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lombardy@univ-mlv.fr

Dominique Perrin
Universit́e Paris-Est

Institut Gaspard-Monge
77454 Marne-la-Valĺee, France

perrin@univ-mlv.fr

Abstract— A local automaton is by definition such that a
bounded information about the past and the future is enough to
determine the present state. Due to this synchronization property,
these automata play an important role for coding purposes. We
prove that any irreducible local automaton is contained in a
complete one. The proof uses a result from symbolic dynamics
due to M. Nasu called the masking lemma. A consequence of this
result in the theory of variable length codes is that any locally
parsable regular code is included in a maximal one with the same
synchronisation delay.

I. I NTRODUCTION

The problem of embedding a finite automaton into one
having specified properties is an old one in automata theory
(see [10] for example). We will consider here the embedding
of a local automaton into a complete one.

The embedding of an unambiguous irreducible automaton
into a complete one has been solved in [1] using a construction
due to Ehrenfeucht and Rosenberg [4]. This result has a
formulation in terms of codes. Indeed, the stabilizer of a state
in an unambiguous automaton is a free submonoid. Thus the
above embedding implies that any regular code is contained
in a maximal one.

A local automaton is by definition such that a bounded in-
formation about the past and the future is enough to determine
the present state. Formally there are integersλ, ρ such that for
any pair of pathsp

u
→ q

v
→ r and p′

u
→ q′

v
→ r′ having

the same label with|u| = λ and |v| = ρ one hasq = q′. A
subautomaton of a local automaton is obviously still local but
conversely it is not clear how one can add transitions or states
to a local automaton until it is complete, in the sense that any
word on the underlying alphabet is the label of a path.

The problem of completing local automata has already been
considered in [7], where a method is given which allows one to
complete a local deterministic automaton when it is possible.
We prove here that any local automaton is always contained in
a complete one. Our proof relies on a result known as Nasu’s
masking lemma [9].

The stabilizer of a state in a local automaton is the star
of a locally parsable code(also called codes withfinite
synchronization delay). The previous result gives an alternative
proof of a result of Bruỳere [3] according to which any locally
parsable regular code is included in a maximal one.

In Section II, we introduce some definitions on automata
equivalences. We prove our main result in Section III. We

conclude with the application to locally parsable codes in
Section IV.

II. EQUIVALENCES OF AUTOMATA

We denote byA = (Q,E) a finite automaton on the
alphabetA with Q as set of states andE ⊂ Q×A×Q as set of
edges. We consider all states as both initial and terminal. The
automaton is said to becomplete(with respect to the alphabet
A) if for any word w ∈ A∗ there exists a path labelledw. It
is said to beunambiguousif for any p, q ∈ Q and w in A∗

there is at most one path fromp to q labelledw. It is said to
be irreducible if for any p, q ∈ Q there is at least one word
w such that there is a path fromp to q labelledw.

An automaton is said to beessentialif any state has at least
one incoming edge and at least one outgoing edge. Clearly an
irreducible automaton is essential.

An automatonA = (P,E) on the alphabetA is a subau-
tomatonof an automatonB = (Q,F ) on the alphabetA, if
P ⊂ Q andE ⊆ F ∩ (P × A × P ).

An automaton isdeterministicif for each statep and each
letter a there is at most one edge labelleda going out ofp.

The transition matrixof an automatonA = (Q,E) is the
Q×Q matrix with elements in the setP(A) of subsets ofA
defined forp, q ∈ Q by

Mp,q = {a ∈ A | there is an edge(p, a, q) in E}.

The elements ofM can be considered as elements of the
semiringP(A∗) of subsets ofA∗, where0 is the empty set
and1 is the set containing the empty word. Such matrices can
therefore be multiplied.

Let A = (P,E) andB = (Q,F ) be two automata on the
alphabetA. Let M be the transition matrix ofA and letN be
the transition matrix ofB. We say thatA andB areelementary
equivalentif there exist a(P ×Q)-matrix R and a(Q× P )-
matrix S both with elements inP(A) ∪ {1}, where1 is the
empty word, such thatM = RS and N = SR. We also say
thatA is (R,S)-elementary equivalent toB.

This notion is classical in symbolic dynamics. It is usually
formulated for subshifts of finite type (see [6] p. 225). Our
definition is a particular case of the notion of symbolic
elementary equivalence for sofic shifts introduced in [8].

For a P × Q-matrix R with elements inP(A) ∪ {1}, we
say that a triple(p, a, q) ∈ P × (A ∪ {1}) × Q is anR-edge
whena ∈ Rp,q. Thus whenA is (R,S)-elementary equivalent



to B, each edge ofA is the sequence of anR-edge and a
consecutiveS-edge, and each edge ofB is a sequence of anS-
edge and a consecutiveR-edge. TheR-edges andS-edges can
be considered as edges of a bipartite graph called theauxiliary
graph of the equivalence (it is called abipartite codein [8]
and [6, p. 355]).

Example 1:Let A andB be the automata represented on
Figure 1.

1
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a bb

a

Fig. 1. Two elementary equivalent automataA (on the left) andB (on the
right).

The transition matricesM andN of A andB and matrices
R, S such thatM = RS andN = SR are given by

M = [a + b] , N =

[
a b

a b

]
, R =

[
a b

]
, S =

[
1
1

]
.

ThusA andB are elementary equivalent. The auxiliary graph
is shown in Figure 2 (with continuous lines).
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Fig. 2. The auxiliary graph (with continuous edges).

Let A = (Q,E) be an automaton. Theinput of a stateq ∈ Q

is the set of pairs(p, a) such that one hasp
a
−→ q. Its output

is the set of pairs(a, r) such that one hasq
a
−→ r.

An input merge equivalenceis an equivalence on the setQ

of states ofA such that for any pairp, p′ of equivalent states,
any lettera and any stateq, one has

(i) p
a
→ q if and only if p′

a
→ q,

(ii) q
a
−→ p, q

a
−→ p′ implies p = p′.

Thus, in such an equivalence, two equivalent and distinct states
have the same output and disjoint inputs.

The quotient ofA = (Q,E) by such an equivalence is the
automatonA = (Q,E) with states the setQ of equivalence
classes, and edges the induced edges on the classes,i.e.
(p, a, q) ∈ E for somep, q ∈ Q implies (p, a, q) is in E.

Thus, in the quotient the output of a class of states is the
common output of its elements and its input is the union, or
merge, of the inputs of its elements (whence the name of an
input merge equivalence). We say thatA is obtained fromA
by an input merge. We also say thatA is obtained fromA by
an input split .

Note that ifA is an unambiguous essential automaton, there
is a largest input merge equivalence. It is defined byq ≡ q′ if
q and q′ have the same output. Indeed, sinceA is essential,
if q ≡ q′, they have the same non-empty output. Since it is
unambiguous, they have disjoint inputs.

Example 2:Let A, B be the automata of Example 1. The
automatonA is obtained fromB by an input merge.
An output merge equivalenceon the set of states of an
automatonA is defined symmetrically. It is an equivalence on
the setQ of states such that equivalent and distinct states have
the same input and disjoint outputs. The quotientA is defined
in the same way by merging the outputs of the elements of a
class. We say thatA is obtained fromA by an output merge.
We also say thatA is obtained fromA by anoutput split .

Observe that the quotient of an automatonA by an input
or an output merge equivalence is unambiguous if and only if
A is unambiguous.

The notions of input and output merge equivalence are
classical in symbolic dynamics. They are usually formulated
for subshifts of finite type (see [6, p. 225]). The extension of
the definitions to sofic shifts is due to Nasu [8]; see also [5].

The following result is an element of William’s Classifica-
tion Theorem (see [6]).

Proposition 3: If the automatonA is obtained from the
automatonB by an input (or output) merge, thenA and B
are elementary equivalent.

Proof: We treat the case of an input merge. LetB =
(Q,E) and A = (Q,E). Let M and N be the transition
matrices ofA andB. Let R be theQ×Q-matrix defined for
p, q ∈ Q by

Rp̄,q = {a ∈ A | there is an edge(p, a, q) in E}

(note thatR is well-defined because of the definition of an
input merge). LetS be theQ × Q-matrix defined by

Sp,q̄ =

{
1 if p̄ = q̄

0 otherwise

ThenM = RS andN = SR. ThusA andB are elementary
equivalent.

Proposition 4: Let A and B be two irreducible(R,S)-
elementary equivalent automata. Then, eitherR has elements
in P(A) andS in {0, 1} or conversely.

Proof: SetA = (P,E) andB = (Q,F ). Suppose that
there arep ∈ P , a ∈ A, and q ∈ Q such thata ∈ Rpq. Let
p′ ∈ P andq′ ∈ Q. We denotes = Sq′p′ . Let us show that, if
s 6= 0 thens = 1. SinceB is irreducible, there is pathq

u
−→ q′

labelled byu = a1 . . . an. We haveai = siri, for 1 ≤ i ≤ n,
with ri ∈ Rpiqi

, andsi ∈ Sqi−1pi
, and thus the path

p
a
−→ q0

s1−→ p1
r1−→ q1

s2−→ · · ·
sn−→ pn

rn−→ qn
s
−→ p′,

with q0 = q andqn = q′. Sinceas1 is the label of an edge in
E, s1 = 1. Sinces1r1 is the label of an edge inF , r1 ∈ A

and so on. Finallyrn ∈ A and thuss = 1.
This shows that if one entry ofR contains an element of

A then all the entries ofS are0 or 1. Furthermore, if all the
entries ofS are 0 or 1, then all non-null entries ofR are in
P(A). The proof of the symmetrical case is similar.

We denote byL(A) the set of words labelling a finite path
in A. Two automataA and B are said to beequivalent if
L(A) = L(B).



We say that two automataA andB arestrongly equivalent
if there is a sequenceA0,A1, . . . ,An of automata such that
A0 = A, An = B andAi is elementary equivalent toAi+1

for 1 ≤ i ≤ n − 1.
We state without proof the following Proposition.
Proposition 5: Two strongly equivalent essential automata

are equivalent.

We will now describe a construction due to Nasu (see [6,
p. 354], Lemma 10.2.3). It associates to automataA1,A2,B1

such thatA1 is elementary equivalent toA2 and A1 is a
subautomaton ofB1, an automatonB2 elementary equivalent
to B1 and such thatA2 is a subautomaton ofB2. The
automatonB2 is called theNasu embeddingof A2 with respect
to A1,B1. The intuitive idea behind the construction is to cut
the edges ofB1 in to halves and to create a new state in the
middle which is a state ofB2.

SetA1 = (P1, E1), A2 = (P2, E2) andB1 = (Q1, F1). Let
R,S be matrices such thatRS and SR are respectively the
transition matrices ofA1 andA2. Let Q2 = P2 ∪ (F1 \ E1).
We define aQ1 × Q2-matrix R̂ and aQ2 × Q1-matrix Ŝ as
follows.

Suppose first thatR has0, 1 entries andS entries inP(A).
Then, forq1 ∈ Q1 andq2 ∈ Q2, we define

R̂q1,q2
=






Rq1,q2
if q1 ∈ P1, q2 ∈ P2

1 if q2 ∈ F1 \ E1 ando(q2) = q1

0 otherwise

and

Ŝq2,q1
= Sq2,q1

∪ {l(q2) | q2 ∈ F1 \ E1, e(q2) = q1},

whereo(q2) denotes the origin ofq2, l(q2) its label, ande(q2)
its end.

An illustration of this construction is given in Example 7.
In the case whereR has entries inP(A) and S has 0, 1

entries, we define

R̂q1,q2
= Rq1,q2

∪{a ∈ A | q2 ∈ F1\E1, o(q2) = q1, l(q2) = a}

and

Ŝq2,q1
=






Sq2,q1
if q1 ∈ P1, q2 ∈ P2

1 if q2 ∈ F1 \ E1 ande(q2) = q1

0 otherwise.

It is clear that in both cases,̂RŜ is the transition matrix of
B1. The automatonB2 = (Q2, F2) is defined by its transition
matrix which is ŜR̂. To sum up, we have the following
statement.

Proposition 6: Let A1,A2,B1 be automata such thatA1

is a subautomaton ofB1 andA1 is elementary equivalent to
A2. Let B2 be the Nasu embedding ofA2 with respect to
A1,B1. ThenA2 is a subautomaton ofB2 andB1 is elementary
equivalent toB2. Moreover, ifA2 andB1 are irreducible (resp.
essential), thenB2 is irreducible (resp. essential).

Example 7:Figure 3 represents the Nasu embeddingB2 of
A2 with respect toA1,B1. The automataA1 andA2 are the
elementary equivalent automata of Example 1. IfAi (resp.Bi)
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Fig. 3. The Nasu embeddingB2 of A2 with respect toA1,B1. The automata
A1 = (P1, E1) with P1 = {2, 3} andA2 = (P2, E2) with P2 = {1} are
represented with continuous edges. We haveB1 = (Q1, F1) with Q1 =
{2, 3, 4} andB2 = (Q2, F2) with Q2 = {1, c, d}. The automatonB2 has
two additional statesc, d corresponding to the additional edges(3, c, 4) and
(4, d, 3) of B1. The transitions defined byR and S are represented with
dashed edges. Additional states and edges are represented with dots.

denotes the transition matrix of the automatonAi (resp.Bi)
of Figure 3, we have

A1 =

[
a b

a b

]
= RS =

[
1
1

] [
a b

]
, A2 =

[
a + b

]
= SR.

B1 =




a b 0
a b c

0 d 0



 = R̂Ŝ =




1 0 0
1 1 0
0 0 1








a b 0
0 0 c

0 d 0



 ,

B2 =




a + b b 0

0 0 c

d d 0



 = ŜR̂ =




a b 0
0 0 c

0 d 0








1 0 0
1 1 0
0 0 1



 .

III. L OCAL AUTOMATA

An automaton is said to be(λ, ρ)-local if for all pairs of
pathsp

u
→ q

v
→ r andp′

u
→ q′

v
→ r′ with |u| = λ and |v| = ρ,

one hasq = q′. The automaton is said to belocal if it is
(λ, ρ)-local for someλ, ρ ≥ 0. An automaton which has a
single state is(0, 0)-local.

Thus in a local automaton, one can recover a biinfinite path
from its label using a sliding window of fixed size.

A word w is said to be aconstantfor an automatonA if
for two pathsp

w
→ q andp′

w
→ q′ with label w, one has also

p
w
→ q′ andp′

w
→ q. The empty word is a constant only when

the automaton has a single state.
Note that if A is a (λ, ρ)-local automaton, then an input

split of A is a (λ + 1, ρ)-local automaton, and an output split
of A is a (λ, ρ + 1)-local automaton.

An automaton is said to haveorder n if any word of length
n is a constant. Note that a(λ, ρ)-local automaton has order
λ + ρ. The minimal order can however be strictly less than
λ+ρ. An unambiguous automaton with ordern is (n, n)-local.

Let λ, ρ ≥ 0. The free (λ, ρ)-local automaton is the
automaton with set of states consisting of pairs(u, v) of
words, with u of length λ and v of length ρ, and edges the
triples ((u, v), a, (u′, v′)) such that there are lettersb, c with
uvc = bu′v′ anda is the first letter ofvc. It is clear that this
automaton is(λ, ρ)-local and complete.

The free(n, 0)-local automaton is usually known as thede
Bruijn automatonof ordern.

Lemma 8:The free (λ, ρ)-local automaton has order
max(λ, ρ).



Proof: Setn = max(λ, ρ). Let F(λ,ρ) be the free(λ, ρ)-
local automaton. Let(u, v)

w
−→ (x, y) and (u′, v′)

w
−→ (x′, y′)

be two paths labelledw of lengthn in F(λ,ρ), with u, u′, x, x′

of length λ and v, v′, y, y′ of length ρ. Sinceλ, ρ ≤ n, v, v′

are prefixes ofw andx, x′ are suffixes ofw. Hencev = v′ and
x = x′ and there are paths(u, v)

w
−→ (x, y′) and (u′, v)

w
−→

(x, y) in F(λ,ρ). This shows thatF(λ,ρ) has ordern.
Example 9:The free(1, 1)-local automaton on the alphabet

{a, b} is represented on Figure 4. The label of an edge going
out of a state is its second letter.

a, a

a, b

b, b

b, a

a b

a b

ba

a b

Fig. 4. The free(1, 1)-local automaton. It has order1.

The following result shows that any(λ, ρ)-local automaton is
strongly equivalent to a subautomaton of the free(λ, ρ)-local
automaton.

Proposition 10: If A is (λ, ρ)-local automaton, there is a
sequenceA0,A1, . . . ,Aλ+ρ of (λ, ρ)-local automata such that

(i) A0 = A.
(ii) For i = 0, . . . , λ − 1, Ai is obtained fromAi+1 by an

input merge.
(iii) For i = λ, . . . , λ + ρ− 1, Ai is obtained fromAi+1 by

an output merge.
(iv) Aλ+ρ is a subautomaton of the free(λ, ρ)-local automa-

ton.
Proof: Let A = (P,E). We define for1 ≤ i ≤ λ,

Ai = (Pi, Ei) wherePi is the set of pairs(u, q) with u ∈ Ai

and q ∈ P such that there is a path labelledu leading to
q in A. There is an edge labelleda from (u, p) to (v, q) in
Ai if u = bu′, v = u′a for b ∈ A and (p, a, q) ∈ E. For
j = 1, . . . , ρ, let Aλ+j = (Pλ+j , Eλ+j) wherePλ+j is the set
of triples (u, p, v) ∈ Aλ × P × Aj such that there is a path
labelledu leading top and a path labelledv leavingp in A.
There is an edge labelleda from (u, p, v) to (w, q, t) if and
only if u = bu′, w = u′a, v = av′, t = v′c and (p, a, q) ∈ E.

For 0 ≤ i ≤ λ−1, the equivalenceθi+1 on Pi+1 defined by
(u, p) ≡ (u′, p′) if p = p′ andu, u′ differ at most by the first
letter is an input merge. Similarly, forλ ≤ i ≤ λ + ρ− 1, the
equivalenceθi+1 on Pi+1 defined by(u, p, v) ≡ (u′, p′, v′) if
u = u′, p = p′ and v, v′ differ at most by their last letter, is
an output merge. This shows that conditions (ii) and (iii) are
satisfied.

Finally, sinceA is (λ, ρ)-local, in a state(u, p, v) of Aλ+ρ,
the statep is determined by(u, v). Thus condition (iv) is also
satisfied.

Observe that ifA is moreover supposed to be irreducible, then
all the automataAi constructed as above are also irreducible.

We will prove the following result.

Theorem 11:Any irreducible (λ, ρ)-local automaton is a
subautomaton of a complete irreducible local automaton of
ordermax(λ, ρ).
Note that this statement implies that any irreducible localau-
tomaton of ordern is a subautomaton of a complete irreducible
local automaton of ordern.

The proof uses Nasu embeddings.
Proposition 12: Let A1 andA2 be automata such thatA2

is obtained fromA1 by input (or output) merge. IfA1 is a
subautomaton of a local automatonB1 of order n, then the
Nasu embedding ofA2 with respect toA1 andB1, is a local
automaton of ordern.

Proof: We treat the case of an input merge. The case
of an output merge is symmetrical. LetB1 = (Q1, F1) be a
local automaton containingA1 = (P1, E1) as a subautomaton.
Assume thatA2 = (P2, E2) is obtained fromA1 by input
merge. LetF = F1 \E1, Q2 = P2 ∪F and letB2 = (Q2, F2)
be the Nasu embedding ofA2 with respect toA1,B1.

Let R,S be the matrices defined as in the proof of Propo-
sition 3. The transition matrix ofA1 is equal toRS while the
transition matrix ofA2 is equal toSR. We havea ∈ Sp̄,q if
(p, a, q) ∈ E1 and Rp,p̄ = 1. The additionalŜ-edges are the
triples (f, a, q) such thatf = (p, a, q) is in F . The additional
R̂-edges are the triples(p, 1, f) such thatf begins withp. An
example of this construction is described in Figure 3.

Let π be the map defined on the setP of paths ofB1

of length at least 2 onto the set of nonempty paths ofB2

as follows. If (e0, e1, . . . , en) ∈ P with ei = (qi, ai, qi+1),
we defineπ(e0, e1, . . . , en) = (g0, g1, . . . , gn−1) with gi =
(pi, ai, pi+1) defined bypi = q̄i if ei ∈ E1 and pi = ei if
ei ∈ F .

We claim thatπ is a surjective map from the setP onto the
set of nonempty paths ofB2. We have to verify that eachgi

is an edge ofB2. We distinguish four cases.

(i) If pi, pi+1 ∈ P2. Thengi is an edge ofA2 and thus of
B2. It is the concatenation of anS-edge and anR-edge.

(ii) If pi ∈ P2 and pi+1 ∈ F . Then pi = q̄i and pi+1 =
ei+1 . Thusgi is the concatenation of anS-edge and an
(R̂ − R)-edge.

(iii) If pi, pi+1 are inF , thenpi = ei andpi+1 = ei+1. Thus
gi = (pi, ai, pi+1) is the concatenation of an(Ŝ − S)-
edge and an(R̂ − R)-edge.

(iv) If pi ∈ F and pi+1 ∈ P2 then pi = ei. Thus gi is the
concatenation of an(Ŝ − S)-edge and anR-edge.

Thusπ is well defined. Moreover, one can verify that for any
nonempty pathc in B2 there existsc′ ∈ P such thatπ(c′) = c.
Thusπ is surjective.

Let n be the order ofB1. Let c = p
w
→ q andc′ = p′

w
→ q′

be two paths inB2 with |w| = n. Then there exist paths

d = r
w
→ s

a
→ t andd′ = r′

w
→ s′

a′

→ t′ in B1, with a, a′ ∈ A,
such thatπ(d) = c andπ(d′) = c′. SinceB1 has ordern, w is

a constant forB1. Thus we have also pathse = r
w
→ s′

a′

→ t′

ande′ = r′
w
→ s

a
→ t in B1. It is easy to verify thatπ(e) is a

path fromp to q′ andπ(e′) a path fromp′ to q. Thusw is a
constant forB2.



We now prove Theorem 11. Proof: Let A be an
irreducible(λ, ρ)-local automaton. By Proposition 10 there is
a sequenceA0,A1, . . . ,Aλ+ρ of automata such thatA = A0,
Aλ+ρ is a subautomaton of the free(λ, ρ)-local automaton
and eachAi is a merge ofAi+1. By Lemma 8, the free
(λ, ρ)-local automaton has ordern = max(λ, ρ). SinceAλ+ρ

is included in the free(λ, ρ)-local automaton, we may build
using repeatedly Proposition 12 a sequenceBλ+ρ, . . . ,B1,B0

of complete local irreducible automata with ordern such that
Ai is contained inBi for i = λ + ρ, . . . , 0. ThusB = B0 is
a complete local automaton with ordern containingA. Since
A is irreducible, allAi andBi are irreducible.

Example 13:Let A = A0 be the deterministic automaton
represented on the left of Figure 5. It is(3, 0)-local and has
order3.

1

23
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b

a
4

5

6

7

a b
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a

a

b

a

Fig. 5. A local automatonA (on the left) and a splitA1 of A with its
completionB1 with the dotted edges (on the right)

The automatonA cannot be completed in a local determin-
istic automaton (see [7]). We have represented on the right of
Figure 5 a splitA1 of A, obtained by an input split of state2 in
two states5 and7. This automaton can easily be completed as
indicated on the right of Figure 5. The auxiliary graph is shown
on the left of Figure 6. The final result is shown on the right
of Figure 6. It is a complete local automaton containingA.
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Fig. 6. The auxiliary graph (with continuous edges) on the left. The automata
A andA1 on the left are represented with dashed edges and the additional
edges with dotted lines. The result on the right is the embedding of A with
respect toA1 andB1. This automaton has order3 although it is(3, 1)-local.

IV. A PPLICATION TO LOCALLY PARSABLE CODES

In this section, we briefly show how our result applies to
the theory of variable length codes.

A variable length code(or code) is a setX of finite words
which is uniquely decipherable:x1x2 . . . xn = y1y2 . . . ym,
with xi, yj ∈ X, implies n = m andxi = yi for all i.

Let X be a code. A wordw is a constant for X∗ if
uwv, u′wv′ ∈ X∗ implies uwv′, u′wv ∈ X∗. A code X

has literal synchronization delays if any word of As is a
constant forX∗. A code is locally parsable (or has finite
synchronization delay) if there is an integers such that it has
literal synchronization delays.

The stabilizer of a state in a local automaton with orders is
X∗, whereX is a locally parsable code with synchronization
delay s. Conversely, ifX is a locally parsable regular code
with synchronization delays, one can build an irreducible
(s, s)-local automaton such thatX∗ is the stabilizer of some
state (see [2].)

Since our result allows to complete this automaton in a
complete one of orders, it gives a maximal regular locally
parsable codeY containingX which has the same synchro-
nization delay asX.

For instance, the codeX = {aba, baba}, which has literal
synchronization delay3 can be completed into the regular code
Y = ab∪ (a+∪ (a+∪ b)b+a which has literal synchronization
delay 3. An automaton recognizingY ∗ is given on the right
of Figure 6, with state 1 as initial and final state.

This gives an alternative proof of a result of Bruyère ac-
cording to which any locally parsable regular code is included
in a maximal one [3] where the conservation of the delay was
not guaranteed.
Acknowledgements: We would like to thank Brian Marcus who
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lemma in this problem. We also thank the referees who helped
us to improve the presentation.
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