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Decompositions of displacements of thin structures
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Abstract. In this study we present first the main theorem of the unfolding method in linearized elasticity. Then we prove that
every displacement of a thin structure (curved rod or shell) is the sum of an elementary displacement and a warping. Thanks to the

previous theorem we obtain sharp estimates of the displacements of this decomposition.

Résumé. Dans cette étude on présente d’abord le théoréme fondamental de la méthode de I’éclatement en élasticité linéaire. On
montre ensuite que tout déplacement d’une structure mince (poutre courbe ou coque) se décompose en la somme d’un déplacement

élémentaire et d’un gauchissement. Grace au théoréme fondamental on obtient les estimations des déplacements de cette décomposition.
KEY WORDS: linear elasticity, beams, curved rods, plates, shells, junctions, unfolding method.

MSC: 74B05; 74K10; 74K20; 74K25; 74K30.

I. Introduction

Two mathematical methods have been developed to study thin structures. The first one is the formal
asymptotic method in which we determine the first term of the asymptotic expansion and then justify the
result by an error estimate (see books by J. Sanchez-Hubert and E. Sanchez-Palencia [22] (rods) and Ph.
Destuynder [6] (plates)). The second one is the more recent variational asymptotic method in which, for
the first time, linearized elasticity of rods, plates or shells has been studied without any geometrical or
mechanical a priori hypotheses. This method is presented in works by L. Trabucho and J. M. Viano [24]
(rods) and P.G. Ciarlet [4,5] (plates and shells). Our paper is dedicated to a new method in elasticity : the
unfolding method in linearized elasticity. The unfolding method offers new tools to study the asymptotic
behavior (see [10,11,14,15]) and the homogenization (see [12]) of structures formed by a large numbers of
rods, plates or shells. These tools consist essentially in new decompositions of the displacements of a thin
structure and in estimates of the elements of these decompositions. These decompositions make it quite
easy to obtain the Korn inequality in a thin domain as well as the asymptotic behavior of the strain tensor
of a sequence of displacements. The limits are expressed in terms of formal displacements of the reference
structure (see [10,11,12, 13, 14,15]).

Our paper is organised into three parts. Section II is dedicated to Theorem 1.3. This theorem is the
main result of the unfolding method in linearized elasticity (see [10,11,13]). It is a generalization of Lemma
3.1 in [10]. We choose a domain O in R" included in a ball of radius less than R and star-shaped with respect
to a ball of radius R;. Theorem 1.3 gives estimates of the distances for different norms between an element
belonging to W1P(O;R"), 1 < p < oo, and the space of rigid body displacements. The constants appearing
in these estimates depend on n, p and on the two parameters R and R; which caracterize the geometry
of the open set. To do so, we prove that a displacement u in W1P(O;R") is written u = v + w where v
is defined thanks to Newtonian potentials and where w is a harmonic displacement. A rigid displacement
r which approximates u is obtained with the mean value of w and the mean value of the skew-symmetric

part of Vw. The estimates of u — r are due to the Poincaré-Wirtinger inequality for functions belonging
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to Wlf)’f((’)) (Proposition 1.2). In fact in Theorem 1.3 we give an upper bound of the distance between the
gradient of u and the space of the skew-symmetric matrices with the help of the strain tensor norm of u.
This theorem can be compare with a result obtained by G. Friesecke, R. D. James and S. Miiller which
stands out in nonlinear elasticity. In [9] these authors have proved that the distance between the gradient of
a function ¢ € H'(O;R") and SO(n) is estimate by the L? norm of dist(V¢, SO(n)) and a constant which
depends only of the open set O.

The Korn inequality in an open bounded set star-shaped with respect to a ball is an immediate conse-
quence of Theorem 1.3. We also deduce from this theorem Korn’s inequality in an open bounded set with
lipschitzian boundary.

Several proofs (see [5,7,20]) of Korn’s inequality refer to a lemma of J.-L. Lions [7,20], yet this lemma
does not give the dependence of the constant in this inequality with respect to the open set. New proofs
of this inequality for displacements in H!(O;R"™) are given in [2,10,17]. In these articles we explicitly find
the dependence of the constant in Korn’s inequality with respect to the open set @. We also find in [19]
a proof of Korn’s inequality for displacements belonging to W1P(Q; R™) where € is an open bounded set
with lipschitzian boundary. But in this paper the authors do not give the dependence of the constant with
respect to the open set.

Section III is dedicated to the decompositions of the displacements of a curved rod. The curved rod
has a length of L and a thickness of order §. We define the class of elementary displacements of the curved
rod (Definition 2). These displacements are the generalization of the Bernoulli-Navier displacements (see
[10]). Then, to any displacement u of the curved rod we associate an elementary displacement U, and a
warping u, v = U, + @ (Definition 3). Theorem 2.1 gives sharp estimates with respect to § and the strain
energy of u for this kind of displacements. In order to study structures made of rods we give, Lemma 2.2,
an extension of u at each of its extremities and, Proposition 2.3, a second decomposition of u in the sum
of an elementary displacement and a residual one such that this new elementary displacement is equal to a
rigid body displacement in a neighborhood of the extremities of the curved rod (see also [18]). Of course all
results of this section are true for straight rods.

Section IV is dedicated to the decompositions of the displacements of a shell. The shell has a thickness
of 26. As in the previous section we define the class of elementary displacements of the shell (Definition
6). These displacements are the generalization of the Kirchhoff-Love displacements (see [11]). Then, to
any displacement u of a shell we associate an elementary displacement U, and a warping @, v = U, + @
(Definition 7). Theorem 3.1 gives sharp estimates with respect to § and the strain energy of u for this
kind of displacements. Our first decomposition of a displacement is the simplest and the most natural. In
this decomposition the normal component of the rotation is null. In order to obtain the Korn inequality
more easily and to study structures made of several plates or shells we introduce a new decomposition of
displacement u into the sum of an elementary displacement and a residual one. In this decomposition the
normal component of the rotation vector will not be null any longer (Definition 8) and the estimates of this
new decomposition (Theorem 3.3) are simpler than those of Theorem 3.1. To do so we must give, Lemma
3.2, an extension of ¢ in a neighborhood of thickness 2§ of the lateral boundary of the shell. Of course all

results of this section are true for plates.

The last section is dedicated to two geometrical lemmas and to the proof of Lemma 3.2.

As a rule, the Greek indices o and 3 take values in {1,2} and the Latin indices i, j, k, [ and ¢ take

values in {1,...,n}.

II. The fundamental theorem of the unfolding method in linerized elasticity
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1. Poincaré-Wirtinger’s inequality in an open bounded set star-shaped with respect to a ball

In this section O denotes an open bounded subset of R™ included in a ball of radius R and star-shaped
with respect to the ball B(O; Ry). The following lemma and proposition are the generalizations of the
Lemma 2.6 and Proposition 2.5 in [10].

For any 1 < p < oo and any bounded open set Q2 de R™ we denote
wir@) ={o e 17(Q) | o € (L))" }

where p(z) is the distance between z and the boundary of .

Lemma 1.1 . For any ¢ belonging to W,?(O), 1 < p < oo, we have

" R yntp—1
(11) 1oy <20 {5} {1615n oy + 10V 8l Es oy |
Proof . Let 6 be a mapping belonging to C>°(R™; [0, 1]) and such that

4
e(t):()ifogtg% O(t)=1if Ry <t |9’(t)\gR— vt e RT.
1

We recall that for any ¢ € W1P(0,a), a > 0, such that ¢(0) = 0, we have the Hardy’s inequality

/O [ (z)|Pdx < pP /0 (a — )P|Y' (z)|Pdx

Let ¢ be in C*°(0O). We consider the segment joining the origin O to an arbitrary point P belonging to the
boundary of @. We apply the Hardy inequality to the restriction 6(r)¢(x) on this segment. We obtain

[1P]l2 [1P]]2 a(06) P
(12) J Ay A A T T L
0 0 87'
where r = ||z||2 (euclidian norm of x). The open set O is star-shaped with respect to the ball B(O; Ry). So
we have
R
(1.3) |7’—|\P||2|=|I$—P|\2§R—1P(~T) and  [r—|[|Pll2 <R

From the inequalities (1.2) and (1.3) we deduce

[1P]]2 (2pR)? [1P]l2 (8pR)P Rq
1.4 Pdr < \Y Pd Pd
(1.4) [, le@rar< SR [ wwetrar s S5 [ ok
Rl n—1
We multiply the above inequality by {7} . Then, in the right hand side we replace this quantity by

r i
R 2

n

n—1
r™~1 and in the left hand side we replace it by ( ) . Finally we integrate on all rays (that is to say

on the unit sphere of R™) to obtain

R n+p—1
z)[Pda < 2n3p—1ppd — Vol ot P )
/O\B(O;Rl) |( >| {Rl} {HP ¢H[Lp((9)] H(b”Lp(B(o,Rl))}
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To the above inequality we add ||¢| |€F(B(O;R1)). We have proved (1.1) for any function ¢ belonging to C°°(0O).
The space C*(0O) is dense in W1P(0O) then we obtain (1.1) for any ¢ € WP(0).

Now we take ¢ in W, ?(O). Let O, be the range of O in the homothety of center O and ratio 1—¢, € €]0,1|.
The restriction of ¢ to O. belongs to W1?(0,), hence

R n+p—1
D n+3p p P
1911z0 0. < 2 pP{Rl} 0Vl + 19112 30r0-01m00 )

where p.(x) is the distance from z to the boundary of O.. We have p.(z) < p(z). Then (1.1) follows for any
NS WF}J’(O) by passing to limit as € — 0 and thanks to the Beppo-Levi’s Theorem. |

We denote Mq(¢) the mean value of ¢ in Q,
1
Ma(¢) = 1l / ¢ ¢ € L'(), || = measure(Q)
Q

Proposition 1.2 . (Poincaré-Wirtinger’s inequality.) For any function ¢ belonging to W)P(O), 1 < p < oo,

we have

R\=F—
(L5) 16 = Mo(@)llzso) < P2 /2 { 2=} 10Volliwr o

Proof . Let ¢ be in W,}’p(O). We apply the Poincaré-Wirtinger inequality to the restriction of ¢ to the
ball B(O; R1/2) (see [8] chapter 7)

16— Moo, ) oz < 2 7R [ V(o) Pd
B(O;R1/2)
The distance from a point in B(O; R;1/2) and the boundary of O is more than R;/2, hence

16 = Mp©0:r1/2) (Do (B(0:R, j2)) < 2" |p(2)Vé()["de < 27| |pV S[TLs o))
(B(OiF21/2)) 5O ) [» ()]

We apply Lemma 1.1 to function ¢ — Mpo;r, /2)(¢) and we use the above inequality. We obtain

o R ynt+p-1
16 = Mp o /2 (DI (0) < 2F +3”Pp{R—1} 1PVl

We integrate ¢ — Mp(o;r, /2)(¢) on the open set O. We deduce an estimate of Mo (¢) — Mpo;r, /2)(¢)-
Then, thanks to the above inequality we obtain the Poincaré-Wirtinger inequality for any function belonging
to Wpl’p (0). O

2. Distances between a displacement and the set of the rigid body displacements

Let €2 be an open set in R™. We denote (1 < p < 00)

|u

DQp = ||VUH[LP(Q)]"27 lule.0p = ||(VU)S||[LP(Q)]"2’

— p — p
Dy, ) = [IVullf, &2 = (VW)sl, 0o

u € WHP(Q; R™).

where (Vu)g is the symmetric part of the gradient of u or strain tensor. The elements of this matrix are

. 1 8uz 8uj
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We recall that a rigid body displacement 7 is a function from R"™ into itself such that there exist a € R™

and a linear mapping ¢ whose matrix is skew-symmetric,
r(z) = a+ ¢(x) x € R"™.

Theorem 1.3 . Let u be a displacement belonging to WHP(O;R"), 1 < p < co. There exists a rigid body

displacement r such that

nt+p—1 n+p—1
R } P R P

(1.6)  Ju—rlpoy< C{R—l O [[u = 7]l Lo omny < OR{R—l [ule,0,p-

The constants depend on n and p.

Proof . 1In every estimate of this proof the constants depend only on n and p.

We recall (see [8] chapter 9) that the Newtonian potential F' of function f belonging to LP(O), 1 < p < oo,
belongs to W2P(O) and verifies

" 9%F p
AF=f in LP(O), / < ClfIY,
Oi;l’axiaxj‘ ko

Let u be a displacement in W1P(O;R™). We denote v;;, (i,5) € {1,...,n}?, the Newtonian potential of
7ij(u). We define the displacement v by

" 0 0
v=(V1,...,0p) where v = E {2£ kl_a—mvll} ke{l,...,n}.
I=

This displacement belongs to W1P(QO;R™) and verifies [v|g 0, < Clv|p.o, < Clulgo,. Now we consider

the displacement w = u — v. It belongs to WHP(O;R™). From the estimate of |v|g 0, we deduce that
|w|e,0p < Clule o,p. We have

s 0 0 )
Avy, = Z{Za—ml’ykl(u) — a—xk’m(u)} = Auy in D'(0)
=1

We recall the following classical result about the harmonic functions :
Let Q be a bounded domain in R™ with lipschitzian boundary. Any harmonic function u belonging to LP(£2),

1 < p < o0, belongs to W/}’p(Q) and verifies the classical inequality

[[pVulliLr @) < 4nllul|Lr @)

The components of displacement w are harmonic functions in O and we have

Gka 0 0 o .
Dm0z, a_xl’}’kq(w) + a—xq’)’kz(w) - 8—kaq(w) and Avj(w) =0 in O.

We apply the above estimate to the harmonic functions ~;;(w). We obtain

(1.7) Z [l 5 r0 = C 2 10Vl < Cluleoy < Cluls.op.
g i,j=1



Let A be the skew-symmetric part of matrix Mp(o;g,)(Vw). The matrix Mpo;r,)(Vw) — A is the mean
value in the ball B(O; Ry) of the symmetric part of the matrix Vw. We get

(1.8) IMp(0:r,)(Vw) — Al < CR; * lwle,0, < CR; ” |ulg.o,p

The estimate of |v|p,0 p, the Poincaré-Wirtinger inequality (1.5) and inequalities (1.7) and (1.8) give us

[IVu = Allir0gnye < AIVOllLr©rnyn + [V = Mpo;r,) (VO)||[Lr(0rn)n

R n—1+1

(1.9) 1 =
+ M) (V) — A0 < C{ -} 7 ko,

Now, let r be the rigid body displacement defined by r(x) = Mp(o;r,)(u) +Ax. Thanks to (1.9) and a last
use of the Poincaré-Wirtinger inequality applied to the restriction of function u — r to the ball B(O; Ry) we
obtain an upperbound of ||u — r||Lr(0.rn)- 0

Corollary 1 . (Korn’s inequality in a bounded domain star-shaped with respect to a ball.) Let u be a
displacement in WP(O;R™), 1 < p < co. we have

R 2n+42p—1 1
ulpo, <Ol 5} T { gl wommn + lulsos)

The constant depends on n and p.
Proof. Let u be in W1P(O;R"). Theorem 1.3 gives a rigid body displacement r verifying estimates (1.6).
We have

n+p—1

[I7llze (B(Os Ry )R < |[WllLe(B(O:R))ER) + [ =7]|Lr(B(OsR )R < |[UllLr(B(O;RY) R +CR{R—1 " Juleop

Besides we get

C B
ulp.op <lu=rlpo,+lino, md  Iripoy < z{p} Il mom e
From the above inequalities and (1.6) we deduce the estimate of |u|p,0 . O

Corollary 2 . (Korn’s inequality.) Let Q0 be a bounded domain in R™ with lipschitzian boundary. For any
displacement u in WHP(Q; R™), 1 < p < oo, we have

lulp,0p < C{llullrrr) + |ule.ap}

The constant depends on n, p and €.
Proof . Any bounded domain in R® with lipschitzian boundary is the union of a finite sequence of open
sets star-shaped with respect to a ball. The estimate of |u|p g, is a consequence of the previous corollary

of Theorem 1.3. O

ITI. Decompositions of the displacements of a curved rod

1. Notation

Let ¢ be a curve in the euclidian space R? parametrized by its arc length. The current point of the

curve is denoted M (s3) where s3 is the arc length.



We suppose that the mapping s3 — M (s3) belongs to C2(0, L; R3) and that it is injective. We have

M

— =t tlo=1
o=t Iell2 = 1,

where || - ||2 is the euclidian norm in R3.
Let n; be a function belonging to C'(0, L; R?) such that

Vss € [0, L], Iny(s3)]l2a =1 and t(s3) -ni(s3) =0.

We put
n, =t An;j.
In the sequel, w denotes a bounded domain in R? with lipschitzian boundary (while obviously, @ denotes
the closure of w). We choose the origin O of coordinates at the center of gravity of w and we choose as

coordinates axes (O;e;) and (O;eq) the principal axes of inertia of w. The cross-section ws of the rod is

obtained by transforming w with a dilatation of ratio § > 0.

Introduce now the mapping ® : R? x [0, L] — R? defined by
o (51, Sa, 83) [ M(Sg) + 311'11(33) + 52n2(53)

There exists dp in |0, L/3] depending only on ¢, such that the restriction of ® to the compact set @s, x [0, L]

is a C'— diffeomorphism of that set onto its range. We can also choose &y such that

3
Vs € Qs,, §|\|V‘I’(8)|\|2§§

N | =

where |||A]]|2 is the spectral norm of the matrix A.

Definition 1 . The curved rod Ps is defined as follows:
Ps = ®(Qs), for §€]0,5), Qs = ws x]0, L.

The cross-section of the curved rod is isometric to ws. The point M(ss3) is the center of gravity and the

axes of direction nj(s3) and ny(s3) are the principal axes of inertia of the cross-section of the curved rod.

Notation (i). Reference domains and running points. We denote x the running point of Ps. The running
point of the cylinder {25 is s.

(ii). Displacements. For any displacement u € L' (Ps;R?), we write u instead of u o .

2. First decomposition of displacements of a curved rod.

Definition 2 . We call elementary displacement of a rod, any element v of the space L*(Qs; R3) that is

written in the form
v(s) = V(s3) + A(s3) A (51n1(53) + 82n2(83)), for a.e. s €y,

where V and A are functions in L*(0, L; R?).



The first component V of v is the displacement of the center line. The second component A, gives us
an information about the relative displacement of the cross-section <I>(w5 X {83}) of the rod, that is to say,

rotations whose axis are directed along the vector A(s3).

To any displacement u of the rod we associate an elementary displacement defined as follows :
Definition 3 . The elementary displacement U,, associated to u € L'(Ps;R3), is given by

(2.1) Ue(s1,82,.) =U+RA (51n1 + $2r12)7 (s1,82) € ws,
where
1
U= 52‘w| u(81,527 ) d81d82,
ws
(2.2) R t=—"71-—7— [(slnl + 82112) A u(s, s2, )] -t dsidsa,
(I + I3)0*
1
R -n, = 1—64/ [(slnl + 821’12) Au(si, sa, )} N, ds1dsa, I, = / s2dsydss.
3—a ws w
We write
(23) u = Ue +u

This displacement u is the warping.

Remark. The elementary displacement U, associated to the displacement u satisfies: for any elementary

displacement V:

/ {u — Ue} V=0 for a. e. s3 €]0, L.
ws X{s3}

The above equality can also serve as the definition of the elementary displacement Uk. O

The next theorem plays a fundamental role in the study of curved rods with the unfolding method. It
provides sharp estimates of the components of the elementary displacement U, and of the warping @ in terms

of § and of the strain energy of u.

Theorem 2.1 . Let u € WHP(Ps;R3), 1 < p < oo, and u = U, + U the decomposition of u given by
(2.1)—(2.8). There exists 61 €0, 6] which depends only on w and on the middle line of the rod such that for
any 6 < 81 the following estimates hold :

[@lp.Ps.p < C fule.ps [Tl o (25583 < C 6lule,ps.ps

(2.4) IR ey o
B B I v
ds3 l1Lr(0,L;R3) dss Lr(0,L;R3) — 52/ |u|57735713

The constants are independent of §.
2L L L
Proof . Let N be an integer belonging to [57 g}, and set oy = kﬁ’ ke {0,...,N}.

L 3
We have § < — < —§. The reference cross-section has a diameter less than 2R. We choose R such that

1 < R. Then the domain Q5 = wsx|ag, ap+1[ has a diameter less than 3RJ. The mapping s3 — (t,n1,ns)
belongs to C'([0, L; (R*)?). Hence there exists Cy > 0 which does not depend on § such that

V(s,3) € Qs X Qs [|[V®(s) — VB(3)]||2 < Cod

8



In the sequel we will work with portions of the rod Ps denoted Ps s
Ps i :¢(w5x]ak,ak+1[) kJG{O,...,N—l}.

e First Case . We suppose that the reference cross-section is star-shaped with respect to a disc of radius
Ry, 0 < Ry <1/2. The domain Qg y, is star-shaped with respect to a ball of radius R;1. We take ¢ such that

6§inf{2.3cho(%}%))3,60}.
So we have

Cos < (g55) ng ARG (T2() 13}

Thanks to the corollary of Lemmas 4.1 and 4.2 (see Section V) the domain Pjs has a diameter less than
9RJ and it is star-shaped with respect to a ball of radius R;10/8.
From Theorem 1.3 there exist rigid body displacements 7 such that

Dp(u—1k,Ps i) < CEN(u, Ps.i)s llu— rk||’£p(P5Yk;R3) < CoPEy(u, Ps),

where the constants do not depend on k£ and §.

e Second Case . The cross-section is a bounded domain in R? with lipschitzian boundary. There exists

a finite sequence of open sets w, ... w) such that
!
w= U w®, ws = U wg),
1<I<K 1<I<K

and such that every w® is star-shaped with respect to a disc of radius Ry, 0 < Ry < 1/2. Moreover, the
open set w is connected, then there exists Ry €]0, R1] such that if w N w®) # () then this intersection
contains a disc of radius Rs.

The domain lei = w((;l) x]ag, ag41] is star-shaped with respect to a ball of radius R16. As in the first
case, there exist rigid body displacements r,gl) such that

l l l l l l l
Dylu =1 P3) < O PR, lu=rll, oy o) < CFE@ P Pl = 2(45).

If w™ Nw) £ @ the portion Pé,rk) N Péjc) contains a ball of radius Rd/8. This allows us to compare the rigid

() (s)
k

body displacements 7, * and 7,”’. Eventually we define r, as the mean value of r,(cl). We obtain

(25) Dp(u - Tkapé,k) < Cgp(uapé,k)a ”u - Tk”ip(P&k;RB) < C(;pgp(ua P&,k)a

The constants do not depend on k and d. They depend only on w and on the middle line of the rod.

Now we go on as in Theorem 3.3 in [10]. Recall that the displacements rj are of the form
ri(z) ZAk—l—Bk/\(.%‘—M(Ozk)), x € Psr, Ak, Bi € R3.

Taking the mean value over the cross-sections of the curved rod, and using definition (2.2) of & and R, we

deduce the inequalities

C
+{|R() = Bal[7, < = Ep(u, Psg).

ar,ar+13R3) = 52

(26) = [U() ~ Ak~ B A (M() — M(on))

||I£P(ak,ak+1;]l§3)

9



Consequently [[u — Ue| rr(asmrs) < Cdlule ps,p, where C' depends only on the center line of the rod

Note now that both functions ¢ and R belong to W1P(0, L;R3). We compute the derivatives of the

displacement u to get
dl’lg}

ou ou dn
=Vu [+1d3+2d33

— =V,un —
3sa “ » 883

Taking the restrictions of these derivatives to 255 = wsX]ak, agy1[, from (2.5) we obtain

< C&(u,Psi)-

dl’lgH

P dn
2 ponme 2
H 054 BT L (Q5,55R3) k [ te dss St d33 LP (25, 5R3)
Then, from (2.6) and by eliminating By we get
ou dny dno
LN TR LU, |
Hasa " LP (Q25;R3) 0s3 [ s, dss -+ 2d33] LP(Qs;R3)

dn
+ S9 is 2} over the cross-section of the rod we obtain
S3

0
By taking the mean value of L RA [ + 51—
853 d

< C ]
< — |ulg p. ».
Lp(0,L;R3) — §2/P Ps.p

I - %

dR
We now estimate the LP norm of T To begin with, let us introduce the function
53

Vi(ss) = 514 / <31n1(33) + SQHQ(Sg)) Au(s) dsidss.

We derive V' with respect to sg

dVv 1 ou dny dns
Pl A — —_— —) A dsidss.
ng 54 / |:(811’11 * 82n2) ({983 (S) + (81 ng s d83 ) ’LL(S):| 51452

ou dn dnsy . .
We replace Don by R A [t + sld— + Sog—— Is ] and u by U.. We obtain (summation on «)

S3 S3 83
dng, dn,,

H_ + I R na) d 3 + Ia (R N d53 )na‘ LP(O,L;R?’) — 51+2/p |U|S,735,p.

The derivatives of the functions t, n; and no are

d
o —ait + bny —= = —qaot — bny

dt n
— =ain; + asn
5 1n 219 53

where a, and b are continuous functions defined on [0, L]. Hence (no summation on «)

C
H— t—a1l1(R-ny) —axlr(R- nz)Hm(o L < SiT2/p [ule ps.p

< Sixasp [UlePsyp:

d
Y e~ aala(R )+ b(I — I)(R -my_0)

L?(0,L)

10



1o

3—a

Using the definition of R and V, one can write (summation on «) (I; + L) R =V + (V -n4)n, and so

(summation on «)

dR dV I, dVv dn,, dn,
( ! + 2)d83 d83 + Ig_a (d83 n )n +( d83 )n +( n )d83
We deduce that (no summation on «)
dR dv a1l azls
I + 1 t=—t——(V- -
(L + Iz) 5~ 5 o 5 (V-mny) T (V- ny)
dR dv aaly b(I; — I)
I3 g— DNy = — Ny — .t ‘N
oy BT gy R T VYT T (Vo)
<
Hence (5H 53 ‘ LoLEn = 52 ~37p U . Now, observe that
0 ou
a - € = 5 - /\ sy
P (u—"Ue) = 9. R AN
1o} ou du dnl dIlQ dR
—U,) =————-—RA —_— ——A

683 (’LL e) 853 d83 [81 d S3 + 52 d83j| d83 (51111 + 52112),

ou dn n; dn2 aul dR

=— —RAJt —] = (= -RAt)—=—A :
(983 [ e ds S3 +e2 d83 ] (d83 ) d83 <811’11 + 52112)

From these expressions and taking into account the above inequalities, we finally obtain the estimate of

gradient . |

Remarks. i) We have

\Uele ps.p < |Ue +leps p + [Ule,ps.p < Clule,ps p

By an easy computation we can see that this estimate of |Ue|¢ p, p is equivalent to

C
< 527 [ule,ps,p-

Hd33 L?(0,L;R3) Hd33 ‘LP(O,L;]R3)

11) If the rod is clamped at one of these extremities, ®(ws x {0}) for example, we have R(0) = U(0) = 0. O

Corollary of Theorem 2.1 . (Korn’s inequality). We suppose that the rod is clamped at one of these

extremities, then we have

> Q

[ulp,ps.p + [|ullLo(psire) < < luleps.p

The constant does not depend on 6.

Proof . This is an immediate consequence of (2.4). O

3. Second decomposition of displacements of a curved rod.

In this paragraph we suppose that the reference cross-section w is of diameter 2R and that it is star-
shaped with respect to a disc centered in the origin and of radius Ry, R; < 1/2 and R > 1.
Now we suppose that the mapping ® introduced in the previous subsection is defined on @s, x [, L+1],

1 >0, and it is a C'— diffeomorphism of that set onto its range and verifies

3
Vs € ws, x [, L +1], §\||V<I>(s)|||2§§

1
2

11



Lemma 2.2 . Let p be a strictly positive real and u a displacement belonging to WP (Ps;R3), 1 < p < oo.

There exists an extension P(u) of u to the curved rod
Py = B(wsx] — pd, L+ pd)  (5§<1/p)

such that
P(u) € WHP(Ps; R?) P(u)h,é =u |P(u)|5773(;7p < Clule ps,p-
The constant does not depend on 6.

Proof . The domain wsXx]| — pd, (2+ p)d[ has a diameter less than 2(R+ 1+ p)d and it is star-shaped with
respect to a ball of radius R;§. We put

Po,ps = P(wsx]0,(2 + p)d]) Pops = B(wsx] = pé, 0]).
From Theorem 1.3, there exists a rigid body displacement r such that
Dp(u - PO,ptS) < Cgp(ua PO,pé)a ||u - T”I[),p(poyps;RS) < C5pgp(u7 P01p6)7

where the constants do not depend on 6. Now we consider the restriction of (u — r) o ® to the domain
wsX]0, (2 + p)d[. By a reflexion with respect to the plane s3 = 0 we obtain an extension of (u — ) o ® on
the open set wsx| — pd, 0[. Hence an extension v of u — 7 on the portion 77(/)) o5 Of the curved rod. We define
P(u) by P(u) = v+ r. We do the same with the other extremity of the curved rod. O

From now on any displacement belonging to WP (Ps; R3) is extended to a displacement belonging to
Wl’p(Pé;R?’). We denote again u this extension.

We denote By the ball centered at O and of radius R;/16. We put

Bl = [ da M1:/ 2| 2dz
Bl Bl

Notice that for any s3 € [0, L] the ball centered in M (s3) and of radius R, /16 is included in Pj.
To any displacement u of the curved rod we associate a new elementary displacement defined as follows :

Definition 4 . The elementary displacement U’ ., associated to u € L' P R3), is given by
5

’

(2.7) U.(s) =U (s3) + R (s3) A (somi(s3) + sima(s3)), for a. e. s € wsx] — pd, L + pd,
where
’ 1
U (s3) = = u(M(s3) + dx) du,
|B1l| /5,
S3 € [O,L],

R (s3) = ﬁ/B x Au(M(ss) + 6z) da,

U (s3) =U (0) + R (0) A (M(s3) = M(0)) 5 €] — pd,0),

U (s3) =U (L) + R (L) A (M(s3) — M(L))  s3 € [L, L+ pd],

R (s3) =R (0) s3] —pd,0], R (s3) =R (L)  s3€[L,L+ pdl.

(2.8)

12



We write
(2.9) u=U,+7u

The elementary displacement U; is a rigid body displacement in the additional parts of the curved rod.

PI‘OpOSitiOIl 2.3 . Letuec Wh?(Ps;R?), 1 < p < 00, and u = Ué+ﬂ, the decomposition of the extension
of u given by (2.7)-(2.9). There exists 6, €]0,80] which depends only on w, p and on the middle line of the
rod such that for any 0 < 5/1 the following estimates hold :

@ D,P}p < C |ule,p, p; @ HLp(p;;Rs) < C dlule ps.p,

(2.10) R’ al C
i 1% a2 g,
dss Il Lr(0,L;R?) + dss Lr(0,L;R3) — §2/P [ule Ps.p

The constants are independent of §.

Proof . Let N and (ag)o<k<n be the integer and the sequence introduced in Theorem 2.1. We put
a_1=—pd any1 = L+ pd

We denote P:;JC the rod portions

Pso=®(wsx]—p3,20]) Py = ®(wsx](k—1)8, (k+2)0) 1<k<N-1,  Psy=d(wsx|L—0, L+pd])

From Theorem 1.3 there exist rigid body displacements r;, 0 < k < N, such that

Dp(u — Tk,P:s,k) < Cgp(u, P;,k)7

/ =A BpN(x—M , 6/7A,BER3,
) SO0 (u, Ps o), (@) = A+ Br A (@ (k) © € Psp, Ak, B

||U — Tk HZ;JP(’P:S,IC;R:S

Now we go on as in proof of Theorem 2.1. Using definition (2.8) of " and R we obtain (s3 € [0, L])

' (59) = A = Bie A (M(s) = Ml@)) " Sy | 1w =r) (M(s9) + 02)|7 de
1 p
Sliﬂi§ﬂ'/i;k'(“"7*”($’ da
IR (s3) — Bi|" g% /B (u — 7)) (M (s3) + 0z)|P d
<gw [, lw—r@Pd

5,k

The constant depends only on p. We also have for s3 € [—pd,0] and for s3 € [L,L + pd] (k=0 or N)

o s = Ax = B (M(s2) = M(an)) |+ IR (s2) = Bl < 55 [ lfw= ()P
P

5.k
We integrate on [ag, agt1], —1 < k < N. We obtain

C

1 ’ / /
6—py|u — A — By A (M — M(ay)) VIR = Bill s o sr o) < 52 &1 Ps).

p
’|L1’(ak,ak+1;R3
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Consequently |ju — U;||Lp(7,é g3y < Clulg,ps p, where C' depends on the middle line of the rod and on p.

Both functions & and R’ belong to W1P(—pd, L + pd; R3). We compute the derivatives of U and R'.
First notice that
dR, !
—zﬂ—R At=0 on ] — p0,0[U]L, L + pd|.
d83 d83

We obtain (s3 € [0, L])

’

au’ 1 dR 3
s (s3) B BIV u(M(s3) + 6z)t dz a5, (s3) ST /Blmv, u(M(s3) + )t dx
Hence
du’ r_C
(o) = B A t(sa)| \5— ) <55 [, 1Velw =@ dr
8,k
By integrating over [ag, ag+1] we get
p C’ /
g 7’P )
H d83 Lp((xk,ak+1;R3) H d33 L (g aps15R3) 52 p(u 5,1@)

and then we obtain

< ro
H dss ‘ L?(0,L;R3) H dss IlLv(0,L;R3) — 52/p fu |5,775,p

Now we compute the derivatives of @ (s € ’P(;Vk,)

’

g_T“a :% ~R Ang = [Veaun, — By Ang] — [R = Bi] An,
[T 2 ) (e 2222>]—[%'—Bw]
—% A (s1n1 + somg) — (R — By) A (512—2 +32§—$)

Eventually |H/\D Py S m
Py

Now we modify the elementary displacement U, e/ in order to obtain a new elementary displacement which

is rigid in the neighborhood of the extremities of the curved rod.

Let m be an even function belonging to C*°(R; [0, 1]), which satisfies
mt)=0 Vte[0,p, m)=1 Vte[p+1,400, |m(t)<2 VteR.

The new elementary displacement U, é' is defined by

U (s3) =m(Z2)m (%~ Lyt (ss) + (1-m(Z)) ')+ R (0) A (M(s5) = M(0))]

5
(2.11) + (1 —m(= 5 L)) U/ (L) + R (L) A (M(s3) — M(L))]
R o) =m(m( R )+ (1= m ()R 0+ (- m( )R

1" 2

U, (s) =U" (s3) + R (s3) A (s1m1(s3) + 82112( 3)) s €wsx]—pd, L+ pd|

14



We have
U, =U, in  ®(wsx](p+1)8,L— (p+1)3])

and U;' is a rigid body displacement in the portions <I>(w5><] — po, pé[) and <I>(w5><]L —po, L + pé[).
We write

(2.12) u=U, +7 .

PI‘OpOSitiOIl 24 . Letue WWP(Ps;R3), 1 < p < oo, and u = U;l +u the decomposition of the
extension of u given by (2.11)-(2.12). There exists 6, €]0,80] wich depends only on w, p and on the middle
line of the rod such that for any § < 51/ the following estimates hold :

[u |'D’7D(;’p <Clu E,Ps,p> I HLp(p(’S;RS) <C 5|u|5’7’5,pa

(213) dR” du” . C
5H ‘ +H—f7z /\t‘ <= ulep .
ds3 lLP(0,L;R3) dss Lr(0,L:R3) — 62/P [ule.Psp

The constants are independent of §.

Proof . We easily verify that

v drR"  dR C
R R o +o| B O
] e (0.L®?) + dss dss llLe(0,L;r3) — 62/P |u|g77>57p
Lon a’ au c
1" = U || 1o o.n H— _ & < .
(5” HL (0.L5R?) dss dssz lLe(o,Lir3) = §2/P |U|g77>d7p
The constants depend on p. Hence we deduce
|Ue - Ue‘D,P{;,p S C|U|8,’P'a,p ||Ue - Ue”LP(P;;R”) S 06|u|877)57p'

Then from (2.10) we obtain the estimates (2.13). O
IV. Decompositions of the displacements of a shell

1. Notation

Let w be a bounded domain in R? with lipschitzian boundary. We give us an injective mapping ¢ from

@ into R3 of class C? and we denote S the surface ¢(@). We suppose that the two vectors 951 (8) and g—i(?)
are linearly independent at each point § = (s1,s2) € @.
We denote
t1:@7 228(1)’ - t1 A to .
o o, e el

Vectors t1 and t, are tangential vectors to the surface .S and vector n is a unit normal vector to this surface.

Now we consider the mapping ® : @ x R — R3
s = (51,82, 83) — P(s1, 52) + s3n(s1, $2)

There exists o > 0 depending only on S, such that the restriction of ® to the compact set Q5, =
W X [=d0, 6] is a C1— diffeomorphism of that set onto its range. We also choose dp such that there exist

constants ¢ > 0 and ¢ > ¢y verifying

Vs € Q,, co <[[IVe(s)[l2 < e

15



These constants depend only on ¢.

Definition 5 . The shell Qs is defined as follows :
Q5 = ¢(92s) for 6 €]0,d0], Qs =wx] —4,4].

The mid-surface of the shell is S. The lateral boundary of the shell is I's = ®(dw x| — 4, d]).

Notation (i). Reference domains and running points. We denote z the running point of Qs. The running
point of the domain €y is s.

(ii). Displacements. For any displacement u € L'(Qs;R?), we write u instead of u o ®.
2. First decomposition of displacements of a shell.

Definition 6 . We call elementary displacement of a shell, any element v of LY (Q5;R3) that is written
in the form
U(S) = V(/S\) + S3A(§) A Il(/S\), s = (Sla S92, 53) S Q5; §: (517 52) € w,

where V and A are functions in L' (w;R?).

Notice that we can choose the function A such that
A(8)-n(s) =0 for a. e. §€w.

The first component V of v is the displacement of the middle surface. The second component A, gives us an
information about the relative displacement of the fibers ® ({5} x]—46,d[) of the shell, that is to say, rotations
whose axis are directed along the vector A(S).

To any displacement v of the shell we associate an elementary displacement defined as follows:

Definition 7 . The elementary displacement U,, associated to u € L'(Qs;R?), is given by

(3.1) Ue(.,83) =U+ s3R An, s3 €] — 0,9,
where
I 3 /°
(3.2) U= /_5 u(., 55) dss, R= o [633n(.) Aul., s3)dss.
We write
(3.3) u=U+7u

This displacement u is the warping.

Remark. The elementary displacement U, associated to the displacement u satisfies: for any elementary

displacement V:
/ {u—Ue}-V:O for a. e. 5 € w.
{8}x]-0,01}

The above equality can also serve as the definition of the elementary displacement U,. O

The next theorem plays a fundamental role in the studies of plates and shells with the unfolding method.

It provides sharp estimates of displacements U, and @ in terms of § and of the strain energy of u.

16



Theorem 3.1. Let u e WhP(QsR3), 1 < p < oo, and U, be the elementary displacement defined by
(3.1)-(3.3). There exists 6; €]0, 09| which depends only on the middle surface of the shell such that for any
6 < 41 the following estimates hold :

(3.4) |Uele, 0s5.p + [UlD,05.p < Clule,0s,p; [ull e (0sre) < Cdlule,0; p-

The constants are independent of §.
Proof .
Step 1 . We prove that there exist R > 1 depending only on dw and a family of open sets (w(;’k)k N

w=J @

keNs

verifying

and such that every open set of this family has a diameter less than R¢é and is star-shaped with respect to
a disc of radius §/2 and moreover such that any point of w belongs to a finite number (independent of ) of

sets Ws k-

The boundary of w is lipschitzian. Hence there exist constants C' < B < A and M strictly positive,
a finite number K of local coordinate systems (s1,, S2r) in (O,;e1,,e2,) and mappings f. : [0,A] — R,
Lipschitz continuous with ratio M, 1 < r < K, such that

K
Ow = U {(817’7 327“) | Sor = fr(slr)7 S1r G]B/Q,A — _B/2[}7
r=1 B
{5 e w|dist(s,0w) < C} C U{(Slr,SQT) | fr(s1,) — B < 89, < frl1,), S1r E]O,A[} Cuw,
p r=1
we\w € (J{(s1rr520) | fr(510) < 20 < folsir) + B, s1r €0, A} C R\,
r=1

Through the use of easy geometrical arguments we show that if 6 < inf{C/2, B/4(M + 1)}, we have

K
{§€ w | dist(s,0w) < 2(5} C U {(81T7527~) | fr(s1r) —20(1 4+ M) < s9r < fr(814), S1r E]O,A[}.

r=1

2 A
We suppose also that § < inf{A/6,B/(6M + 2)}. Let N be an integer belonging to [5%7 %}, and set
A A
ap = kﬁ’ k€ {0,...,2N}. We have N greater than 3 and § < N < gé. For any k € {0,...,N — 1} the

domains

3((;2 = {(s1r,520) | fr(s1) —26(BM + 1) < s2r < fr(s1r), S1r €|k, Qi)
are star-shaped with respect to the disc centered at (aop41, fr(or+1) — (3M +1)4) and of radius §/2 and
they have a diameter less than (8M + 5)6 = R0.
Now we complete the family of sets B(({,z, re{l,...,K}and k € {0,...,N — 1}, by taking all domains
k6, (k 4+ 1)8[x]18, (1 + 1)4], (k1) € Z*

included in w. We denote (“‘)57’9)1@ N the family of all these sets.

17



Step 2 .

The open set Qs = ws kx| — 0,9] has a diameter less than 2R§ and is star-shaped with respect to a
ball centered on w and of radius §/2 (here R; = 1/2). The mapping s — (t1, t2,n) belongs to C!(w; (R?)3).
Hence, there exists Cy > 0 which does not depend on § such that

Vs € Qs 1, Vs € Qs ks [[|[V®(s) — VO(3)|||]2 < Cod
In the sequel we will work with the portions Qs = ®(Qs.), k € N, of the shell.

Now we take ¢ such that
3

C'((:)cl (%)3’ 50}

Cod < (%)iggé {IIveElRIve) I3}

Thanks to corollary of Lemmas 4.1 and 4.2 (see Annexes) the domain Qs has a diameter less than 6Rd

5<1nf{

Then we have

and is star-shaped with respect to a ball of radius §/16.
From Theorem 1.3 there exist rigid body displacements 7 such that

(3.5) Dp(u — 7k, Qo) < CEp(u, Qsk)s flu — rkHip(Qé‘k;RS) < C‘Spgp(u, Q&k)a

where the constants do not depend on k£ and J.

Now we go on as in Theorem 2.1. Recall that the displacements rj are of the form
ri(z) = Ag + B A (a: — ¢(§k)), x € Qs, Ak, Br € R

where i is choosen in ws ;. Taking the mean value on the fibers of the shell, and using definition (3.2) of U

and R, we deduce the inequalities

HU — A, — By A (qﬁ — ¢(§k) cor~ 15 (u Q§ k‘)

(3 6) ||Lp(w5k]R3)
. C
HR/\H_BI@/\HHZI),P(QJ&;C;R?’) < F gp(u, Qé,k)7

where the constants are independent of k and 6. Consequently |[u — Ue| pr(qsrs) < Cdlule g;,p, Where C
depends only on the middle surface of the shell and on p.
Note now that both functions & and R belong to WP (w;R3). We compute the derivatives of the

displacement u to get

o
881

on ou

_) Ou on Ju
681 ’ 882

:ku (t1+83 6—82), 8_83

=V,u (t2 + s3 =V un.

Taking the restrictions of these derivatives to {25, from (3.5) we have the estimates

On | ||P
ot S37—

65 ) S Cgp(ua Qé,k)-

LP(Qs,1;R3)

2yl
LP(Qs ;R3) H k

0 0
By taking the mean value of g Bi A ( a+t 53—n

o5, 85a) on the fibers we get

o1 | ¢

Ep(u, Qs 1)

LP(ws,i;R3) -
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We now estimate the LP norm of the derivatives of R A n with respect to s,

R AN :%/Z S3 [u(.,53) — (u(.,33) . n)n} dss

P § ou ou on on
o (R/\ ) 23‘?/76 53 [£(783> _ (g(,sg)) . n)n - (u(.,s3) . a—Sa)n — (u(.,33) . n)a—sa} dss

[} [}

Then we replace aa_u by Bi A (ta + 5388—11) and u by Ag + Bi A (¢ — ¢(Sk) + s3n). We obtain
Sa Sa
0 on
3.8 H— RAn) — B A 2 < e (u, Q).
(8:8) 0sa ( n) - By asa Lp (w5 ii®) — OPFL p(t Lok

P
From the above inequalities and from (3.6) we get H@
651‘ LP(ws,;R3)

variables |T|p,0;.p < C |ulg,0,,p- Eventually observe that

< C &p(u,Qs,), hence with a change of

p S C|U|S,Q&p

\Uele,gs.p < |Ue + e 0s.p + [le,0s.p <

where the constant does not depend on . |

Remark. Thanks to (3.7) and (3.6) it follows by eliminating By,

c
(3.9) < 517 [ule.sp-

ol o) H@ n+(RAD)-ta

H 050 L (w)

Now from (3.7) and (3.8) we obtain by eliminating By,

ou On

Nl
(3 0) 85[3 asa

(R/\n) tg + —

9 C
Ha_sa Lr(w) — Ot/ lule.0s.p-

The constants do not depend on . The inequality |Uele g,p <

estimates (3.9) and (3.10) (see [6] for the expressions of the covariant components of the strain tensor). O

3. Second decomposition of displacements of a shell.

For any n > 0 we denote w,, the open set

wy = {(s1,82) € R* | dist((s1,52),w) <7}

In this section we assume that there exists I > 0 and an extension of the mapping ¢ (still denoted ¢) belonging
to C?(w;; R3) and still injective. The function ® (introduced below) is now defined on @; x [—dg, §o] and we

assume that it is a C'— diffeomorphism of that set onto its range and again verifies
Vs € Wy X [760,50], co < |||V(I)(S)|||2 <c.

Lemma 3.2 . Let u be a displacement in WHP(Qs;R3), 1 < p < oo. There exists an extension P(u) of u to
the shell

Qs = ®(wasx] — 6, 0])
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such that
P(u) € W'?(QR?)  Plu)y, =u P()ls.qr < Clule.o, -

The constant does not depend of § and of u.
Proof . See Section V. O

From now on any displacement belonging to W1?(Qs;R?) is extended to a displacement belonging to
Wl’p(Q;; R3). Again we denote u this extension.

Let B be the ball centered at the origin and of radius 1/16. We put

Bl= [ M = [ Jjali3ae
B B

To any displacement u of the shell we associate a new elementary displacement defined as follows :

Definition 8 . The elementary displacement Ue,, associated to u € Ll(Q:;;R3), s given by

’

(3.11) U.(,s3) =U +ssR An,  s3€ -6 06

where

(3.12) (3) / 5) + ox) R (3) = i/ x Au(¢(5) + 6z) d SEw.
|B| © 2Mé Jp

We write

(3.13) u=U,4+7

Theorem 3.3 . Letu e WP(QsR?), 1 < p < oo, and u = U; +74 be the decomposition of u given by
(3.11)~(3.13). There exists 6; €]0,80] which depends only on the middle surface of the shell such that for
any 6 < 511 the following estimates hold :

< Clule,g;,p; 2 [[Lr(Qsirs) < C6lule,g;.p;
OR
o
084

|,

(3.14)
|5 - & e,

C
D50 =51 |U\£,Q5,p~

LP (w;R3) Lr(w;R3)

The constants are independent of §.
Proof . Let A be the set of every (k,1) € Z? such that the open set

wep =)(k —1/3)8, (k+4/3)8[x](1 — 1/3)6, (I + 4/3)4]
is included in wos. We put
ws,kl :]k:é, (kj + 1)(5[)(]15, (l + 1)(5[

We have

w C U Ws Kl

(k,1)ENs
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The open set Q:Lkl = wéyklx] — 0,0[ has a diameter less than 40 and it is star-shaped with respect
to the ball centered at the point ((k + 1/2)6, (I + 1/2)8) belonging to w and of radius §/2. The mapping
5+ (t1,t,n) belongs to C'(@Tas,; (R?)3). There exists Cy > 0 which does not depend on § such that

V(s,3) € Qg X Vs |IV®(s) — VB(3)[[]2 < Cod

In the sequel we will work with the portions Ql&kl = @(Q;,kl), (k,1) € Ns, of the shell.
Now we take  such that

3
b= cf;ocg(%)g

then we have

cho< (2)" it {IveRIvac) I3)

Thanks to corollary of Lemmas 4.1 and 4.2 (see Section V) the domain Q;) x has a diameter less than 126
and it is star-shaped with respect to a ball of radius §/16.
From Theorem 1.3 there exist rigid body displacements rj; such that

(3.15) Dp(u— 11, Qg ) < C&(u, Qo )y Nlu—rial? gy < COPEp(u, Qs 1),

LP(Q

where the constants do not depend on k, [ and J.

Now we go on as in Theorem 3.1. Recall that the displacements ry; are of the form
rri(x) = Ap + Bu A (z — ¢(5w1)), T € Q;s,kl, A, Br € R?,

where §j; = (ké,10). Using definition (3.11) of &/ and R’ we obtain

|L{'(§)—Akl—Bkl/\(¢() Skl |B|/| Tkl )+(5ZE)| dx < 53|B|/5M —Tkl)(x)|l”d$

|R'(§)—Bkz\p§5/3|(u—ml)( (8) + 6z) [P d < 5133/Q |(u = 1) ()|P dx

S,k

The constant depends only on p. We integrate on ws ;. Thanks to (3.15) we obtain

Hul — Ap — B A <¢ - ¢(§kl)) Hip (ws,k1;R?) =0 15 (U7 Q;’kl)’

(3.16) e

HR BleLp (ws,k1;R3) g EP(“) Q:S,kl)-

Consequently ||u — Ué||Lp(Qé;R3) < Cflulg o ,, where C depends only on the middle surface of the shell and
Qg
on p. Both functions U and R’ belong to WP (w;R3). We compute the derivatives of U and R to get

= i / Vou(6(5) + 6)t, dr, aﬁ(g): ﬁ/}gw/\ku@(?)—i—éx)ta dz

8sa 084

Hence
ou'

75, %)~

R p _C
g0 < [ Ve @) da

Sa

5.kl
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By integrating over ws ;1 we obtain

aR'

(3.17) H

3 51)(“7 Q;S,k:l)~

8Sa LT’ w5 kl,R3 6

Lp(wzs,kl;]Rs)

Thanks to (3.16) and by summation we get

HE‘R

- |u roo
e (wir®) H 08¢ 1P (wiR3) — §1/P | |‘9’Q64’

. —
Now we estimate | |p,o;,». We have

ou  du :
8—83:8—83—R /\n—[V ’U,I’I—Bkl/\n]—[R—Bkl]/\l’l
o ou A aR’ on on on
-_— = = — — An — R N——= — B A toc a.
Os. 95,  Os. 8sa n — sg D5, {V u( +S38 a) ki ( +338 a)}
ou’ R’ on
—|=— — B At — An — R Bri) AN —
oy ~ B te] = sogm A= (R = Bu) n 5
. aﬂ’ p ’ _
Thanks to (3.15), (3.16) and (3.17) we obtain H < O&p(u, Qs 1), and eventually [ |p g, p <
381- LP(Q(S,M;R:&) ’
¢ |u|€,Q;7p' -

Notice that the functions & and R’ are defined in ws. They satisfy the estimates given in Theorem 3.3

also in ws. Now we compare the elementary displacements U, and Ué.

Corollary 1 . We have

Ue = Uelp,0s.0 < Clule,0; 5, U = Uellzr(osms) < Cdlule,0;
Moreover
2% fu||m (wiks) < C8 7P ule g, p, IR A =R AD1nups) < C5 7 Jule,0,p,
Ha—Sa - 8—% . C5M7ule 05 p, H%(R' An—TRA n)‘ o CO VP Jule, 04 p-
The constants do not depend on §.
Proof . These estimates are immediate consequences of (3.4) and (3.14). O

Now we assume that the shell is fixed over its lateral boundary I'g s = ®(0wx]—9, §[). If the displacement
u is null over I'yp s then we have if =R =0 a. e. on dw. We extend the displacement u in Q:; \ Qs by 0. In
this way we have ¢ and R’ in H}(ws; R?) and moreover

(3.18) HZ/{,HLP(QW;RS) + 5||R/|‘Lp(3w;ﬂg3) < 05172/1) |u|g,967p.
Corollary 2 . (Korn’s inequality). We suppose that the shell is fized over T'g 5. Then we have

C
[ulp,0s,p + lullLr(gsirs) < < lule,0s.p
1)

The constant does not depend on 6.
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Proof . This is an immediate consequence of (3.14), (3.18) and the Poincaré’s inequality. O

V. Appendix

We denote
e ||z]|2 the euclidian norm of x,
o |||A]||2 the spectral norm of the matrix A,
e B(a; r) the ball centered at a and of radius r,

e [3 the unit matrix.

Lemma 4.1 : Let U be an open set included in B(O; R), star-shaped with respect to the ball B(O; Ry1) and

® the linear transformation
®(z) = Az + b where A is an invertible matriz and where b € R3.

The open set V = ®(U) is included in the ball B(b; |||All|2R) and it is star-shaped with respect to the ball
B(bs; Ra/|[|A7H]]2)-

Proof . The open set V is star-shaped with respect to the points of the set <I>(B(O; Rl)). This set is
included in the ball B(b; Ry/|[|A7Y||2). O

Lemma 4.2 : Let U be an open set included in B(O; R), star-shaped with respect to the ball B(O; Ry) and
® o C! diffeomorphism from U onto V = @(ﬁ) verifying

®0)=0 and vrel |IVe(x)- Ll < (15)

The open set V = ®(U) is included in the ball B(O; 2R) and is star-shaped with respect to the ball
Ry

3 — _
Proof . We put ¢ = (E) . For any (x,y) € U x U such that [z,y] € U we have

(4.1) 10(z) = @(y) = (z —y)ll2 <clle =yl = [|®(x) — z[|2 < cfz]]2

The open set V is included in the ball B(O; 2R) since ||®(z)||2 < 2||z]|2.
Now we prove that the open set V is star-shaped with respect to any point of the ball B(O; R;/4).

Let A be a point in the ball B(O; R1/3). We prove by contradiction that the open segment joining ®(A) to
any point on the boundary of V is included in V.

Let y/ be a point on the boundary of V. There exists y € 0U such that y/ = ®(y). We put A = D(A). If
the segment [Al, yl[ contains a point z = ®(z) on the boundary of V then

z e U and 2 =2+ (1- Ny A €]0,1].
From the second inequality in (4.1) we deduce that

|A" = Alls = [|®(A) — Al|2 < ¢[|Al]2 < cR1/3

: } = Iz’ = M+ (1= Ny)ll2 < cR
ly = ylla = 12(y) —yll2 < cllyll2 < cR

Besides we get

o= A+ (1= A)lla = 1o = @) + [ = (A + (1= X))l < cllello + cR < 2R < =+
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Hence z belongs to the coloured cylinder (see Figure 1). In Figure 2 we consider the plan containing A, y
and z. The point z belongs to the exterior of the convex hull of the set B(A; R1/3) U {y} (this convex hull
minus {y} is included in &) and in the same way y is outside the convex hull of the set B(A; R;/3) U {z}.

_A —
Then we have ||y — z||2 < w and a < zyA < 7 — a. The open set I is star-shaped with respect to
2R, R 4R
every point in the ball centered at A and of radius R;/3. Moreover 5 <lly=A4|l: <R+ ?1 < = @ and
R 4R
[z — All2 < R+ —1 < =5 Then we have
Ry 3 1 Ry 3
%E <sin(a) < 5 and ?1@ < sin(f)
lly-All,/10
\ B
Figure 1. Figure 2.
Let z be the common point to the two coloured lines. We have
ly —zll2 _ ly —=ll2
_ < d - ~ll2 _ _ < g~z _
ly —zll2 < Sna) = 3R LTI |z —2[l2 < sn(2a) = 3R LTI
. . 3Ry . - . o
since sin(2a) > B The segments [y, z] and [x,z] are included in U so, from the inequalities (4.1) we

obtain

1(0(5) ~ 2A)A (@) ~ B(=) — (5 - 2) 2 < [9(0) ~ D) 2][9(0) ~ 2(2) ~ (v - 2)
< (1405 120) — 2(:) — (s~ )]l
< (14 S 1(@() — 2(@) — (g~ ) + (B(a) —~ 0(2) — (2~ 2)) 1
< (42 e{lly — s + iz — 2o} < 1+ Sl — 2l
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The points y = ®(y), 2 = ®(z) and A" = ®(A) are on the same line, hence
(@) — (A) A (2(y) — 2(2) = (y — 2))[l2 = [[(2(y) — ©(A)) A (y — 2)ll2
=lly—A+[2(y) - 2(A) = (y = A A (y—2)l2

4R
2ty = A) A (y = 2)ll2 = eIy = =l

2 —
We recall that ||y — Al|2 > % and % < sin(a) < sin(zyA). That gives
R2 Ry 4R 16R R3
Ly—z|ls < —|ly— —Allz < ||(y=A) A (y— <ce—|(14ec)—=+1||ly— >
sillv=zlb < Telly—zllelly=All: < 1lr= A @—2) b < e [+t ly—zlle = c> gt

which is a contradiction. The open set V is star-shaped with respect to the point ®(A).
The ball B(O; Ry/4) is included in the range by ® of the ball B(O; Ry /3) since for every z € V we have

o |l2 < [l (@)ll2 < [l ]2

1+c¢ ~1l—c
[

Corollary of Lemmas 4.1 and 4.2 . Let U be an open set included in the ball B(O; R), star-shaped with
respect to the ball B(O; Ry) and ® a C* diffeomorphism from U onto V = ‘IJ(H) verifying

el [[Va() - va(O)llh < (1) 1IveO)IEI(veo) i3

The open set V = ®(U) is included in a ball of radius 2|||VP®(O)|||2R and is star-shaped with respect to a
ball of radius Ry /(4]]|(V®(0)) " '||]2).
Proof . We consider the mapping

Uy(z) = 2(0) + V®(O)x relu

The open set W = ¥, (U) is included in the ball B(®(0); R') (R = |||V®(0)|||2R) and it is star-shaped with
respect to the ball B(®(0); R}) (R} = Rl/\|\(V<I>(O))_1|||2). Now let ¥, be the mapping ¥; = & o U '

This map is a C! diffeomorphism from W onto V. We have ¥; (®(0)) = ®(0) and o) (®(0)) = I3. Moreover

Vyew 11%3(y) = slll2 < [[[VE(¥7 () = VR(O)[|2/[(VO(0)) []]2

< V(w7 (1) ~ VRO LlI(VE(0) 12 = (1)

The open set V is included in a ball of radius R and it is star-shaped with respect to a ball of radius R} /4.00

Proof of Lemma 3.2 .

We use again the mappings introduced in Step 1 of Theorem 3.1. Through the use of easy geometrical
arguments we show that if 6 < inf{C/2, B/4(M + 1)}, we have

K
was \w © (J{ (510 520) [ fo(s10) < 520 < folsrn) +20(M +1), s, €]0, AL},

r=1
K

{5 ewldist(s,0w) <28} C U {(slr,sw) | fr(s1r) —20(M +1) < s2, < fr(S1r), S1r G]O,A[}.

r=1
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Now we extend the displacement u € W1P(Qs;R3) near the portion of the boundary given by the
mapping f.. We begin with r = 1. Without being detrimental to the general case we can suppose that

(O1;€11,€21) = (O;e1,e2). In order to simplify the notation we replace f; by f.
We suppose also that § < inf{A/12, B/(18M+2)}. Let N be an odd integer belonging to E %, %] . We
set ay = k%, k €{0,...,2N}. We have N greater than 3 and ¢ < % < 25. For any k € {0,...,N — 1}
the domains
Bsi = {(s1,52) | f(s1) =26(9M + 1) < 52 < f(s1), 51 €]aan, aggyny[}x] =,
Biw = {(s1,82) | f(51) = 20(9M +1) < 55 < f(s1) +20(9M + 1), s1 €lasy, agen [} x] — 8,0

are star-shaped with respect to the ball of center (g1, f(aak+1) + J(9M + 1),0) and of radius 6/2 and
they have a diameter less than §(42M + 9). We put

Cg’k = interior (B&gk U 85,2k+1 U 86’2k+2)

/ . . / i !
C&,k = 1nter10r(35’2k U Bé,2k+1 U 85,2k+2)

" . R o e
Csp = mterlor(BMk U Bs ok+1 U 5’572k+2)

The open sets Cs ;, and C:S,k are star-shaped with respect to the ball of center (augt3, f(art+3) —0(9M +1),0)
and of radius 0/2 and they have a diameter less than (42M + 15)6 = RJ.

1lines of slope

/+M and M

]
|
L — —

T e

gee

—
I |

e

|

Figure 3. The domain Csj, N {ss = 0}
There exists Cy > 0 which does not depend on § such that

¥(s,3) € Csy, % Cs [IV(s) = VO(3)|[|2 < Cod

In the sequel we will work with the portions B, = ®(Bs i), ]B%:ik = @(B(;’k) and (C:;’k = @(C(;’k) of the shell.

Now we take § such that

st (e (42" )

Then we have
1/2\3 _
Cos < ()" mt (vl IEIITa0s) ~I13)
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Thanks to the corollary of Lemmas 4.1 and 4.2 the domains B; ;, have a diameter less than 3R¢é and they are

star-shaped with respect to a ball of radius §/16. From Theorem 1.3 there exist rigid body displacements

N-1 N-3
rzk,ke{O,...,T}andfk,ke{O,...,T}suchthat

13) { Dy (u — 1ok, Bs,ok) < CEH(u,Bs o), { Dp(u — 71, Cs) < CE(u, Cs 1),
|

||U - TQkH;ZP(}BJY%;RIS) < Cépgp(uvﬁéﬂk)a - fk”][),p((cé’k;R(i) < Cépgp(uv (C(S,k)a

where the constants do not depend on & and 6.

We define the one-to-one mapping ¥ : C;)k —] —3,3[x] —1,1[x] — 1,1[ by

81— aupys S2— f(s1) 8_3)
(51,52, 83) ( 5 o(I8M +2) 0
We have
/ 1
v =
VS S C5,k} det (V (S)) (18M T 2)63
. N-1 . . 1
For every k in {0, e, T}, the function (u — ro) o ® is defined on Bs k. We extend (u—ra,) o @ o ¥

by reflexion and then we return in IB%:;’% and we add ro to the obtained displacement. We call again u this

new displacement. We have (the constants do not depend on k and ¢)

Eplu, By o) + Dplu — 721, By o) < O&p(wBoon),  u—raell, o o) < C87E,(u, Boar).
5,2k

Figure 4. A portion of the boundary of the shell and the first extension of displacement wu.

Thanks to (4.3) we can compare g, ro and rop+2. We obtain

Ep(u, 1) + Dplu — 1, C ) < O& (. Coe)s u— ) < C67Ey(u, i)

p
7
LP((CJJC;]R3

The function (u — 7) o ® is defined on Cé: w- JThere exists a linear and continuous extension operator P
from WhP(] — 3,3[x] — 1,1[2\] — 1,1[x]0,1[x] — 1,1]) into WP(] — 3,3[x] — 1,1[?). Using P we extend
(u—7x) o ®o WL then we return in (C:mk and we add 7 to the obtained displacement. We call again u this

new displacement. We have

(N-3)/2 (N-3)/2
Elu. |J Con) SC&u, | Cox) < CE(u, )
k=0 k=0

Now we go on with the other portions of the boundary of the shell. We take r = 2. If the extension is
already defined on a part of the domain {(512, $92) | fo(s12) < s22 < fa(s12)+ B, s12 €]0, A[}, we preserve
only the part defined on the first or on the last domain of type B:S,k‘ O
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