is based on the LZ compression technique [START_REF] Ziv | A universal algorithm for sequential data compression[END_REF] to detect redundant code. As far as we know, the methods based on abstract syntax trees have not been used to address the detection of plagiarism.

Aside from the differences in the algorithms, unlike other tools that consider complete source code files for comparison, our method is based on a directed graph representing the program where similar parts of the code are merged into a single node.

We tested our similarity detection method on a set of 36 student projects (about 600 lines of ANSI-C code for each project) by comparing it against Moss [18] and JPlag [START_REF] Jplag | [END_REF]. Like Moss and JPlag we work on the raw token stream extracted from the bodies of functions without any preliminary normalization step by syntactic or semantic interpretation.

Among the student projects, we selected a random project that is humanly obfuscated using the following methods: no change (1), identifier substitutions (2), changes of positions of functions in the source code files (3), regular insertions and deletions of useless instructions (4), one level of inlining of functions [START_REF] Chen | Shared information and program plagiarism detection[END_REF], outlining of parts of functions (6), insertions of identical large blocks of code [START_REF] Clough | Old and new challenges in automatic plagiarism detection[END_REF]. We also added a non-plagiarized project (8) according to a human review.

We studied top inclusion scores from the generated similarity matrices via Moss, JPlag and our method after 5 iterations using the plagiarism metrics sc incl . Ideally the inclusion (or plagiarism) score between an original project and an obfuscated project based on the totality of code of it should be 1. The plagiarism scores for the different kinds of obfuscation can be found in figure 6 and the execution times (on a Pentium 4 3 Ghz CPU with 1 Go RAM using the Sun JRE 1.5) for our method in figure 7; since Moss and JPlag are server-side executed their running time can not be compared. We note that the parameters used (length of the fingerprinted n-grams and window size) by the Moss online-service are not known ; concerning JPlag the token length threshold was set to 10. For our factorization method we used a token length threshold of 10 to report a match and ignored leafs whose length is smaller than 10 for the computation of leaf sets.

We observed that almost all the studied student projects contained shared chucks of code potentially raising false-positive reporting problems. These can be avoided by discarding code shared by more than one fixed number of projects (here 10).

Our method, in spite of being directed towards the detection of inlining and outlining obfuscation, presents lower similarity scores on these kind of obfuscation than JPlag; the plagiarism score computed by JPlag is not documented and we will need more work to explain this difference. However, results are promising for the detection of code obfuscated by insertion and deletion of

Conclusions

Our factorization method for finding similarities in source code shows modest but promising results on preliminary tests. Its main advantage relies on the resistance against obfuscatory methods such as inlining, outlining or shift of blocks of code. We discuss here the limits of our approach and future developments to be considered.

Extreme outlining over the set of functions of projects could result in few short leaf functions (especially when using abstract tokens). For example all of the instructions and assignments could be outlined in leaf functions. Since our method does not consider the order of called functions, the precision is reduced. Some false positive may appear. This is why an upper threshold for the lengths of the leaf functions must be set. Considering new metrics for the comparison of pair of functions that takes into account the order of function calls may be envisaged. Furthermore, some data-flow analysis could be performed on specific parts of the code to reduce false positives.

Currently, our method does not deal with function calls with one or more function calls as argument. This type of situation is not unusual in source code and raises interesting schemes for obfuscation. A preliminary approach could add temporary local variables to unfold the composed calls into intermediate assignments.

Figure 3 .

 3 Figure 3. Suffix array for the example

Figure 4 .

 4 Figure 4. Tree structure represented by the PIT

 For instance, looking for maximal factor of f 4 [0..] (bababa) leads to ([26..27], 6, 4, 26): since α = 4 ≥ 4, we have to consider the interval of the parent node, ([23..27], 4, 3, 23). Now, α = 3 < 4 and ρ = 23 being the rank of (f 3 , 1), we found f 3 [1..1 + 4 -1] (baba) as a maximal factor of f 4 [0..].

Figure 5 .

 5 Figure 5. Selection of non-overlapping matches on f 5

Figure 6 .Figure 7 .

 67 Figure 6. Similarity scores between the original and the obfuscated projects

f3 f3 f1 Φ2 Φ1 int min_index(int t[],int start) { int i_min, j; i_min=start; j=start+1; while (j<SIZE) { if (t[j]<t[i_min]) i_min=j; j++; } return i_min; } void exchange(int t[],int a,int b) { int tmp; tmp=t[a]; t[a]=t[b]; t[a]=tmp; } void subsort(int t[],int i) { int i_min; if (i>=SIZE) return; exchange(t,i,i_min); subsort(t,i+1); } int i_min, j, tmp; if (i>=SIZE) return; i_min=i; j=i+1; while (j<SIZE) { if (t[j]<t[i_min]) i_min=j; j++; } tmp=t[i]; t[i]=t[i_min]; t[i_min]=tmp; } i_min=min_index(t,i); f1 f2 f4 Φ1 void inlined_subsort(int t[],int i) { inlined_subsort(t,i+1);

			Φ1
			f2
			Φ2
			f2[16]
			= f2'
			f4[23] = f4'	f3[8] = f3'
			f4
			Φ2
	Figure 1. Source code example and call graph deduced after two iterations
	Σ p	Σ c	Raw sequence of abstract tokens from f 2
	IF, LPAR, RPAR, GE	<min index>	IF LPAR identifier GE identifier RPAR RETURN SEMI
	identifier, ASSIGN	<exchange>	identifier ASSIGN <min index> SEMI
	RETURN	<subsort>	<exchange> SEMI
	SEMI		<subsort> SEMI

Figure 2. Tokenization of function f 2 (subsort)

This first step is also performed by other similarity detection tools[18,[START_REF] Jplag | [END_REF].

We note that function calls may be statically ambiguous in some languages like Java.

For instance, a function call could have a greater weight than a primitive token, or a usual instruction (assignment, semicolon) could have a lesser weight than a rare one (switch).

The example presented in section 2 is more detailed on the following web page: http://igm.univ-mlv.fr/ ∼ chilowi/research/finding similarities/

Call graph analysis

The process of factorization we apply is based on the algorithm previously described, which is iterated several times. Nevertheless, each iteration provides us with a call graph whose nodes are functions, with leaves being primitive functions (composed of only primitive tokens). This graph could be used to define and measure some metrics, or scores, relative to similarity between two functions. We will first define abstract metrics qualifying similarity between two projects, and then present how we value them in the concrete context of our process. Next, we will see that these metrics could be used to enhance the factorization algorithm at each iteration.

Quantifying plagiarism

To measure the degree of similarity on pairs of projects (a project being one or a set of functions), we define an abstract information metrics I(p i) representing the amount of information contained in a project p i . The associated metrics I(p i ∩ p j) and I(p i ∪ p j) quantify respectively the amount of common information shared between two projects p i and p j and the total amount of information contained in the two projects p i and p j . We then define the three following metrics over projects:

• sc incl (p i , p j) = I(p i ∩p j) min(I(p i),I(p j)) is the inclusion metrics and states the degree of inclusion of one project into another. In fact sc incl (p i , p j) = 1 means that the smaller project (in term of amount of information) is included into the greater.

• sc cover (p i , p j) = I(p i ∩p j) max(I(p i),I(p j)) is the coverage metrics and quantifies the degree of coverage of the greater project by the smaller project.

• sc simil (p i , p j) = I(p i ∩p j) I(p i ∪p j) is the similarity metrics and measures the degree of similarity between the two projects p i and p j . We note that sc simil (p i , p j) = 1 iff the projects p i and p j are identical according to the information metrics I.

In the particular case of our algorithm, we evaluate concrete metrics based on the previous definitions. Considering the graph of call relations deduced from the last iteration of the factorization algorithm, the set lf (f) of leaf functions (functions of primitive tokens) reached by each internal function f (not leaf) is computed by transitive closure. Then, for each pair of internal functions (f 1, f 2) the set lf (f 1) ∩ lf (f 2) is computed. Based on the weight function w on leaf functions (w : f -→ |f | may be used), we define the function Presently, results of outlining processes are viewable as partial outlining graphs where leaf functions are selected according to their attainability from initial functions. Similarity between functions or clusters are used to locate similarities. A more human-friendly tool for the render of results remains to be studied.