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Abstract— A local automaton is by definition such that a conclude with the application to locally parsable codes in
bounded information about the past and the future is enough to Section IV.
determine the present state. Due to this synchronization propey,
these automata play an important role for coding purposes. We Il. EQUIVALENCES OF AUTOMATA

prove that any irreducible local automaton is contained in a . .
complete one. The proof uses a result from symbolic dynamics We denote byA = (Q,E) a finite automaton on the

due to M. Nasu called the masking lemma. A consequence of this alphabetd with @) as set of states anfd C Q x AxQ as set of
result in the theory of variable length codes is that any locally edges. We consider all states as both initial and termirta. T

parsable _regl_JIar code is included in a maximal one with the same gytomaton is said to beomplete(with respect to the alphabet
synchronisation delay. A) if for any word w € A* there exists a path labelled. It
is said to beunambiguousf for any p,q € @Q andw in A*
there is at most one path fromto ¢ labelledw. It is said to

The problem of embedding a finite automaton into onee irreducible if for any p,q € @ there is at least one word

having specified properties is an old one in automata thearysuch that there is a path fromto ¢ labelledw.
(see [10] for example). We will consider here the embedding An automaton is said to bessentiaif any state has at least
of a local automaton into a complete one. one incoming edge and at least one outgoing edge. Clearly an

The embedding of an unambiguous irreducible automatameducible automaton is essential.
into a complete one has been solved in [1] using a constructio An automatonA = (P, E) on the alphabe# is a subau-
due to Ehrenfeucht and Rosenberg [4]. This result hast@matonof an automator3 = (@, F') on the alphabet4, if
formulation in terms of codes. Indeed, the stabilizer ofaest P C Q andE C FN (P x A x P).
in an unambiguous automaton is a free submonoid. Thus theAn automaton isdeterministicif for each statep and each
above embedding implies that any regular code is containkedter o there is at most one edge labelledyoing out ofp.
in a maximal one. The transition matrixof an automatond = (Q, E) is the

A local automaton is by definition such that a bounded i@ x Q matrix with elements in the s&8(A) of subsets ofd
formation about the past and the future is enough to determiefined forp, ¢ € @ by
the present state. Formally there are integers such that for . .
anyppair of pathsp 5 ¢ i r and p’ igj’ﬁi r’ having Mpq={a € A] there is an edgép, a,q) in E}.
the same label withu| = A and |v| = p one hasy = ¢". A The elements of\/ can be considered as elements of the
subautomaton of a local automaton is obviously still loaztl bsemiring3(A*) of subsets ofA*, where0 is the empty set
conversely it is not clear how one can add transitions oestatand1 is the set containing the empty word. Such matrices can
to a local automaton until it is complete, in the sense thgt atherefore be multiplied.
word on the underlying alphabet is the label of a path. Let A = (P, E) andB = (Q, F') be two automata on the

The problem of completing local automata has already beeiphabetA. Let M be the transition matrix ofA and letN be
considered in [7], where a method is given which allows one the transition matrix of3. We say that4d andB areelementary
complete a local deterministic automaton when it is possiblequivalentif there exist a(P x Q)-matrix R and a(Q x P)-
We prove here that any local automaton is always containedritatrix S both with elements if3(A4) U {1}, wherel is the
a complete one. Our proof relies on a result known as Nasémpty word, such thadd = RS and N = SR. We also say
masking lemma [9]. that A is (R, S)-elementary equivalent t5.

The stabilizer of a state in a local automaton is the star This notion is classical in symbolic dynamics. It is usually
of a locally parsable code(also called codes witHfinite formulated for subshifts of finite type (see [6] p. 225). Our
synchronization deldy The previous result gives an alternativelefinition is a particular case of the notion of symbolic
proof of a result of Brugre [3] according to which any locally elementary equivalence for sofic shifts introduced in [8].
parsable regular code is included in a maximal one. For a P x @-matrix R with elements inB(A) U {1}, we

In Section I, we introduce some definitions on automatay that a triple(p,a,q) € P x (AU {1}) x Q is an R-edge
equivalences. We prove our main result in Section lll. Wathena € R, ,. Thus whenA is (R, S)-elementary equivalent

I. INTRODUCTION



to B, each edge of4 is the sequence of ak-edge and a Example 2:Let A, B be the automata of Example 1. The
consecutiveS-edge, and each edge Bfis a sequence of afi- automatonA is obtained from5 by an input merge.

edge and a consecutiveedge. TheR-edges and’-edges can An output merge equivalencen the set of states of an
be considered as edges of a bipartite graph calleduix@diary automatonA is defined symmetrically. It is an equivalence on
graph of the equivalence (it is called bipartite codein [8] the setQ of states such that equivalent and distinct states have

and [6, p. 355)). the same input and disjoint outputs. The quotidnis defined
Example 1:Let A and B be the automata represented om the same way by merging the outputs of the elements of a
Figure 1. class. We say thatl is obtained fromA by an output merge.

u b u b b We also say tha# is obtained fromA by anoutput split.
C@)Q C@C@D Observe that the quotient of an automatdnby an input
a or an output merge equivalence is unambiguous if and only if
Fig. 1. Two elementary equivalent automata(on the left) ands (on the A iS unambiguous.
right). The notions of input and output merge equivalence are
classical in symbolic dynamics. They are usually formudate
The transition matriced/ and N of .A and B and matrices for subshifts of finite type (see [6, p. 225]). The extensién o

R, S such thatM = RS and N = SR are given by the definitions to sofic shifts is due to Nasu [8]; see also [5].
0 b 1 The following result is an element of William’s Classifica-
M=la+0b], N= [a b] ., R=la b], S= H . tion Theorem (see [6]).

Proposition 3: If the automatonA is obtained from the
Thus A and B are elementary equivalent. The auxiliary graphutomaton3 by an input (or output) merge, thed and B
is shown in Figure 2 (with continuous lines). are elementary equivalent.
La b Proof: We treat the case of an input merge. gt=
o (Q,F) and A = (Q,E). Let M and N be the transition
matrices of.4 and 3. Let R be theQ x Q-matrix defined for

p,q € Q by
0 Ry, = {a € A| there is an edgép, a,q) in E}
. (note thatR is well-defined because of the definition of an
Fig. 2. The auxiliary graph (with continuous edges). input merge). LetS be the@ x Q-matrix defined by
Let A = (@, E) be an automaton. Thieput of a stateg € @ Spq= { 1 ifhﬁ =4
is the set of pairp, a) such that one hag % . Its output 0 otherwise
is the set of pairga, ) such that one hag = r. ThenM = RS and N = SR. Thus.A and B are elementary
An input merge equivalends an equivalence on the s@t equivalent. ]
of states of4 such that for any paip, p’ of equivalent states, Proposition 4:Let A and B be two irreducible (R, S)-
any lettera and any state, one has elementary equivalent automata. Then, eitRehas elements
(i) p>q¢ifandonlyifp’ % g, in P(A) andS in {0,1} or conversely.
(i) ¢5p, g5 p impliesp=1yp'. Proof: Set A = (P, E) andB = (Q, F'). Suppose that

Thus, in such an equivalence, two equivalent and distiatest €€ arép € P, a € A, andq € Q such thala € F,,. Let
p’ € P andq' € Q. We denotes = S;/,. Let us show that, if

have the same output and disjoint inputs. : L ; . u
The quotient ofA — (Q, E) by such an equivalence is the® 7 0 thens = 1. SinceB is irreducible, there is path = g
labelled byu = a; . ..a,. We havea; = s;r;, for 1 <i <mn,

automaton4d = (Q, E) with states the se@) of equivalence '“
classes, and edges the induced edges on the classesWith i € Bp.q,, @nds; € Sq,_,,, and thus the path

(p,a,q) € E for somep, q € Q implies (p,a,q) is in E.

Thus, in the quotient the output of a class of states is the
common output of its elements and its input is the union, @th ¢ = ¢ andq,, = ¢’. Sinceas; is the label of an edge in
merge, of the inputs of its elements (whence the name of &h s; = 1. Sinces;r; is the label of an edge i, r; € A
input merge equivalence). We say thatis obtained from4 and so on. Finally-,, € A and thuss = 1.
by an input merge. We also say thatis obtained fromA by This shows that if one entry aR contains an element of
aninput split. A then all the entries of are0 or 1. Furthermore, if all the

Note that if.4 is an unambiguous essential automaton, theemtries ofS are0 or 1, then all non-null entries oRR are in
is a largest input merge equivalence. It is definedjhy ¢’ if B(A). The proof of the symmetrical case is similar. &

g and ¢’ have the same output. Indeed, sindeis essential, = We denote byL(.A) the set of words labelling a finite path
if ¢ = ¢/, they have the same non-empty output. Since it is .A. Two automatad and B are said to beequivalentif
unambiguous, they have disjoint inputs. L(A) = L(B).

a S1 1 EP) Sn T s/
P—q —p1—q — "~ Pn —4n 7P,



We say that two automatd and B are strongly equivalent
if there is a sequencelg, A;, ...,
Ao = A, A, = B and 4; is elementary equivalent tal;
forl1<i<n-—1.

We state without proof the following Proposition.

Proposition 5: Two strongly equivalent essential automata

are equivalent.

We will now describe a construction due to Nasu (see |

p. 354], Lemma 10.2.3). It associates to autométaA,, 5,
such thatA; is elementary equivalent tol, and A; is a

subautomaton of3;, an automatorB, elementary equivalent

to B; and such that4, is a subautomaton of3,. The
automator3; is called theNasu embeddingf A, with respect

A,, of automata such that

g 3. The Nasu embeddiri§p of A with respect tad;, B1. The automata
= (P1, E1) with P, = {2,3} and Ay = (P2, E2) with P, = {1} are
represented with continuous edges. We h#e= (Q1,F1) with Q1 =
{2,3,4} and By = (Q2, F2) with Q2 = {1, ¢, d}. The automator32 has
two additional states, d corresponding to the additional edggs ¢, 4) and
(4,d,3) of By. The transitions defined by? and S are represented with
dashed edges. Additional states and edges are represeititedots.

to A4, B1. The intuitive idea behind the construction is to cut N .
the edges oB3; in to halves and to create a new state in théenotes the transition matrix of the automatdp (resp. 3;)

middle which is a state oBs.

SetA, = (Pl,El), Ay = (PQ,EQ) andB; = (Ql)Fl)' Let
R, S be matrices such thakS and SR are respectively the
transition matrices of4; and A2 Let Q2 = P U (Fy \El)
We define aQ); x Qo-matrix R and a@:2 x Qq-matrix S as
follows.

Suppose first thaR has0, 1 entries andS entries in3(A).
Then, forq; € Q, andgs € 2, we define

. Ry, ?f g EP,ppeP
Ry g = 1 if g2 € F1\ By ando(q2) = ¢
0 otherwise
and
Sesar = Sazas U{U(a2) | g2 € Fi \ Ev, e(g2) = a1},

whereo(g2) denotes the origin ofs, I(g2) its label, ande(gs)
its end.

An illustration of this construction is given in Example 7.

In the case wherek has entries inMPB(A) and S haso, 1
entries, we define

Ry = Ry sU{a € A| g2 € F\Ey, o(q2) = @1, U(g2) = a}
and
~ SQ2A,q1 |f QIGPIaQQGPQ
Sgoon = 1 if o € F1 \ E1 ande(q2) = ¢
0 otherwise.

of Figure 3, we have

A = {Z b} — RS = H [a ], As = [a+b] = SR.

b 1
a b 0 . 1 0 0]fJa b O
Bi=|a b ¢[|=RS=1|1 1 0[]0 0 ¢,
0 d 0 0 0 1[0 d 0
a+b b 0 . a b 0] 1 0 0
By = 0 0 ¢c|=SR=1|0 0 c¢|[|1 1 0
d d 0 0 d 0]|0 01

IIl. L OCAL AUTOMATA

An automaton is said to bé\, p)-local if for all pairs of
pathsp 5 ¢ = r andp’ = ¢’ 2 7/ with |u| = X and|v| = p,
one hasq = ¢'. The automaton is said to Hecal if it is
(A, p)-local for some),p > 0. An automaton which has a
single state ig0, 0)-local.

Thus in a local automaton, one can recover a biinfinite path
from its label using a sliding window of fixed size.

A word w is said to be aonstantfor an automatonA if
for two pathsp = ¢ andp’ = ¢’ with label w, one has also
p = ¢ andp’ = ¢q. The empty word is a constant only when
the automaton has a single state.

Note that if A is a (), p)-local automaton, then an input
split of A is a (A + 1, p)-local automaton, and an output split
of Ais a(A,p+ 1)-local automaton.

An automaton is said to hawader n if any word of length

It is clear that in both case®S is the transition matrix of n is a constant. Note that @\, p)-local automaton has order
Bi. The automatomB; = (Q2, I2) is defined by its transition A + p. The minimal order can however be strictly less than
matrix which is SR. To sum up, we have the following A+p. An unambiguous automaton with ordeis (n,n)-local.

statement.
Proposition 6: Let A;, A5, 5, be automata such thai,

Let \,p > 0. The free (A, p)-local automaton is the
automaton with set of states consisting of paftsv) of

is a subautomaton df; and.A; is elementary equivalent to words, with« of length A\ andv of length p, and edges the

As. Let By be the Nasu embedding od, with respect to
A1, B;1. ThenA, is a subautomaton @&, andB; is elementary
equivalent taB,. Moreover, if 4, andB; are irreducible (resp.
essential), therB, is irreducible (resp. essential).

Example 7:Figure 3 represents the Nasu embeddifgof
Ay with respect taA,, B,. The automatad, and . A, are the
elementary equivalent automata of Example 14)f(resp.B;)

triples ((u,v), a, (v/,v")) such that there are lettetsc with
uve = bu'v’ anda is the first letter ofve. It is clear that this
automaton ig\, p)-local and complete.

The free(n,0)-local automaton is usually known as tde
Bruijn automatonof ordern.

Lemma 8:The free (), p)-local automaton has order
max (A, p).



Proof: Setn = max(J, p). Let 7, , be the freg(), p)- Theorem 11:Any irreducible (A, p)-local automaton is a
local automaton. Lefu,v) ~ (z,y) and (v/,v’) = (2,y’) Subautomaton of a complete irreducible local automaton of
be two paths labelled of lengthn in Fy ,), with u, v/, 2,2’ ordermax(A, p).
of length A and v, ', y,%’ of length p. Since\, p < n, v,/ Note that this statement implies that any irreducible Icoa
are prefixes ofv andz, «’ are suffixes ofv. Hencev =+’ and tomaton of order is a subautomaton of a complete irreducible
x = 2’ and there are path&@,v) = (z,y’) and (v/,v) ~ local automaton of order.

(z,y) in F . This shows thatF, ,) has ordem. ] The proof uses Nasu embeddings.

Example 9:The free(1, 1)-local automaton on the alphabet Proposition 12:Let A; and.A; be automata such that,
{a, b} is represented on Figure 4. The label of an edge goiifgyobtained from.A; by input (or output) merge. If4; is a
out of a state is its second letter. subautomaton of a local automatdfy of order n, then the
Nasu embedding afl; with respect tad,; and By, is a local
automaton of order.

Proof: We treat the case of an input merge. The case
of an output merge is symmetrical. L& = (Qi, F}) be a
local automaton containind; = (P, E;) as a subautomaton.
Assume thatd, = (P, E) is obtained fromA; by input
merge. LetF' = F1 \ Eq, Q2 = P,UF and letBy = (Q2, F3)
be the Nasu embedding of, with respect toA;, B;.

Let R, S be the matrices defined as in the proof of Propo-

) _sition 3. The transition matrix ofi; is equal toR.S while the
The foIIowmg result shows that any, p)-local automaton is ransition matrix ofA, is equal toSR. We havea € S, if
strongly equivalent to a subautomaton of the ftaep)-local (p,a,q) € Ey and R, , = 1. The additionald- edges are the

Fig. 4. The free(1, 1)-local automaton. It has orddr.

automaton. triples (f, a, ) such thatf = (p, a,q) is in F. The additional
Proposition 10:If A is (), p)-local automaton, there is ap. -edges are the triple@, 1, f) such thatf begins withp. An
sequencelo, Ay, ..., Ax, Of (A, p)-local automata such that g, o e of this construction is described in Figure 3.
(i) Ao = A Let = be the map defined on the sgt of paths of B,
(i) Fori=0,...,A—1, A is obtained fromA;;, by an of Jength at least 2 onto the set of nonempty pathsBef
Input merge. as follows. If (6(),61, . .,Gn) € P with e; = (qi7ai,qi+1),
(i) Fori=A,...,A+p—1, A, is obtained fromA4;;1 by e definem(eg, e1,...,en) = (90, 91:-- - gn_1) With g; =
an output merge. (pi,as, piy1) defined byp, = G if e; € E; andp; = e; if
(iv) A4, is a subautomaton of the frég, p)-local automa- . < .
ton. We claim thatr is a surjective map from the sét onto the

Proof: Let A = (P, E). We define forl < i < A, get of nonempty paths df,. We have to verify that each;
Ai = (P, E;) where P; is the set of pairgu, q) with u € A' 5 an edge of3,. We distinguish four cases.
and g € P such that there is a path labelledleading to (i :
. ; . i) If p;,pir1 € P». Theng; is an edge ofd, and thus of
¢ in A.There is an edge labelled from (u,p) t0 (v,q) in Bo. It is the concatenation of afi-edge and ark-edge.
A if w=>bu',v=1aforbe Aand(pa,q) € E. For (i) If p; € P> andpios € F. Thenp; — ¢, and piry —

j=1,...,p letAxi; = (Prxtj, Extj) Where Py ; is the set . L . )
of triples (u,p,v) € Jfﬁ x P >j< A sjuch that thejre is a path ect1 - Thusg, is the concatenation of asi-edge and an
o (R — R)-edge.

labelledu leading top and a path labelled leavingp in A. o ; o o

There is an edge labelled from (u,p,v) to (w,q,t) if and (i) 1 pi’p"“ are mF’. thtinpl — fndlt’.’“ 7],6“&1' Tgus

only if u =bu/, w=v'a, v=av’, t =v'cand(p,a,q) € E. gid_ (pi’dai’piil) 'S g concatenation of af — .)-
For0 <i < A—1, the equivalencé,., on P,.; defined by . edge and ari/t — It)-edge. .

(u,p) = (W,p') if p=yp' andu,u’ differ at most by the first (V) If pi € Fandpiys € P thenp; = ¢;. Thusg, is the
by =1\u.p) T P=P ! concatenation of aS — S)-edge and arRR-edge.

letter is an input merge. Similarly, fox <i < A+ p—1, the ] ] )
Thus~ is well defined. Moreover, one can verify that for any

equivalence‘)z-ﬂ on P¢+1 defined by(u,p,v) = (v, p’,v’) if : A ‘
u =, p=p andv,v’ differ at most by their last letter, is "ONemPpty patl in 55, there exists’ € P such thatr(c') = c.
Thus is surjective.

an output merge. ThIS shows that conditions (ii) and (iig ar w . L w
satisfied. Let n be the'order 9&31. Letc=p—qgandcd = P=yq
Finally, sinceA is (\, p)-local, in a stateu, p, v) of Ay, be two paths inBy with |w| = n. Then there exist paths
the statep is determined by(u, v). Thus condition (iv) is also d =r = s =t andd’ =" = s’ % t' in By, with a,a’ € A,
satisfied. such thatr(d) = ¢ andn(d') = ¢. Since3; has ordem, w is

a

B 3 constant fo3;. Thus we have also paths=r = s % ¢/
Observe that if4 is moreover supposed to be irreducible, thegnde’ =+ % s % ¢ in B,. It is easy to verify thatr(e) is a

all the automatad; constructed as above are also irreduciblgyath fromp to ¢’ and=(e’) a path fromp’ to ¢. Thusw is a
We will prove the following result. constant forBs. u



We now prove Theorem 11. Proof: Let A be an Let X be a code. A wordw is a constantfor X* if
irreducible (), p)-local automaton. By Proposition 10 there isiwv, v'wv’ € X* implies vwv’,v'wv € X*. A code X
a sequencelp, A, ..., Ay, of automata such thad = 4;, hasliteral synchronization delay if any word of A° is a
Axy, is a subautomaton of the fre@\, p)-local automaton constant forX*. A code islocally parsable(or has finite
and eachA; is a merge ofA4;,;. By Lemma 8, the free synchronization delgyif there is an integek such that it has
(A, p)-local automaton has order= max(\, p). SinceAx;, literal synchronization delay.
is included in the freg ), p)-local automaton, we may build The stabilizer of a state in a local automaton with orslés
using repeatedly Proposition 12 a sequefigg,,..., 51,80 X*, whereX is a locally parsable code with synchronization
of complete local irreducible automata with ordesuch that delay s. Conversely, ifX is a locally parsable regular code
A; is contained inB; for i = A+ p,...,0. ThusB = By is with synchronization delay, one can build an irreducible
a complete local automaton with ordercontaining.A. Since (s, s)-local automaton such that™ is the stabilizer of some
A is irreducible, allA; and B; are irreducible. m state (see [2].)

Example 13:Let A = Ay be the deterministic automaton Since our result allows to complete this automaton in a
represented on the left of Figure 5. It (8,0)-local and has complete one of ordes, it gives a maximal regular locally
order 3. - parsable cod&” containing X which has the same synchro-

. nization delay asX.

For instance, the cod® = {aba, baba}, which has literal
synchronization delag can be completed into the regular code
Y = abU(at U (at Ub)bTa which has literal synchronization
delay 3. An automaton recognizing™ is given on the right
of Figure 6, with state 1 as initial and final state.

This gives an alternative proof of a result of Barg ac-
cording to which any locally parsable regular code is ineldid
in a maximal one [3] where the conservation of the delay was
not guaranteed.

The automaton4 cannot be completed in a local determinAc_ImowIedgementWe would !”‘F’ 0 thank_ Brian Ma'rcus whp
istic automaton (see [7]). We have represented on the r'rght%o'nted. OUt. to us the possibility of using Nasu's masking
Figure 5 a splitd; of A, obtained by an input split of stagein Iemm:_;l in this problem. We qlso thank the referees who helped
two statess and7. This automaton can easily be completed as to improve the presentation.
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