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Abstract. The Longest Common Factor (LCF) of a set of strings is a
well studied problem having a wide range of applications in Bioinformat-
ics: from microarrays to DNA sequences analysis. This problem has been
solved by Hui (2000) who uses a famous constant-time solution to the
Lowest Common Ancestor (LCA) problem in trees coupled with use of
suffix trees. A data structure for the LCA problem, although linear in
space and construction time, introduces a multiplicative constant in both
space and time that reduces the range of applications in many biological
applications.
In this article we present a new method for solving the LCF problem
using the suffix tree structure with an auxiliary array that take space
O(n). Our algorithm works in time O(n log a), where n is the total input
size and a is the size of the alphabet.
We also consider a different version of our algorithm that applies to
DAWGs. In this case, we prove that the algorithm works in both time
and space proportional to data DAWG’s size.

1 Introduction

In 1976 E.M.McCreight settled a Kunt’s open problem by introducing a new
data structure on string: the Suffix Tree. Since then, many other problems have
been settled by using suffix trees or similar structures such as Patricia trees,
DAWG, CDAWG and suffix array (cf. for instance [2,8,7,5,14] and references
therein). Some other applications can be retrieved by exploring the “Pattern
Matching Pointers” maintained by S. Lonardi (cf. [13]).

The most commonly used data structures are Suffix Trees, Suffix Arrays,

DAWGs, and CDAWGs. Usually any problem that can be settled by the aid
of one of such data structure can also be settled by using any of the other
ones. Despite this fact the passage from one data structure to another is not
automatic nor always easy and, in some rare cases, not yet proved (see [1] for
example). Each of these structures has some advantage and some disadvantage.



Some relation among the data structures and their size is reported in [3]. The
size of an implementation of the above data structures is often evaluated by the
average number of bytes necessary to store one letter of the original text. It is
commonly admitted that these ratios are 4 for suffix arrays, 9 to 11 for suffix
trees, and 5 for CDAWGs (cf. [3] for further information).

This paper deals with particular data structures: DAWGs.
The problem we consider is reported by D. Gusfield, [8, Sec. 7.6, 9.4]. Given

a set of m strings, for any k = 2, .., m find the longest factors that are com-
mon to at least k strings. The word common in the exact case means occurring

with equality. The first solution in the exact case has been given by Hui, ([10],
[11]). who uses a famous constant-time solution to the Lowest Common Ances-
tor (LCA) problem in trees coupled with the use of suffix trees (see [9,16,6]).
A data structure for the LCA, although it is linear in space and time, intro-
duces a multiplicative constant in both space and time that reduces the range
of applications in many biological applications.

Since DAWGs and CDAWGs are not trees, this solution cannot be used for
the structures we are interested in. Therefore we look for a totally new solution.
So, our solution turns out to be simpler and more efficient than Hui’s one of
about one order of magnitude. This solution is an extension from that of suffix
trees to DAWGs.

This paper is organized as follows. In the next section we describe our solution
for the problem based on the use of suffix trees, while in the Section 3 we extend
our solution to DAWGs. The fourth section contains our conclusions and some
conjectures on the approximate case of the problem. Hence in the Appendixes
A and B, we report the specialized pseudo-code related to the procedures used
in our algorithm.

2 A Simpler Solution

We assume the reader familiar with suffix trees and Generalized Suffix Trees.
Let S be a set of input strings Si, 1 ≤ i ≤ m, on the alphabet {0, 1}. Let u

be the word composed of the concatenated labels of transitions along the unique
path from the root to the node p in the Generalized Suffix Tree.

We want to compute a table ℓ having m−1 entries: where entry ℓ[k] provides
the length of the longest factor common to at least k of the input strings and
also points to one of the common factors having that length.

Our preprocessing is as follows. We build the Generalized Suffix Tree for the
m strings. Then perform a depth-traversal of the tree and put all nodes in a
stack in the order they appear. Define s to be an array of pointers representing
the input strings useful to increase the algorithm’s performances.

Each node stores the following information:

– i represents the string identifier whose suffix is the node path-label. If this
is not a suffix, this field is empty.

– num is the number of distinct string identifiers that appear at the leaves in
the subtree rooted in p. Observe that this approach is the same as the one



used by Gusfield in [8, Sec.7.6]. The difference lays in how to compute these
values, that he calls C[p].

So we must first compute the num values and then we use them to update the
table.

2.1 Computing the num values

For each node p, we create an auxiliary node size that stores the values num(p)
and points to the strings it represents in s.

When for the vertex p we have num(p) = b, this means that in its sub-
tree there are nodes representing suffixes from b different input strings. In other
words, p is the common factors of exactly b different input strings. In the algo-
rithm we call these nodes representative in the operation of Union that plays
an important role in the computing of our values.

The operation Union is the union between disjoint sets of elements that, in
our case, are nodes size linked to visited nodes. All pointers to auxiliary node
of smaller size must point to the other node size and, naturally, we must also
update the sizes of the involved nodes, i.e. the field num.

Union operates as follows. Let a be a node with num(a) = 2 and let b with
num(b) = 3. When we visit the a and b’s father p, we execute a Union of his
children. The result is that num(p) = 5 and the p’s label becomes a common
factor of 5 input strings.

We keep the disjoint strings sets as follows. We use an array s of m pointers
that represent the input strings and for which s[i] points permanently to the last
met factor of the string si. Since the last factor of a string is unique, the sets to
merge are always disjoints.

In the algorithm we use three procedures called NodeSize Test, String Test

and Union (that implements the union’s operation). Now we explain how they
work, while in the Appendix A we show the code of them.

– NodeSize Test procedure: we check if the node size is already created. If
not, we create it.

– String Test procedure: when we visit a new node, we must update the
information about the last visited factor of some string. Note that after this
test and related “cut-append” of pointers, node size stores the current num

value, while the internal node stores the real one. Because nodes size are
representatives in the Union, then they must be updated in every time. In
Figure 1 we show the effect of this test.

– Union: after we have found the smallest son its pointer is redirected to the
largest one, the num value is updated, and the new node size resulting from
the merging is merged with the father node size.
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Fig. 1: In the left figure, is shown the situation after the visit of the B node, at
the top of the stack. It’s the common factor of all input strings. Then the node
C is traversed. Therefore it’s a leaf node representing the string s2, then the
algorithm “cut” the pointer from B’s node size to the element s[2], appending
it to C’s node size. In fact, the last factor of s2 is the path-label of C. Observe
that the values about the size of the nodes are updated during this test.

Now we describe the algorithm to compute in an efficient way the num in-
formation.

CountNum (stack, s)
1. while (stack isNotEmpty) do
2. p = pop(stack);
3. NodeSize test;
4. String test;
5. if p has sons then
6. Union operation;
7. End CountNum.

2.2 The method

Once the num values are known and the string-depth of every node is known, the
desired ℓ(k) values can be easily found with a linear-time traversal of GST (S).

When encountering a node p with num(p) = k, we compare the string-depth
of p to the current value of ℓ(k). If the first value is greater than the second, we
change ℓ(k) to the depth of p and update its pointer to the node representing
the factor with the current value of ℓ(k).

Eventually, the resulting table holds the desired ℓ(k) values.

2.3 Time and space analysis

Building GST (S) requires linear space and time in the size of input [8, Sec.
6.4], O(n) with n = |S1| + · · · + |Sm|. Algorithm CountNum executes a single



post-order traversal of GST (S) and its main operation is the Union. Since the
operation “cut-append” of a pointer from a node to another is done in constant
time, then we have to know how many pointers could be involved during it.

Theorem 1. [CountingNum] During the execution of CountNum(S, s) algo-

rithm, the number of “cut-append” operations is less than n, with n = |S1| +
· · · + |Sm| = |S|.

Proof. The statement is proved by induction on the total size n of the representa-
tives u of the nodes p. Recall that u is p’s representative if it is the concatenated
labels of transitions of the unique path from the root to the node p in GST (S).

Basic step: let m be the minimal size of S. The root points directly to
the m leaves. Therefore the number of “cut-append” operations is equal to
m − 1: we append all auxiliary leaves to the root. Since the input’s size is
equal to m then our thesis is proved.

Inductive step: by induction we suppose that our thesis is true for every tree
with representatives’ size equal to n − 1.
We prove the thesis is true at the level n.
Let our visit be stopped in a node with two sons. The first subtree has NL1

leaves and representatives’ size equal to n1, while the second has NL2 leaves
and size equal to n2.
When we get to the bottom level n, we add a character to every representa-
tive for each leaf. So the total representatives’ size of the level n is equal to
n1 + NL1 + n2 + NL2.
The Union simply appends all leaves of one subtree to the other subtree.

cut − append = NL1 + NL2 <

< n1 + NL1 + n2 + NL2 = n. (1)

When we visit the GST (S)’s root, the total representative’s size is equal to
the input length, n. Hence, the total number of Union operations is linear
in the input length. ¥

During a run of the algorithm O(n) “cut-append” operations are executed,
each of which takes constant time, so the overall Union takes O(n) time.

Hence only O(n) time is needed to execute the algorithm and to compute all
num numbers. Once these are known, only O(n) additional time is needed to
build the output table.

Hui’s solution take O(mn) time because it uses an array of k elements for
each node of the tree to calculate the num values. We solve the original problem
simply using O(m+n) space, because the algorithm makes use of a unique array.

Theorem 2. The Lowest Common Factor Problem on a set of m input’s strings,

represented by a Generalized Suffix Tree, can be solved in O(n) time, with n =
|s1| + · · · + |sm|, and O(m + n) space.



3 An Optimal Solution

In this section we deal with the data structures that plays an important role in
this paper, the Generalized Directed Acylic Word Graph (Generalized DAWG).
We assume the reader familiar with DAWGs.

Now we recall the definition of DAWG.

Definition 1. The DAWG for a set of strings s1, · · · , sm is a directed acyclic

graph, with a node marked as initial and m distinct nodes F1, · · · , Fm marked

as final. Edges are labeled with non empty factors of at least one of the strings.

Labels of two edges leaving the same node cannot begin with the same character.

For every string si in the set, all suffixes of si are spelled by patterns starting at

the initial node and ending at node Fi. Paths ending at non final nodes correspond

to strict classes of factors of the congruence relations ≡Suf(S).

Let S be our input set of strings.
We want to analyse the meaning of the state u in terms of “representative”.

In DAWG(S) there are more edges entering the same state than in the corre-
sponding tree, according to Def.1. So we define the representative of a state as
the longest path from the initial state to it.

Like for Suffix Trees, we want to compute a table that gives for entry k the
length of a longest factor common to at least k strings and also points to it.

Now our preprocessing is less easy than in the previous section because more
paths are not distinct. We build a Generalized DAWG for the m input strings.
Each final state represents an input string (e.g., si) and is marked with a non
null identifier (e.g., i).

Observe that in a DAWG two or more outgoing edges from the same state
could finish in the same state and so we would like that the path from an internal
state to other one is unique. Hence we keep only the representative of a factor’s
class. Since to solve the LCF Problem we need the longest labels of the paths,
we keep only the transitions with the longest labels and we delete all other ones
that have the same origin and target states. In this way the number of transition
is drastically reduced and we obtain a pruned DAWG, denoted by D, having a
deterministic transition function between adjacent states.

Now we are ready to perform a particular breadth-traversal of the new struc-
ture to store all states in a stack, in a way that is similar to the procedure done
on suffix trees. We put nodes in the stack in the order they appear. Our problem
is that we traverse some nodes more times and we must store them only once.
Hence, if a node is already stored, we delete its previous occurrences, we put its
new occurrence and we increase a counter related to the node. Define s to be an
array of pointers representing the input strings like above. In our data structure
each state stores the following informations:

– i is the string identifier whose suffix is the state path-label,
– num is the number of distinct string identifiers that appear in the subgraph

rooted in the state,



– count is the counter mentioned above.

As in the previous section, we first compute the num values and then we use
them to update the output’s table.

3.1 How to compute desired values?

The algorithm to calculate num is almost the same as for suffix trees. The only
difference is in the String Test procedure, because here there is another param-
eter to check, the count value. In the algorithm we use three procedures called
NodeSize Test procedure, StringD Test procedure and UnionD. NodeSize

Test procedure has already been described in the previous section.

Now we explain how the StringD test works, while in the Appendix B we
show its code and the UnionD one. First we perform the following test on the
field count of the sons of the current state:

– if count is not null for some son, we decrease the value of count and we
“cut” only the pointer from array s to the previous state to link it to the
actual node, because this one represents the last factor of the interesting
string. Observe that we delete a node size when count become null. So, for
count times we must replace the node size. This fact causes an additional
extra-space but it permits to perform the execution in linear time;

– otherwise we call the classical String test.

The complete algorithm is the following:

CountNumBIS (stack, s)
1. while (stack isNotEmpty) do
2. p = pop(stack);
3. NodeSize test;
4. StringD test;
5. if p has sons then
6. UnionD operation;
7. End CountNum.

3.2 Building the output table

Once the num value and the string-depth of every state are known, the desired
ℓ(k) values can be easily found with a linear-time traversal of D.

When encountering a state p with num(p) = k, the string-depth of p is
compared to the current value of ℓ(k) and if the first one is greater than the
second, ℓ(k) is changed to the depth of p and its pointer updated to the node
representing the factor with the current value of ℓ(k).

Finally the resulting table holds the desired ℓ(k) values.
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Fig. 2: How StringD works. Visiting the state G is the same as visiting the
corresponding tree node. When we traverse state F , we create a duplicate pointer
to s[1] not to lose the information related to state G: in fact, two other edges
arrive in this state and they need to know that G is a suffix of s[1]. Note that
the field count of state G is decreased. Therefore F is also a suffix of s[2], then
we perform a traditional Union. The same happens when traversing states L

and B. In last case, since the field count of state G is null, then we can delete
its node size because we have visited all its neighbors.



3.3 Time analysis

Let n the input size, with n = |S1| + · · · + |Sm|. Building DAWG(S) requires
linear time in the input size as described in [12].

Algorithm CountNumBIS executes a single traversal of D and its main
operation is Union. Since the operation “cut-append” of a pointer from a node
to another is constant, then we would like to know how many pointers could be
involved during it.

Let D be the Generalized DAWG over S. We can use a breadth-first visit
of D to re-create the original Suffix Tree. Each path from initial state to a final
state in DAWG is used to build a path from the root to a leaf in the Suffix Tree.
Note that the technique is the same as McCreight’s one (cf. [15]) to create suffix
trees directly from input’s strings.

After this traversal, we have created a suffix tree with a number ns of nodes
that is larger than the number nc of DAWG states, with same edges and related
labels. Hence representatives of suffix tree states are the same as that of DAWGs.

Since nc ≤ ns, from Theorem 1, we have the following result:

Theorem 3. [LCSS Counting Bis] During the execution of CountNumBIS(S, s)
algorithm, the number of “cut-append” operations is less than n, with n =
|S1| + · · · + |Sm| = |S|.

During the run of the algorithm there are O(n) “cut-append” operations
executed, each of which takes constant time, so all Union executions take O(n)
time in total.

Hence only O(n) time is needed to execute the algorithm and to compute all
numS numbers. Once these are known, only O(n) additional time is needed to
build the output table.

Finally, we can state:

Theorem 4. The Lowest Common Factor Problem on a set of m input strings,

represented by a Generalized Directed Acyclic Graph, can be solved in O(n) time,

with n = |s1| + · · · + |sm|, and O(m + n) space.

4 Conclusions

Recent experiments [4] have showed that DAWGs are space thrifty not only
in exact problems, but also in the approximate cases, where some “errors” or
“faults” are allowed. To build the approximate DAWG of a word in optimal time
remains an open problem. Now, we think that our solution of exact problem can
be applied to these data structures to solve the approximate one. If the conjecture
reported in [4] is true and if it possible to build approximate DAWGs in optimal
time, then our solution will drastically outperform previous solutions.
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A Appendix

Now we detail the procedures used by the algorithm for Suffix Tree. Recall the
data structures in a formally way.
The auxiliary structure s is an m-array of pointers.
The node of GST (S) are formed by three fields (and not two):



– the fields i and num;
– the field ns is a pointer to the node size related to our node.

The node size has two fields (and not one):

– the field num;
– the field ns is a set of pointers to the structures s, one for each string that

the node representing.

NodeSize test (GST (S), s)
1. if p.ns = Nil then

2. p.ns =new node.
3. Return(GST (S), s).

String test (GST (S), s)
1. for every i of p do

2. if p.i! = Nil then

3. s[p.i].ns.num −−

4. if s[p.i].ns.num = 0 then

5. delete s[p.i].ns;
6. s[p.i] = p;
7. p.ns.ns = s[p.i];
8. p.ns.num + +;
9. p.num + +.
10. Return(GST (S), s).

Union (GST (S), s)
1. Merge between nodes size

2. merge between pointers to s;
3. sum between the fiels num;
4. have created a new node size m;
5. p.ns = merge(p.ns, m);
6. p.num = p.ns.num.
7. End Union operation.

B Appendix

Now we detail the procedures used by the algorithm for DAWG. Recall the data
structures in a formally way.
The auxiliary structure s is an m-array of pointers.
The node of DAWG(S) are formed by four fields (and not three):

– the fields i, num and count;
– the field ns is a pointer to the node size related to our node.

The node size has two fields (and not one):

– the field num;



– the field ns is a set of pointers to the structures s, one for each string that
the node representing.

NodeSize test (D, s)
1. if p.ns = Nil then

2. p.ns =new node.
3. Return(D, s).

StringD test (D, s)
1. for every i of p do

3. if s[p.i].count! = 0 then

4. s[p.i].count −−;
5. if s[p.i].count = 0 then

6. delete s[p.i].ns;
7. s[p.i] = p

8. else

9. s[p.i].ns.num −−

10. if s[p.i].ns.num = 0 then

11. delete s[p.i].ns;
12. s[p.i] = p;
13. p.ns.ns = s[p.i];
14. p.ns.num + +;
15. p.num + +.
16. Return(D, s).

UnionD (D, s)
1. Merge between nodes size of p’s sons with the field count null
2. merge between pointers to s;
3. sum between the fields num;
4. have created a new node size m;
5. if q.count! = 0 and q.ns.ns! = p.ns.ns with q son of p then

6. q.count −−;
7. if q.count = 0 then

8. delete q.ns;
9. duplicate q.ns pointers and append to m;
10. m.num = m.num + +
11. p.ns = merge(p.ns, m);
12. p.num = p.ns.num.
13. End UnionD operation.


