
HAL Id: hal-00620309
https://hal.science/hal-00620309

Submitted on 30 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Power Saving of Real Time Embedded Sensor for
Medical Remote Monitoring

Frédéric Fauberteau, Serge Midonnet, Dan Istrate

To cite this version:
Frédéric Fauberteau, Serge Midonnet, Dan Istrate. Power Saving of Real Time Embedded Sensor
for Medical Remote Monitoring. 4th International Conference on Systems (ICONS’09), Mar 2009,
Cancun, Mexico, United States. pp.63-67. �hal-00620309�

https://hal.science/hal-00620309
https://hal.archives-ouvertes.fr

Power Saving of Real Time Embedded Sensor for Medical Remote Monitoring

Frédéric Fauberteau, Serge Midonnet,

Université Paris-Est,

Laboratoire d’Informatique Gaspard-Monge -

UMR CNRS 8049, France

{fauberte, midonnet}@univ-paris-est.fr

Dan Istrate

ESIGETEL - LRIT

1, Rue du Port de Valvins, Avon, France

dan.istrate@esigetel.fr

Abstract

The power saving is one of the important issue in the

embedded systems. To reduce the consumption of the mi-

croprocessor of such a system, a way is to power down it

when it is inactive. Theoretically, the time during which the

microprocessor is inactive represents a pure gain of energy.

But practically, we must consider that this time comprises

a slot of time during which the clock must be synchronized.

We propose to aggregate the idle times of the microproces-

sor to power down it the least possible but for the longest

time possible. This aggregation can be perform by using a

Slack Stealer algorithm.

1. Introduction and Application context

The context of the present study of power saving is

the medical remote monitoring for elderly. The propor-

tion of elderly is increasing in all societies throughout the

world. As they are becoming older, they want to preserve

their independence, autonomy and way of life. Several re-

search teams have developed a number of systems for in-

home health care monitoring and prevention towards day

life risks. These systems are based on the deployment of

several sensors in home in order to prevent and/or detect

critical situations. They offer the comfort and independence

of staying at home, the security of daily monitoring and

proper medical attention. These sensors need to communi-

cate with a central unit which take the decision to send the

emergency in a distress case. In order to install the sensors

a wireless solution is the only acceptable but which imply

also a good autonomy.

To provide one answer to the medical remote monitoring,

we assembled a group of researches from different back-

grounds within a consortium (QuoVADis1) in order to de-

velop a platform for several uses and to meet the needs iden-

1http://quovadis.ibisc.univ-evry.fr/

tified above. QuoVADis is a French National project which

aims to answering two of the problems arising from keeping

elderly people at home: cognitive stimulation and the safety

indoor.

The first platform developed within this project [2] man-

ages a system consisting of three modalities: a set of mi-

crophones disposed into the living rooms of the home of

the elderly, a portable device that can measure heart rate,

detect posture and possibly the fall of the person equipped

and a set of infrared sensors that detect the presence of the

person in a given part and also the standing posture of the

person in question. The output of these three heterogeneous

systems are collected, processed and fused through a multi-

modal platform (EMUTEM) [6].

The sound environment is used like an important

source of information about the possible distress situations

(screams, glass breaking, dishes, distress expressions). All

microphones in the current implementation are connected to

a central unit (embedded PC) in order to analyze the sound

environment [3] in real time. We Analise currently the pos-

sibility to decentralize the treatments and to allow the use

of embedded system based on DSP. This study concerning

the task organization aims to evaluate the cost in terms of

precessing time and power consumption in the case of de-

centralization of sound environment analyze.

The paper is organized as follows. In Section 2, we give

a model representing a theoretical view of a sensor embed-

ded system. In Section 3, we present several kind of class of

Slack Stealer algorithm and we justify our choice. In Sec-

tion 4, we show results of simulation. Finally, we conclude

in Section 5 and we introduce future work in Section 6.

2. Preliminary Definitions

2.1. Sensor Model

Because we propose a general solution instead of a par-

ticular implementation for a specific system, we must intro-

duce a model representing a sensor embedded system. This

model is made of three modules : a set of sensors, commu-

nication and processing modules.

CommunicationProcessingSensors

Decision

Reduction

Control

Figure 1. A model for a sensor embedded

system

The sensors module corresponds to the sensor part of the

sensor node. The sensor part collects data about its environ-

ment. This module generates a stream of messages which

will be sent to the processing module.

The communication module enables a sensor node to

communicate with other sensor nodes. Other sensor nodes

collect data which can be received by this module and the

suitable streams of messages are sent to the processing mod-

ule. In the same way, locally processed data can be sent to

other sensor nodes.

We will consider the processing module as a real-time

system since it processes the streams of received messages

which have time constraints. We divide this module in three

functions.

• The control function is the most important one for our

study. It provides controls over the system. In fact it

can decide the admission of a new stream or the turning

out of the processor,

• The decrease can apply operations over the stream to

reduce the quantity of data. These operations can be

logical : AND, OR, arithmetic : plus, average or more

complex,

• The decision function can generate events according to

the different dart’s in the streams.

2.2. Real-Time Systems

Real-time systems are sets of tasks which have a priority,

a cost and a deadline. The cost of a task is a worst case ex-

ecution time. These tasks must not run over their deadline.

The scheduler executes the available task with the highest

priority. In our study, we consider preemptive scheduler

with fixed priority. In such a scheduler, priority are not in-

heritable and a task can stop another task which has a lower

priority. We can simply define the slack time in such a sys-

tem as the period when the system is inactive.

Several kinds of task exists:

• periodic tasks which have a period. At each period,

they are activated and an instance of these tasks must

be executed,

• sporadic tasks which have a pseudo-period. They have

the same properties that the periodic tasks but the

pseudo-period is the minimum inter-arrival period. We

can consider the worst pseudo-period for this type of

task and it becomes easily assimilated with periodic

tasks,

• aperiodic tasks which have no period. We cannot ex-

pect the arrival instant of these tasks.

In order to make our solution conceivable, we must con-

sider aperiodic tasks as not the main type of task in the sys-

tem. We can suffer aperiodic task in so much as their arrival

is infrequent. Otherwise any speculation is possible.

2.3. Idle Times

A simple way to manage idle times is the scheduling of

a task which has the priority the lowest. We can fix for this

task an arbitrarily high cost. We just want this task to be ex-

ecuted when the system is inactive. This task could power

down the processor. But without any scheduler modifica-

tion, it can not predict its execution time. If the execution

time of the sleeping task is lower than the necessary time to

start the processor, some tasks can be postponed and don’t

meet their deadline. So we must add the time to power down

and restart the processor in the worst case execution time to

each periodic task. The advantage of this method is its sim-

plicity. But we must increase the cost of the tasks because

we can not know the length of the period of inactivity.

Because the over-cost of the first method is too high,

we propose the use of a periodic task called “task server”.

We set its periodic cost called its capacity. So the time for

starting the processor can be incorporated in the server cost.

This method avoids to don’t modify the worst case execu-

tion time of each periodic tasks. But the polling server can

use not all the available idle times.

This method builds on slack stealer algorithms. These al-

gorithms allow to compute the maximal value of slack times

postponing periodic tasks with the constraint that they meet

their deadline. We present these algorithms in the next sec-

tion. The advantage of this method is that many scattered

slack times can be aggregated. So the processor can be pow-

ered down less often but longer.

3. Slack Stealer Algorithms

The Slack is the maximum time that all tasks of the real-

time system can be delayed without missing their deadline.

We present in the following paragraphs several classes of

algorithms called Slack Stealer which compute the Slack

and we justify the choice of the last class, the approximate

Slack Stealer algorithms.

The class of static algorithms is historically represented

by the Lehoczky and Ramos-Thuel algorithm [7]. These al-

gorithms compute the Slack value for each instance of each

task before the starting up of the system and store it. Dur-

ing the execution of the system, the value of the Slack is

known at t instant without more computation. These al-

gorithms seem attractive because their don’t require com-

putation when the system is on-line. But they assume that

the instants of the activation of the tasks are known. This

assumption is restrictive in our case. Furthermore, a non

negligible space is needed to stock the Slack values. This

class of algorithms is not a good choice to implement our

solution.

The class of dynamic algorithms is well represented by

the Davis algorithm [1]. Contrary to static algorithms,

they don’t perform precomputation and so, they don’t stock

Slack values in memory. These algorithms compute the

available Slack in the system on demand. They also seem at-

tractive, but the complexity of the computation is in O(n2)
where n is the number of tasks. Thus the implementation of

such an algorithm is not possible for our solution.

The class of approximate algorithms is known to com-

pute estimation of the Slack value. The algorithms of [7]

and [1] give optimal values. Even if the algorithm presented

in [5] give values which can be non maximal, it compute

the Slack with linear complexity function of the number of

tasks. This class of algorithms offer a good compromise

between the computation time and the correctness of the re-

sult. We can implement such an algorithm for our solution.

: Sleep mode

: Clock synchronization

b)

a)

50

t

10 15 20

50

t

10 15 20

: Task (representing an event)

Figure 2. The sensor is powered down during

idle times : a) without Slack management, b)
with Slack management.

We show in Figure 2 the idea of our solution. We rep-

resented in a) a task representing the treatment of a event.

This task is periodic and we power down the system when

it is idle. In b), we show that the time during which the sen-

sor is powered down can be increased by delaying the task.

Slack Stealer algorithms allows us to know the length of the

delay. In our example, we fix the cost of the task to 2 units

of time and we fix the clock synchronization duration to 1

unit of time. During the clock synchronization, the system

is restarted but it is not usable. Without the Slack manage-

ment, the system can be powered down during 7 × 4 = 28
units of time. With the Slack management, the system is

powered down 2 times instead of 4 and during 2× 15 = 30
units of time.

4. Simulation Results

The results of simulation presented in the following sec-

tion was obtained from a real-time simulator which was de-

veloped by Masson [4].

Firstly, we consider the instants when the processor can

be switch off. Secondly, we compare various methods to

exploit idle times.

τ 1

τ 2

τ 3

Slack

Value

t

5 10 15 200

t

5 10 15 200

5 10 15 200

Exact Slack

Approximate Slack

t

5 10 15 200

0

2

6

4

t

Figure 3. A system of 3 tasks with the asso-
ciated slack at each instant.

We represent in Figure 3, a system of 3 periodic tasks. The

task τ1 is the most priority and τ3 the less priority. When

many tasks are active in the same time, the most prior-

ity are executed. We also represent the value of the Slack

at each instant t. “Exact Slack” corresponds to the value

computed from a dynamic algorithm [1] and “Approximate

Slack” corresponds to the value computed from an approx-

imate algorithm [5].When just one line is represented, the

value estimated by the approximate algorithm is the same

as the value computed by the exact algorithm. We remark

that the approximation offers good results with regard to

the exact value. To provide the better efficiency, we must

power down the processor as few as possible because the

restarting process represents a non-negligible cost. We re-

mark that there is peak values for the Slack and they occur

when a task is finished. To compute the Slack, the algorithm

considers the current deadline of the active tasks. But when

a task finished, the algorithm considers its next deadline.

So we can say that a finished task reload the Slack. The

approximate algorithm updates the Slack estimation at the

beginning and at the end of each task. So we know at the

end of each task if we have enough Slack to power down the

processor and restart it without tasks miss their deadline.

T
im

e
(m

s)

Length of threshold (ms)

 0

 50

 100

 150

 200

 250

 5 10 15 20 25 30

Length of idle times

Background Task
Polling Server

Slack Stealer

Figure 4. Average length of an idle times.

We compare in Figure 4 the average length of an idle

times function of a power down threshold. 10 systems of

10 tasks has been generated; each system has a CPU load of

80%, so 20% of time is idle.

The simulations go on 800 seconds. We compare 3 meth-

ods to exploit idle times. The first method is a background

task with a priority lesser than all other tasks. We show that

the idle times have a very short length compared with other

methods. The reason is that the idle times are scattered.

The polling server is a better solution because a task is al-

lowed and this task consume the maximum possible time.

But it doesn’t take advantage of all idle times. Therefore,

the Slack appears as the better solution here. Indeed it ag-

gregates idle times by delaying the task.

We compare in Figure 5 the total length of sleeping peri-

ods function of a power down threshold. The same param-

eters of simulation as previously has been used except that

the CPU load was take the values 40%, 60% and 80%. We

show that the total time during which the processor can be

powered down is longer when we use Slack algorithm than

when we use other methods. An exception occurs when the

system is very loaded and the suspend threshold is small.

But we can consider that this situation is critical and it is

not acceptable in our application context. We show by these

T
im

e
(m

s)

Length of threshold (ms)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 5 10 15 20 25 30

Background Task
Polling Server

Slack Stealer

System with 40% cpu load

T
im

e
(m

s)
Length of threshold (ms)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 5 10 15 20 25 30

Background Task
Polling Server

Slack Stealer

System with 60% cpu load

T
im

e
(m

s)

Length of threshold (ms)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 5 10 15 20 25 30

Background Task
Polling Server

Slack Stealer

System with 80% cpu load

Figure 5. Total length of sleeping period.

results that we can optimize the power saving of a processor

by aggregating idle times using an approximate Slack algo-

rithm. If we consider that to start a idle processor represents

a non-negligible cost, this solution can be a good alternative

to passive power saving.

5. Conclusions

We presented in this paper a model to abstract a sensor

node. We used this model to consider a sensor node as a

real-time system. We proposed different methods to man-

age idle period in such systems and power down the pro-

cessor during this period. We proposed to aggregate this

idle period to increase the period of cutting off using slack

stealer algorithms. After the presentation of different slack

stealer algorithms, we proposed to use a approximate algo-

rithm and we explained when power down the processor.

Finally, we presented results of simulation which show the

viability of our assumptions.

This first study of sensor model (in terms of acquisition

and processing) allowed us to go to the decentralization of

sensors signal processing in order to increase the system

reliability and in the same have a good energy autonomy.

6. Future Work

We have to implement this solution on real time embed-

ded sensors to perform measures on a real system. A first

step will be to consider a single sensor and validate the so-

lution. A second step could be to find a distributed solution

for the wireless ad-hoc sensor networks. If the sensors com-

municate with a sink, they can be turned off without impact

on the connexity of the network. But in an ad-hoc network,

we can power down a node only if the graph stay connected.

Acknowledgments

The authors gratefully acknowledge the contribution of

French National Research Association (ANR) in the frame-

work of the QuoVADis Project.

References

[1] R. I. Davis. Scheduling slack time in fixed priority pre-

emptive systems. Technical report, Dec. 08 1993.

[2] D. Istrate, E. Castelli, M. Vacher, L. Besacier, and J.-F. Serig-

nat. Information extraction from sound for medical telemoni-

toring. Information Technology in Biomedicine, IEEE Trans-

actions on, 10:264–274, April 2006.

[3] D. Istrate, M. Vacher, and J.-F. Serignat. Generic implemen-

tation of a distress sound extraction system for elder care.

In 28th IEEE EMBS Annual International Conference, pages

3309–3312, New York City, USA, Aug 30-Sept 3, 2006.

[4] D. Masson. Real-time systems simulator (rtss), 2006.

[5] D. Masson and S. Midonnet. Slack time evaluation with rtsj.

In R. L. Wainwright and H. Haddad, editors, SAC, pages 322–

323. ACM, 2008.

[6] H. Medjahed, D. Istrate, J. Boudy, J.-L. Baldinger, B. Dorizzi,

I. Belfeki, V. Martins, F. Steenkeste, and R. Andreao. A mul-

timodal platform for database recording and elderly people

monitoring. In P. Encarnação and A. Veloso, editors, BIOSIG-

NALS (2), pages 385–392. INSTICC - Institute for Systems

and Technologies of Information, Control and Communica-

tion, 2008.

[7] S. R. Thuel and J. P. Lehoczky. Algorithms for schedul-

ing hard aperiodic tasks in fixed-priority systems using slack

stealing. In IEEE Real-Time Systems Symposium, pages 22–

33. IEEE Computer Society, 1994.

