N

HAL

open science

Minimizing incomplete automata

Marie-Pierre Béal, Maxime Crochemore

» To cite this version:

Marie-Pierre Béal, Maxime Crochemore. Minimizing incomplete automata. Finite-State Methods and

Natural Language Processing (FSMNLP’08), 2008, United States. pp.9-16. hal-00620274

HAL Id: hal-00620274
https://hal.science/hal-00620274
Submitted on 3 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00620274
https://hal.archives-ouvertes.fr

Minimizing incomplete automata

Marie-Pierre Béal* Maxime Crochemore!

March 17, 2008

Abstract

We develop a O(mlogn)-time and O(k + n + m)-space algorithm for
minimizing incomplete deterministic automata, where n is the number
of states, m the number of edges, and k the size of the alphabet. Min-
imization reduces to the partial Functional coarsest partition problem.
Our algorithm is a slight variant of Hopcroft’s algorithm for minimizing
deterministic complete automata.

Keywords: algorithms, automata, minimization, partitioning.

1 Introduction

It is well known that rational languages may be represented equivalently as
rational expressions or as deterministic finite automata. Among them, there
exists up to a renaming of states a unique minimal automaton accepting a given
rational language (see for example [11]). This automaton is indeed the morphic
image of any automaton accepting the language.

The description of a language with its minimal automaton is important
when space considerations matter in implementations of applications, such as
in Pattern Matching or in Coding Systems, for example.

There are several ways to get the minimal automaton of a language. If
operations on languages are feasible, the method based on quotient languages
produces it directly (see [11, 20]). However, partitioning is the basic strategy to
minimize automata. It is also stated as the Functional coarsest partition prob-
lem, in which the question is to compute a coarsest partition of a finite set that
is compatible both with marked elements and a finite set of functions defined
on the set. Existing algorithms assume that functions are everywhere defined,
or equivalently that the automaton is complete. If it is not, completion is a
straightforward operation but requires additional space. The simplest efficient
algorithms to minimize an automaton is by Moore and runs in time O(kn?) for
a (deterministic) automaton with n states on an alphabet of size k. The fastest
known solution by Hopcroft [10, 1] runs in time O(knlogn) (see also [9, 5, 15]).
The design implement a so-called “smaller half” strategy. The complexity of
the problem is still an open question but there is a family of automata on which
Hopcroft’s algorithm runs effectively in ©(nlogn) [4].

*Université Paris-Est, Institut Gaspard-Monge, 77454 Marne-la-Vallée Cedex 2, France.
beal@univ-mlv.fr

TKing’s College London, Strand, London WC2R 2LS, UK, and Université Paris-Est, Insti-
tut Gaspard-Monge, 77454 Marne-la-Vallée Cedex 2, France. maxime.crochemore@kcl.ac.uk

The minimal automaton of a language can also be built directly for some rare
specific languages like the set of strings ending with a given string [8] or the set
of suffixes of a string [7], for example. In this two cases the algorithms can even
be implemented to run in linear time. But most often the minimization step
has to be done after the construction of a deterministic automaton accepting
the considered language, as for automata obtained from rational expressions
(see [11]). Although the notion of a minimal automaton does not exist for
non-deterministic automata, it is still possible to find equivalent automata with
the minimum number of states (see [13, 12]), but the problem is known to be
computationally hard [14].

It is rather simple to see that minimization can be achieved in linear time
when the alphabet has only one letter (k = 1) [19]. The solution makes use of
the particular structure of the automaton and of some string algorithms. But
the solution does not seem to extend to larger alphabets.

Another known situation for which a linear-time algorithm exists is the case
of finite languages [21] (O(kn) running time reducible to O(n) with the technique
of the present paper) and the specific aforementioned languages.

Hopcroft’s strategy with a slight modification also works for partitioning a
graph or equivalently a non-deterministic automaton on a one-letter alphabet
[6, 18] leading to O(mlogn) running time algorithms. To do so, the “smaller
half” technique is replaced by the “all but the largest” strategy as the one we
use here.

To achieve an O(mlogn) running time for minimizing local automata, we
use in [2] a procedure for merging states having the same immediate future
instead of Hopcroft’s method that relies on state discrimination.

When a complete deterministic automaton is given, its size is O(kn) and
Hopcroft’s algorithm adds a mere logn factor to minimize it. But when the
automaton is incomplete, the actual size of the automaton assumed to contain
no useless state is O(m), where m its number of edges, which ranges from n to
kn. Room for improvement is larger here than just dropping the log factor of
Hopcroft’s algorithm, which requires a complete automaton.

Another solution reaching the same running time as ours has been published
recently by Valmari and Lehtinen [22]. Their solution uses the “smaller half”
strategy as Hopcroft’s algorithm does. But in addition to Hopcroft’s method
managing state partitions, they maintain a partition of transitions to have a
direct access to edges labeled by a given letter and coming in a block splitter
used later in the partitioning process. Both partitions are refined at the same
time.

We develop in the rest an O(mlogn)-time and O(k+n+m)-space algorithm
for minimizing incomplete deterministic automata. Our method uses three in-
gredients. The first one is the “all but the largest” strategy, a generalization of
the “smaller half” strategy, which is used in [6]. In this strategy, a block can
be split in more than two pieces and only the largest piece does not become
a splitter. The second ingredient is the notion of signature of a state, which
represents its outgoing labeled edges, notion that is used successfully to get a
linear-time algorithm for minimizing acyclic automata [21] and local automata
[2]. The third ingredient is “weak sorting” [17], which is used as well in [22],
although they do not refer to it. We believe that our solution provides a simpler
description of the whole algorithm.

2 Minimizing incomplete deterministic automata

2.1 Functional coarsest partition

Let A = (U,F,T) be a deterministic (incomplete) automaton over a finite al-
phabet A. The notation means that U is the set of states, F' is the set of edges,
T is the set of final states. No initial state is specified since it does not play any
role in the minimization process. A successful path is a path ending in a final
state. We assume that the automaton is trim, i.e., each state is co-accessible:
there is at least one successful path starting from this state. This assumption is
important to guarantee the correctness of the algorithm. But we do not assume
that the graph underlying the automaton is connected.

We denote by E the sequence of partial relations (E,).c 4 defined by (p,q) €
E, if and only if (p, a, ¢) is an edge of A. Indeed, all these relations are (partial)
functions because the automaton is deterministic.

For any subset S C U, any letter a € A, let

E.(S)={q| Ipe S (p,a,q) € F},
E;'S)={p| 3g€ S (p,a,q) € F}.

Let also E(S) = UupeaFE.(S) and E=Y(S) = UseaE,1(S). If p is a state, we
shall write E,(p) and E; !(p) instead of E,({p}) and E, *({p}) respectively. If
E,(p) is not empty and B C U, we shall write F,(p) € B instead of E,(p) C B
since E,(p) is a singleton.

If BCUand S C U, B is said to be stable with respect to S if, for any
a € A, either B C E;1(S) or BN E;Y(S) = 0. If P is a partition of U, P is
stable with respect to S if all the blocks (classes) of P are stable with respect to
S. A partition P is stable if it is stable with respect to each of its own blocks.

Let @ and R be two stable partitions finer than a partition P. The partition
QU R obtained by merging the blocks of) and R having a non-empty intersec-
tion is stable, coarser than @) and R, and finer than P. There is thus a coarsest
stable refinement of P.

The partial functional coarsest partition problem is that of finding, for a
sequence of partial functions (F,).c4 and an initial partition P over a set U,
the coarsest stable refinement of P, i.e., the partition which admits every stable
partition as a refinement. The coarsest partition has the fewest blocks among
all stable partitions. This partition defines the minimal automaton when the
initial partition distinguishes final and non-final states.

In discussing time bounds for this problem, we let k& denote the size of the
alphabet A, n denote the size of set of states U, and m denote the size of E
which is the sum of sizes of F,, i.e., the number of edges of the automaton A.

The (complete) functional coarsest partition problem (when all E, are com-
plete functions) was solved by Hopcroft in time O(knlogn) [10] and space
O(k x n) with a process known as the “smaller half strategy” (see for instance
[3], [9], or [15] for an implementation with this time complexity). The relational
coarsest partition problem (when E is a relation) was solved by Cardon and
Crochemore [6] in time O(mlogn) and space O(n +m) (see also [18]). Another
kind of partitioning, namely s-partitioning with a one-letter alphabet, has been
designed in linear time by Paige, Tarjan, and Bonic [19].

We design a O(mlogn)-time and O(k-+n+m)-space algorithm for the partial
functional coarsest partition problem which is a slight variant of Hopcroft’s

algorithm which works in the complete case. As a consequence, it is simpler
than Paige and Tarjan’s algorithm for the relational coarsest partition problem.
Our algorithm provides a O(mlogn)-time and O(k + n 4+ m)-space algorithm
for minimizing an incomplete deterministic automaton.

2.2 Description of the algorithm

For any partition @ and subset S C U, we denote by SPLIT(S, Q) the refinement
of @ obtained by replacing each block B € @ by the blocks (B;);eqp(4) defined
by B; ={p € B|Va €i,E.(p) € S and Va ¢ i, E,(p) is empty or E,(p) ¢ S}.
In this operation the set S is called the splitter.

Lemma 1. Let S be the union of some blocks of a partition Q) that is stable
relative to S and let B C S be a block of Q. Then SPLIT(B, Q) is stable with
respect to S — B.

Proof. Indeed, let B; be a block of SPLIT(B, @), where i € P(A). The block B; is
stable with respect to B, i.e., for any letter a, B; C E;}(B) or B;,NE, *(B) = 0.
If B; C E;*(B), we have B;NE;(S— B) = () since F, is a partial function. Let
us now assume that B; N E;}(B) = (). Since B; is stable with respect to S, we
have either B; N E;1(S) = (), and hence B,NE,;*(S— B) =0, or B; C E;(S).
In the latter case, B; C E;'(S) — E;1(B) and hence B; C E; (S — B). Which
shows that spLIT(B, @) is stable with respect to S — B. O

The previous statement means that SPLIT(B, Q) = SPLIT(S — B, Q). This is
the idea of Hopcroft’s algorithm for the functional coarsest partition problem,
which is still valid in the case of partial functions. The two following algorithms
refine an initial partition Q.

HopcroFT(A = (U, F,T))

1 L« (smallest of T'and U\ T)

2 while L # ()

3 do S « extract first of L

4 for each a € A

5 do @ « 2spPLIT(S, @, a)

6 for each set P split into non empty sets P; and P,
7 do L «— L-(smallest of P; and P,)

8 return @

MINIMIZATION(A = (U, F, T))

1 L~ (T,U\T)

2 while L # ()

3 do S « extract first of L

4 Q «— spLIT(S, Q)

5 for each set P split into non empty blocks Py, Ps, .., P,
6 do L — L-(all but the largest of F;)

7 return @

The second algorithm maintains a queue L of possible splitters, initially
containing every block of the initial partition P. The algorithm consists in
initializing @@ = P and applying the following step until L is empty, at which
time @ is the coarsest stable refinement:

REFINE: Remove from L its first set S. Replace Q by sPLIT(S, Q).
Whenever a block B € @ splits into two or more nonempty blocks,
add all but the largest to the back of L.

The correctness of this algorithm follows from the fact that if) is stable
with respect to a set S and P is split into smaller blocks Py, P, .. P., then
refining with respect to all but one of the sets P; guarantees the stability with
respect to the last one.

The property of being finer than the initial partition P is invariant during
the computation. Let @) be the partition obtained at the final step and R be
any other stable partition finer than P. Then Q U R is a stable partition finer
than P. Let Q; be the finest partition computed during the process which is
coarser than QUR. If QUR # @, there is a block B € QU R which is not stable
under some block of @Q);, i.e., under some union of blocks of QU R. Thie implies
that B is not stable under some block of @ U R, which contradicts the stability
of QU R. This proves that the algorithm computes the coarsest coarsest stable
refinement of P.

To minimize an incomplete deterministic automaton A = (U, F,T), where
U is the set of states, F' the set of edges, and T the set of terminal states, we
have to compute the Nerode partition of the set of states.

Let p be a state of A. We denote by F'(p) the set of words u that are labels
of a successful path starting from p. It is called the future of the state p. Two
states p and ¢ are said to be Nerode equivalent if and only if F'(p) = F(q). The
Nerode partition is the partition induced by the Nerode equivalence. States
of the minimal automaton are blocks of Nerode partition, edges and terminal
states are defined accordingly.

The minimization algorithm is obtained by initializing the partition @ of
states to P = {T,U — T'}. The list L initially contains the two blocks of P.

Lemma 2. The partition of states computed by the algorithm MINIMIZATION
starting with Q = {T,U — T} is the Nerode equivalence, that is, the coarsest
stable refinement of {T,U — T'}.

Proof. The correctness of this algorithm follows from the fact that the Nerode
partition N is a stable partition which is finer than the initial partition. Indeed,
the Nerode partition is by definition finer than the initial partition P = {T,U —
T}. Let us show that it is stable. Let us assume that there are blocks B, S of N
and p,q € S such that E,(p) € B and E,(q) ¢ B. Hence E,(p) and E,(q) are
not Nerode equivalent and p and ¢ neither. Let us now assume that p,q € S are
such that E,(p) € B and E,(q) is the empty set. Since E,(p) is co-accessible,
p,q are not Nerode equivalent. Hence N is stable.

Conversely, we show that the Nerode partition is not finer than the coarsest
stable refinement @ of P = {T,U — T}. Let us assume that it is false. Let p, ¢
be two states in a same block By of @ such that F(p) # F(g). Then there is
for instance a word u and a successfull path (p;, a;, pi+1)o<i<r—1 labelled by u
starting from p such that there is no successfull path labelled by u starting from
q. Let v be the longest prefix of w such that there is a path (g;, a;, ¢i4+1)o<i<s—1
labelled by v starting from ¢. Since @ is stable, p;, g; for 0 < ¢ < s belong to a
same block B; of Q. If v = u, then p, € T and ¢, ¢ T which contradicts the
fact that @ is finer than {T,U —T'}. If v # u, s < r and B, is not stable under
the block of @ containing E,_, , (ps) which is contradiction. O

2.3 Description of the implementation

The implementation of the algorithm is analogue to Hopcroft’s implementation
of [3] (see also [18] or [16, Chapter 1]) despite the fact that the splittings of
blocks become more complicated, because a block can be split into more than
two pieces. Moreover, in order to get the claimed complexity, the splittings
according to a block cannot be done sequentially for each letter of the alphabet.
Most of this section is devoted to the description of the splitting procedure.

An efficient implementation requires several data structures. We represent
each state p € U by a record (or structure) that we shall not distinguish from the
state itself. We represent each block of a partition @) by a record that we shall
not distinguish from the block itself. The blocks are numbered. We represent
the partition @ by a doubly linked list of blocks. The edges (i.e., the elements
of all E,) are records. The various records are linked together in the following
way. Each state p points to an unordered list of the edges (p,a,q) (i.e., the
pairs (p, q) € E, for some a), the list of the edges going out from p. Each state
¢ points to an unordered list of the edges (p,a, ¢), the list of the edges coming
in ¢. This allows scanning the set E~1(q) in time proportional to the number
of its incoming edges. It also allows the scanning of all E~!(q), for all states
q of a block B, in time proportional to the total size of the list of the edges
coming in the block B. This scanning and the operations performed during it
are described more precisely below.

Each block of @ has an associated integer giving its size and points to a
doubly linked list of the elements in it. The double linking allows deletion in
O(1) time. Each state of U points to the unique block of @ containing it. The
space needed for all the data structures is O(n + m).

We now describe the splitting procedure under a splitter B €). To each
state p of Use g E~1(q) is associated a set set(p) whose elements are the letters
a such that there is an edge labelled by a from p to a state in B. Each set
has no duplicate elements. We denote by set(p)™ the set sef(p) augmented by
the block number of p. We then perform a set dicrimination of the states, i.e.,
the states are discriminated according to their associated set set(p)™. We use
a technique called weak sorting in [17] which sorts all the sets according to an
arbitrary total order computed by the algorithm. A weak sort can be seen as
a weak form of a radix sort. It takes linear time in the sum of the number of
elements in each set.

PRODURE SPLIT(Q, B):
Weak sort the states p in Uye g E~1(q) according to their associated
set set™(p).

We now detail the steps of the weak sort. In a first step, we compute the set
of letters a such that E; !(B) is not empty, and for each such letter, we compute
the set of states p such that set(p) contains a.

STEP 1: BUCKET INITIALIZATION.
During the scanning of the lists E~1(q) for all ¢ € B, we compute

e an (unordered) linked list ¢ representing the set of letters a
labels of some edge coming in B,

e for each letter a € ¢, the list £(a) of states p in U such that
p € E;1(B).

This computation is done in time O(|B| + Y .5 [E~"'(p)|) and space O(k)
with the use of a table t of size k for which ¢[a] points to the list ¢(a). Each
state p for which (p, a, q) is scanned is added to the bucket list £(a).

In a second step, we compute the signatures the states contained in the
above buckets. If p is a state contained in at least one list ¢(a), its signature
o(p) is the list of elements of set(p), i.e., whose elements are the letters a for
which there is an edge labelled by a from p to a state in B, in the order given
by the list £. Note that different signatures may have different lengths.

STEP 2: COMPUTATION OF THE SIGNATURES.
We scan the list £ and, for each a € ¢, we scan the list ¢(a), updating
the signature of each state p. During this scanning we build an

(unordered) linked list s of the states p belonging to at least one
list £(a).

This computation is done in time O(3 5 [E~'(p)|) and space O(n) with the
use of a table o of size n such that o[p] points to the signature of p. Lists £(a)
are emptied after their scanning.

Note at this step that two states p, ¢ belonging to a same block S before the
splitting under B will belong to a same block after the splitting if and only if
they have the same signature.

In a third step, we discriminate the states p contained in the above buckets
with respect to their set set™ (p). Two states having the same signature will be
contiguous in the final list.

Recall that ¢t is a table indexed by the letters of the alphabet. Let t;, be
a table indexed by the possible block numbers (hence of size at most n). Let
{1 be a linked list representing a set of block numbers and ¢; be a linked list
representing a set of letters. Both lists are without repetitions. Thus an element
is added to the list only if it is not already contained in the list. The two lists
are initially empty. We first discriminate with respect to the block number, and
then with respect to the signatures. In order to simplify the presentation, we
first assume that all signatures of the states in s have the same length r.

STEP 3: DISCRIMINATION OF THE STATES.
For each state p in the list s do

e let i be the the number of the block containing p,
e add (in constant time) the number ¢ to the list ¢,
e add the state p at the end of the list ¢;]i].

The list s is then made empty and, for each block number ¢ in the
list ¢1, we concatenate the list #;[i] at the end of s.

For j from 1 to r do

e For each state p in the list s do

— add the state p at the end of the list t[a], where a is the
letter number j of the signature of p.
— add this letter a to ¢5.

e Empty the list s and, for each letter a in the list ¢5, concatenate
the list ¢[a] at the end of s.

In the case where signatures are not of constant length, we first discriminate
the states according to the length of their signature and apply the above proce-
dure to each bucket. The discrimination is performed in time O(}_ c 5 |E ~L(p)|)
and space O(n + k). Note that the tables ¢,t, do not need to be initialized by
the use of sparse list implementation (see for instance [1] Exercise 2.12 p. 71).

At the end of the third step, the list s of states satisfies the property that
two states belonging to a same block of () and having the same signature are
contiguous in s. The split blocks are obtained in the final Step 4.

STEP 4: SPLITTING OF THE BLOCKS.

We scan the list s obtained at the end of the third step and put
two states belonging to a same block B of @) and having the same
signature in a same split block B;. States in the same block B; are
extracted from B. Sizes of B, B; are updated during the extraction.

Step 4 requires a time O(3_ |[E~1(p)|) and no additional space.

Example 1. We illustrate the weak sort. Let A = (U, F,T) be the automaton
of Figure 1.

b

Figure 1: A deterministic incomplete automaton A = (U, F,T) over the alpha-
bet A = {a,b,c}. All states are final.

Let P = {U} be the initial partition of U. We detail the splitting under the
block U = {1,2,3}. We successively get £ = (c,a,b),

L(a) =3, £(b) =1,2, £(c) =2,1.
And the signatures are
o(1) =cb, 0(2) = cb, 0(3) = a.

The initial list of states in step 3 is s = (2,1,3). The final list obtained after
the weak sort is s = (2,1,3) and U is split into Uy = {2,1} and Uy = {3}.

The overall time complexity is obtained with classical arguments used for
Hopcroft’s algorithm. A given state p € U is in at most log, n different blocks B
considered as splitters, since each successive such set is at most half the size of
the previous one. Indeed, when a block S is split into sets S;, all but the largest
are becoming future splitters. Therefore we have described an implementation in
which a refinement step with respect to a block B takes O(|B|+3_ p [E=1(p)])
time. From this a O(mlogn) overall time bound on the algorithm follows by
summing over all blocks B used for refinement and over all elements in such
blocks. The space complexity is O(k + n + m).

The conclusion lies in the next statement.

Theorem 3. An incomplete automaton with n states, m edges, and k letters
can be minimized in time O(mlogn) and memory space O(n + m + k).

References

[1]

2]

[7]

8]

[9]

[10]

A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of
Computer Algorithms. Addison Wesley, 1974.

M.-P. Béal and M. Crochemore. Minimizing local automata. In 2007 IEEE
International Symposium on Information Theory, ISIT 2007, pages 1376—
1380, 2007.

D. Beauquier, J. Berstel, and P. Chrétienne. Eléments d’algorithmique.
Masson, 1992.

J. Berstel and O. Carton. On the complexity of Hopcroft’s state minimiza-
tion algorithm. In Implementation and application of automata, volume
3317 of Lecture Notes in Comput. Sci., pages 35—44. Springer, Berlin, 2005.

N. Blum. An O(nlog n) implementation of the standard method for min-
imizing n-state finite automata. Information Processing Letters, 57:65—69,
1996.

A. Cardon and M. Crochemore. Partitioning a graph in O(Alog,V). The-
oret. Comput. Sci., 19(1):85-98, 1982.

M. Crochemore. Transducers and repetitions. Theoret. Comput. Sci.,
45(1):63-86, 1986.

M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on Strings. Cam-
bridge University Press, 2007.

D. Gries. Describing an algorithm by hopcroft. Acta Informatica, 2:97-109,
1973.

J. E. Hopcroft. An mnlogn algorithm for minimizing states in a finite au-
tomaton. In Z. Kohavi, editor, Theory of Machines and Computations,
pages 189-196. Academic Press, New York, 1971.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison Wesley, 1979.

L. lie, G. Navarro, and S. Yu. On NFA reductions. In Theory is forever,
volume 3113 of Lecture Notes in Comput. Sci., pages 112-124. Springer,
Berlin, 2004.

L. llie and S. Yu. Reducing NFAs by invariant equivalences. Theoret.
Comput. Sci., 306(1-3):373-390, 2003.

T. Jiang and B. Ravikumar. Minimal NFA problems are hard. SIAM J.
Comput., 22(6):1117-1141, 1993.

T. Knuutila. Re-describing an algorithm by hopcroft. Theoret. Comput.
Sci., 250(1-2):333-363, 2001.

M. Lothaire. Applied combinatorics on words, volume 105 of Encyclopedia
of Mathematics and its Applications. Cambridge University Press, Cam-
bridge, 2005.

[17]

[18]

[19]

R. Paige. Efficient translation of external input in a dynamically typed
language. In Proc. 13th World Computer Congress, volume 1, 1994.

R. Paige and R. E. Tarjan. Three partition refinement algorithms. SIAM
J. Comput., 16(6):973-989, 1987.

R. Paige, R. E. Tarjan, and R. Bonic. A linear time solution to the single
function coarsest partition problem. Theoret. Comput. Sci., 40(1):67-84,
1985. Special issue: Eleventh international colloquium on automata, lan-
guages and programming (Antwerp, 1984).

J.-E. Pin. Varieties of formal languages. Foundations of Computer Sci-
ence. Plenum Publishing Corp., New York, 1986. With a preface by M.-P.
Schiitzenberger, Translated from the French by A. Howie.

D. Revuz. Minimisation of acyclic deterministic automata in linear time.
Theoret. Comput. Sci., 92(1):181-189, 1992. Combinatorial Pattern Match-
ing School (Paris, 1990).

A. Valmari and P. Lehtinen. Efficient minimization of DFAs with partial
transition functions. In S. Albers and P. Weil, editors, Proc. 25th An-
nual Symposium on Theoretical Aspects of Computer Science. ISBI Schloss
Dagstuhl, 2008.

10

