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Tolerant identification with Euclidean balls
∗

Ville Junnila†, Tero Laihonen‡ and Aline Parreau§

September 12, 2011

Abstract

The concept of identifying codes was introduced by Karpovsky, Chakrabarty and Levitin in 1998. The

identifying codes can be applied, for example, to sensor networks. In this paper, we consider as sensors

the set Z
2 where one sensor can check its neighbours within Euclidean distance r. We construct tolerant

identifying codes in this network that are robust against some changes in the neighbourhood monitored by

each sensor. We give bounds for the smallest density of a tolerant identifying code for general values of r.

We also provide infinite families of values r with optimal such codes and study the case of small values of r.

Keywords: Identifying code; Optimal code; Sensor network; Fault diagnosis

1 Introduction

Let a network be modelled by a simple, connected and undirected graph G = (V,E) with vertex set V and edge
set E. We can place a sensor in any vertex u. A sensor is able to check its closed neighbourhood N [u] (i.e., the
adjacent vertices and itself) and report to a central controller if it detects something wrong there (like a smoke
detector). The idea is to place as few sensors as possible in such a way that we could uniquely determine where
(that is, in which vertex) the problem occurs (if any) knowing only the set of sensors which gave us the alarm.

Let us denote the subset of vertices, where we placed the sensors, by C. In order to find the sought object
(like fire) in our network, we need to choose C in the following way. Denote the set of sensors monitoring a
vertex u ∈ V by I(u) = N [u] ∩ C. Suppose that C satisfies the following two conditions: I(u) 6= ∅ for every
u ∈ V and I(u) 6= I(v) for all u, v ∈ V , u 6= v. Hence, I(u) is the set of sensors giving the alarm if there
is a problem in u, and since it is unique and nonempty for each u ∈ V , we can determine the vertex with a
problem (if there is any). Such a subset C ⊆ V satisfying the two requirements is called an identifying code
(any nonempty subset of V is called a code). The concept of identifying codes were introduced in [10], where a
fault diagnosis was performed in multiprocessor networks.

Consider a graph with the vertex set Z2 endowed with the Euclidean distance d. Let further r be a positive
real number. The set of edges is defined as follows: there is an edge between two vertices of Z2 if their Euclidean
distance is at most r. In other words, the closed neighbourhood of a vertex u = (xu, yu) ∈ Z

2 is the ball

Br(u) = {v ∈ Z
2 | d(u, v) ≤ r} = {(x, y) ∈ Z

2 | (x− xu)
2 + (y − yu)

2 ≤ r2}.

Hence, in this graph each sensor can check (or cover) vertices within Euclidean distance r. In Figure 1, we
have illustrated the graph with the ball of radius

√
5 and an identifying code in it. For special values of r,

this graph has been considered in many papers, for example, [1, 3, 6, 8, 9]. For related results, see [2, 12].
An interested reader is also referred to the web page [11], which contains an extensive collection of papers
concerning identification and related problems.

Since our underlying graph Z
2 is infinite, we need a device to measure how ‘small’ our code is compared to

others. To this end, we use the usual concept of density. Denote Qn = {(x, y) ∈ Z
2 | |x| ≤ n, |y| ≤ n} for a

positive integer n. Obviously, |Qn| = (2n+ 1)2. The density D(C) of a code C ⊆ Z
2 is

D(C) = lim sup
n→+∞

|C ∩Qn|
|Qn|

.

We say that an identifying code is optimal if there is no code with lower density.
The previously defined concept of regular identification is a somewhat idealized view to approach the de-

scribed locating problem. In particular, it is unrealistic to assume that each sensor c ∈ C monitors exactly the
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Figure 1: An optimal identifying code for Z2 (from [9]) with Euclidean radius r =
√
5.

Euclidean ball Br(c) of radius r. In this paper, we concentrate on a more realistic scenario, where the area that
each sensor monitors may individually vary. Supposing ∆ is a real number, we assume that the area covered
by a sensor c ∈ C is a subset of Br+∆(c) such that all the vertices of Br(c) belong to it. Consider then which
sensors monitor a given vertex u ∈ Z

2. Clearly, the sensor covering u are the ones that belong to an area, which
is a subset of Br+∆(u) and contains all the vertices of Br(u). A code C, using which we can uniquely determine
the sought vertex solely based on the information provided by the sensors, is called (r,∆)-tolerant identifying
(or in short (r,∆)-identifying). The formal definition of tolerant identifying codes is presented in the following.

Let us denote for u and v in Z
2:

Sr,∆(u, v) = (Br(u) \Br+∆(v)) ∪ (Br(v) \Br+∆(u)) .

A subset C ⊆ Z
2 is an (r,∆)-tolerant identifying code (or in short (r,∆)-identifying code), if for every u ∈ Z

2

we have Br(u) ∩ C 6= ∅ and for all distinct vertices u and v:

Sr,∆(u, v) ∩ C 6= ∅.

Clearly, this formal definition coincides with the informal one described above. We denote the smallest possible
density D(C) of an (r,∆)-identifying code C by D(r,∆). An (r, 0)-identifying code is simply an identifying
code in the graph with vertex set Z2 and Euclidean radius r, studied in [9]. For other results on robustness for
identifying codes, see [5, 7, 13, 14].

The following result is useful, when we bound the density of a code from below. For S ⊆ Z
2 and v ∈ Z

2 we
denote a translate v + S = {v + s | s ∈ S}.

Proposition 1 ([9]) Let S be a set of k different vertices of Z2. If a code C ⊆ Z
2 is such that |(v+S)∩C| ≥ m

for all v ∈ Z
2, then

D(C) ≥ m

k
.

In the sequel, we denote by Cr(u) = {v ∈ R
2 | d(u, v) = r} the circle centered at u ∈ Z

2 with radius r.

2 First example

The first nontrivial ball of Z2 has radius 1 and the next one has radius
√
2. In this section, we study this first

nontrivial case where r = 1 and r + ∆ =
√
2. The pairs of vertices that are the ’most’ difficult to separate

(in the sense that there are few vertices that distinguish them) are pairs of vertices at distance 1. Also it is
good to start by studying S1,

√
2−1(u, v) when v − u = (1, 0). We will call this set the horizontal pattern, and

for the precise case (r,∆) = (1,
√
2 − 1) this set is shown in Figure 2a. One can notice that it has only two

elements, that means, because of Proposition 1, that the density of an (1,
√
2 − 1)-identifying code is at least

1
2 . By symmetry, we also know the vertical pattern depicted in Figure 2b.

It is easy to find a code with density 1
2 that is intersecting all the sets S1,

√
2−1(u, v) for v − u = (1, 0) or

v − u = (0, 1). One can for example take as a code all the vertices (x, y) such that x + y ≡ 0 mod 2. But this
code will not always intersect the diagonal pattern S1,

√
2−1(u, v) with v−u = (1, 1), that is shown on Figure 2c.

If we take the code C that is depicted on Figure 3, we can show that it is always intersecting the diagonal
pattern and the anti-diagonal pattern (v − u = (−1, 1)). To show that C is a (1,

√
2 − 1)-identifying code, it

remains to show that it is a 1-dominating set (this is clearly true) and to check that it is intersecting all the
other sets S1,

√
2−1(u, v). For this last point, we can notice that S1,

√
2−1(u, v), when d(u, v) >

√
2, has always

2
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Figure 2: The set S1,
√
2−1(u, v) when (a) v−u = (1, 0) (horizontal pattern), (b) v−u = (0, 1) (vertical pattern),

(c) v − u = (1, 1) (diagonal pattern) and (d) v − u = (1,−1) (anti-diagonal pattern).

Figure 3: A (1,
√
2− 1)-identifying code of optimal density 1

2 .

three vertices forming an L-pattern: (up to orientation) and that C is intersecting all the L-patterns. We
can now conclude that C has optimal density and so:

D(1,
√
2− 1) =

1

2
.

3 General Results

3.1 Existence of a code

We give a necessary and sufficient condition to have an (r,∆)-identifying code for given values of r and ∆:

Proposition 2 There exists an (r,∆)-identifying code if and only if Sr,∆((0, 0), (−1, 0)) is nonempty.

Proof. Clearly, if there exists an (r,∆)-identifying code C, then there should be an element of C in
Sr,∆((0, 0), (−1, 0)). Therefore, this set is nonempty.

For the other side, assume that Sr,∆((0, 0), (−1, 0)) is nonempty. Then by symmetry, Sr,∆((0, 0), (0,−1))
is also nonempty as well as all the sets Sr,∆(u, v) with d(u, v) = 1. Let u, v be two vertices of Z

2, with
v = u + (x, y). By symmetry, we can assume that x > 0 and y ≥ 0. Since Sr,∆((0, 0), (−1, 0)) is nonempty, it
necessarily contains a vertex (x′, y′) with x′ > 0 and y′ ≥ 0, and then v+ (x′, y′) is in Sr,∆(u, v). Hence, all the
sets Sr,∆(u, v) are nonempty and the whole set Z2 is an (r,∆)-identifying code. �

We consider the following definition:

∆m(r) = sup{∆| there is an (r,∆)-identifying code}.

Note that if ∆ ≥ 1, then clearly, for any radius r, Sr,∆((0, 0), (−1, 0)) is empty and so there is no (r,∆)-
identifying code. Hence, ∆m(r) is well-defined and ∆m(r) ≤ 1. Furthermore, for a fixed r, an (r,∆)-identifying
code for some ∆ ≥ 0, is also an (r,∆′)-identifying code for any 0 ≤ ∆′ ≤ ∆. Therefore, for any 0 ≤ ∆ < ∆m(r)
there is an (r,∆)-identifying code whereas for any ∆ ≥ ∆m(r) there is no (r,∆)-identifying code. When r is an
integer, ∆m(r) = 1, because (r, 0) ∈ Sr,∆((0, 0), (−1, 0)) for ∆ < 1. When r is not an integer, we have:

Proposition 3 When r → +∞, we have

∆m(r) ≥ 1−
√

2

r
+O

(

1

r

)

.
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Proof. Consider the largest abscissa ⌊r⌋ of a vertex of Br((0, 0)), and let u be the vertex of Br((0, 0)) with
the largest ordinate in the column ⌊r⌋. Then u has coordinates (⌊r⌋, ⌊

√

r2 − ⌊r⌋2⌋). Let α = r − ⌊r⌋, then
we have u = (r − α, ⌊

√

α(2r − α)⌋). Denote ∆0 = d((−1, 0), u) − r. Then, we have ∆0 > 0. For ∆ < ∆0,
u ∈ Sr,∆((0, 0), (−1, 0)), so ∆m(r) ≥ ∆0. We now compute a lower bound of ∆0, using the fact that α ∈ [0, 1[:

r +∆0 =
(

(r − α+ 1)2 + (⌊
√

α(2r − α)⌋)2
)

1

2

≥
(

(r − α+ 1)2 + (
√

α(2r − α)− 1)2
)

1

2

≥ (r2 + 2r − 2
√

α(2r − α) + 2− 2α)
1

2

≥ (r2 + 2r − 2
√
2r)

1

2

= r

(

1 +
2

r
− 2

√
2

r3/2

)
1

2

As r → +∞, using Taylor series, we have:

r +∆0 ≥ r

(

1 +
1

r
−

√
2

r
√
r
+O

(

1

r2

)

)

.

And so:

∆m(r) ≥ ∆0 ≥ 1−
√

2

r
+O

(

1

r

)

.

�

In the following, we will consider only values (r,∆) such that there is an (r,∆)-identifying code.

3.2 Study of the horizontal pattern Sr,∆((0, 0), (−1, 0))

As said before, the pair of vertices that are the most difficult to identify are vertices at distance 1. Thus, it is
important to have a good knowledge of the horizontal pattern Sr,∆((0, 0), (−1, 0)) (by symmetry, that will also
give us knowledge on the vertical pattern). In what follows we will use the following notations:

• hr,∆(x) =
√
r2 − x2−

√

(r +∆)2 − (x+ 1)2, defined for x ∈ [0, ⌊r+∆− 1⌋] is the signed vertical distance
at abscissa x between the circles Cr((0, 0)) and Cr+∆((−1, 0)). When x ≥ 0 and hr,∆(x) ≤ 0, there cannot
be any vertex with abscissa x in Sr,∆((0, 0), (−1, 0)). When hr,∆(x) > 1, there is always a vertex with
abscissa x in Sr,∆((0, 0), (−1, 0)). Finally, when hr,∆(x) ∈]0, 1], there is at most one vertex with abscissa
x in Sr,∆((0, 0), (−1, 0)). That leads to the next definitions:

• x0(r,∆) (or x0 when the context is clear) is the smallest nonnegative abscissa of an element of Sr,∆((0, 0), (−1, 0)).
It is at least the ceiling of the positive solution of hr,∆(x) = 0. We have:

x0(r,∆) ≥
⌈

∆(2r +∆)− 1

2

⌉

= r∆+O(1) as r → +∞.

• x1(r,∆) (or x1 when the context is clear) is the floor of the positive solution of hr,∆(x) = 1. The exact
value of x1 is:

x1(r,∆) =

⌊

1

4

(

−2 + ∆2 + 2r∆+
√

−4 + 4∆2 −∆4 + 8r∆− 4r∆3 + 8r2 − 4r2∆2
)

⌋

. (1)

As r → +∞, we obtain:

x1(r,∆) = r

(

∆

2
+

√
2−∆2

2

)

+O(1).

We will also need the value of x1 when ∆ is close to 1. Assume that ∆ = 1− ǫ(r) with ǫ(r) of order 1
rα as

r → +∞. By Proposition 3, we always have an (r,∆)-identifying code if ǫ(r) ≥
√

2
r + O(1r ). Hence, we

assume that 0 < α ≤ 1
2 . Then, as r → +∞:

4



x1(r,∆) = r − rǫ(r)2

2
+O(rǫ(r)3) +O(1). (2)

In the special case α = 1
2 , we obtain that r − x1 is bounded.

• m(r,∆) (or m when the context is clear) is the ceiling of the value of hr,∆ in abscissa ⌊r + ∆− 1⌋. The
exact value of m is:

m(r,∆) =
⌈

√

r2 − ⌊r +∆− 1⌋2 −
√

(r +∆)2 − ⌊r +∆⌋2
⌉

. (3)

We have, when r → +∞:

m(r,∆) ≤ 2
√
r +O(1). (4)

Because hr,∆ is a strictly increasing function on [0, ⌊r+∆−1⌋], m(r,∆) is an upper bound of hr,∆. Furthermore,
there are, in Sr,∆((0, 0), (−1, 0)), for an integer x ∈ [0, ⌊r +∆− 1⌋]:

• no vertex of abscissa x if x < x0,

• at most one vertex of abscissa x if x0 ≤ x ≤ x1,

• at least one and at most m vertices of abscissa x if x > x1.

We finish this section by a result that will be used in Section 4:

Lemma 4 Let u and v be two vertices of Z
2, lying on the same vertical or horizontal line. If d(u, v) ≤

4x0(r,∆) + 1, then there are two vertices u′ and v′ of Z2, at distance 1, such that Sr,∆(u
′, v′) ⊆ Sr,∆(u, v).

Proof. We assume first that d(u, v) is odd: d(u, v) = 2k + 1 with k ≤ 2x0. Without loss of generality, we
can assume that u = (−k − 1, 0) and that v = (k, 0). Let u′ = (−1, 0) and v′ = (0, 0). We will show that
Sr,∆(u

′, v′) ⊆ Sr,∆(u, v). Let w = (x, y) ∈ Sr,∆(u
′, v′). By symmetry we can assume that w ∈ Br(v

′)\Br+∆(u
′),

and that y ≥ 0. Then clearly d(w, u) ≥ d(w, u′) > r+∆ so w /∈ Br+∆(u). If x ≥ k, then d(w, v) ≤ d(w, v′) ≤ r.
Otherwise, x ≥ x0 and k ≤ 2x0, so k − x ≤ x, and we also have d(w, v) ≤ d(w, v′). Hence, finally w ∈
Br(v) \Br+∆(u) ⊆ Sr,∆(u, v). The case d(u, v) even is the same. �

3.3 Lower bound

The bound used in [9] when ∆ = 0 is still valid here:

D(r,∆) ≥ D(r, 0) ≥ 1

3.22r + 4
. (5)

This bound is good for fixed value of ∆ when r grows. But when ∆ approaches 1 as r tends to infinity, we
will have better bound. For this we will use the following proposition. This lower bound is sharp in some cases
as we will see in the next section. It is a direct consequence of Proposition 1:

Proposition 5 We have

D(r,∆) ≥ 1

|Sr,∆((0, 0), (−1, 0))| .

One can write the exact value of |Sr,∆((0, 0), (−1, 0))|:

|Sr,∆((0, 0), (−1, 0))| = 4

⌊r+∆−1⌋
∑

x=x0(r,∆)

(

⌊
√

r2 − x2⌋ − ⌊
√

(r +∆)2 − (x+ 1)2⌋
)

+ δ · (4⌊
√

r2 − ⌊r⌋2⌋+ 2)

where δ = 1 if ⌊r⌋ = ⌊r +∆⌋ and 0 otherwise.
To obtain a concrete lower bound of D(r,∆), we estimate |Sr,∆((0, 0), (−1, 0))| using previous notation and

noticing that ⌊
√
r2 − x2⌋ − ⌊

√

(r +∆)2 − (x+ 1)2⌋ is between ⌊hr,∆(x)⌋ and ⌈hr,∆(x)⌉:

|Sr,∆((0, 0), (−1, 0))| ≤ 4((x1 − x0 + 1) +m · (⌊r +∆− 1⌋ − x1)) + δ · (4⌊
√

r2 − ⌊r⌋2⌋+ 2).

Assume that ∆ = 1 − ǫ(r) with ǫ(r) of order 1
rα as r → ∞, with α ≤ 1

2 . Using the equations (2) and (4),
we can show that the order of |Sr,∆((0, 0), (−1, 0))| is at most r

√
rǫ(r)2 and so the density D(r,∆) has order at

least 1
r
√
rǫ(r)2

.

In the particular case where α = 1
2 , i.e., ∆ is really close to ∆m, we obtain that D(r,∆) has order at least

1√
r
which is better than the order in the general case.
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3.4 Upper bound

To obtain upper bounds, we construct codes with the following basic sets, defined for a positive integer k:

• Lv
k = {(x, y) ∈ Z

2| x ≡ 0 mod k},

• Lh
k = {(x, y) ∈ Z

2| y ≡ 0 mod k}.

Proposition 6 Let k = ⌊r⌋ − x1(r,∆). Then Cr,∆ = Lv
k ∪ Lh

k is an (r,∆)-identifying code, and we have:

D(r,∆) ≤ 2

k
.

Proof.

LetX1 = Sr,∆((0, 0), (−1, 0))∩{(x, y) ∈ Z
2| x ≥ 0, y ≥ 0} be the vertices of Sr,∆((0, 0), (−1, 0)) that lie in the

first quadrant. In the same way, let X2 = Sr,∆((0, 0), (−1, 0)) ∩ {(x, y) ∈ Z
2| x ≥ 0, y ≤ 0}, and for the vertical

pattern: X3 = Sr,∆((0, 0), (0,−1))∩{(x, y) ∈ Z
2| x ≥ 0, y ≥ 0} and X4 = Sr,∆((0, 0), (0,−1))∩{(x, y) ∈ Z

2| x ≤
0, y ≥ 0}. For any pair of vertices u and v of Z2, with u 6= v, there is i ∈ {1, 2, 3, 4} such that u+Xi ⊂ Sr,∆(u, v)
or v +Xi ⊂ Sr,∆(u, v) .

In X1, by definition of x1(r,∆), there are vertices with abscissas between x1+1 and ⌊r⌋, so there are vertices
with k consecutive abscissas in X1. This implies that (u +X1) ∩ Cr,∆ 6= ∅ for all u ∈ Z

2. This is also true for
X2, X3, X4 (by considering the ordinates and horizontal lines for X3 and X4). Finally, for any pair of vertices
u and v, Sr,∆(u, v) ∩ Cr,∆ 6= ∅. Moreover, Cr,∆ is an r-dominating set and so it is an (r,∆)-identifying code.
Clearly, Cr,∆ has density 2

k . �

As r grows, this leads to the following upper bound:

D(r,∆) ≤ 4

r(2 −∆−
√
2−∆2) +K

(6)

where K is a constant. Combining (5) and (6), we know that an optimal (r,∆)-identifying code, for ∆ fixed,
has order 1

r as r → +∞.
Assume that ∆ = 1 − ǫ(r), with ǫ(r) of order 1

rα as r → ∞, and α ≤ 1
2 . Then, we obtain that D(r,∆) has

order at most 1
rǫ(r)2 . In the particular case where ∆ is really close to ∆m (α = 1

2 ), the result is trivial. As we

will see in the next section, for infinite family of (r,∆) there are optimal codes of density 1
2 so we cannot expect

in this case to have a general upper bound of order better than a constant.

4 Better constructions for given values of (r,∆)

4.1 General construction

The construction of Section 3.4 does not use the full symmetry of the set Sr,∆((0, 0), (−1, 0)). We can often
construct better codes using diagonal lines that utilize the symmetry. For this we need to have more information
about Sr,∆((0, 0), (−1, 0)) and Sr,∆((0, 0), (−1,−1)) that we cannot compute in the general case. The following
construction of Proposition 9 should be seen as a method to construct (r,∆)-identifying codes for a given value
of (r,∆).

We say that a set U of Z2 is intersecting all the diagonal (resp. anti-diagonal, horizontal and vertical)
lines modulo k if for all i ∈ {0, 1, . . . , k − 1}, there is an element (x, y) of U such that y − x ≡ i mod k (resp.
x+ y ≡ i mod k, y ≡ i mod k and x ≡ i mod k). As an example, the set S3,

√
10−3((0, 0), (−1, 0)) (see Figure 4)

is intersecting all the diagonal and anti-diagonal lines modulo 6 whereas the set S3,
√
10−3((0, 0), (−1,−1)) is

intersecting all the horizontal and vertical lines modulo 8.
Let diag(U) be the maximum k such that the set U is intersecting all the diagonal lines modulo k.

Lemma 7 Let u be a vertex in Z
2. Then we have

diag(Br(u)) = 4

⌊

r√
2

⌋

+ 2δ + 1,

where δ = 0 if
⌊

r√
2

⌋2

+
(⌊

r√
2

⌋

+ 1
)2

≤ r2 and δ = 1 otherwise.

Proof. It is enough to show the result for u = (0, 0). Let v =
(

−
⌊

r√
2

⌋

,
⌊

r√
2

⌋)

and w =
(⌊

r√
2

⌋

,−
⌊

r√
2

⌋)

.

Then v, w ∈ Br(u) and all the diagonal lines between v and w (included v and w) are intersecting Br(u). There

are 4
⌊

r√
2

⌋

+ 1 such diagonal lines. There can be one more diagonal before v, if the vertex v + (−1, 0) is in

6
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Figure 4: In (a), the set S3,
√
10−3((0, 0), (−1, 0)) is intersecting all the diagonal and anti-diagonal lines modulo

6. In (b), the set S3,
√
10−3((0, 0), (−1,−1)) is intersecting all the horizontal and vertical lines modulo 8.

Br(u). That corresponds to the condition
⌊

r√
2

⌋2

+
(⌊

r√
2

⌋

+ 1
)2

≤ r2 and in this case there is also one more

diagonal after w. �

Note that the set Br((0, 0)) is intersecting all the diagonal lines modulo s, for s ≤ diag(Br((0, 0))). This is
not always the case for a disconnected set: the set S3,

√
10−3((0, 0), (−1, 0)) is not intersecting all the diagonal

lines modulo 4 but diag(S3,
√
10−3((0, 0), (−1, 0)) = 6 (see Figure 4).

Lemma 8 If Sr,∆((0, 0), (−1, 0)) is intersecting all the diagonal lines modulo s, with s ≤ diag(Br((0, 0))), then
for any pair of vertices u, v in Z

2, that lie on the same horizontal or vertical line, Sr,∆(u, v) is intersecting all
the diagonal lines modulo s.

Proof. Notice first that, if u and v lie on the same horizontal line and if Sr,∆(u, v) is intersecting all the
diagonal lines modulo s, then it is also intersecting all the anti-diagonal lines modulo s (because of the vertical
symmetry of Sr,∆(u, v)). Hence, Sr,∆(u

′, v′), where u′ and v′ are the images of u and v by a rotation of π
2

centered in (0, 0), is also intersecting all the diagonal and anti-diagonal lines modulo s. Therefore, we just need
to prove the proposition when the vertices lie on the same horizontal line.

Let us assume that Sr,∆((0, 0), (−1, 0)) is intersecting all the diagonal lines modulo s, with s ≤ diag(Br((0, 0))).
Let u, v be lying on the same horizontal line. If d(u, v) ≤ 4x0+1, by Lemma 4, Sr,∆(u, v) is containing a set iso-
morphic to Sr,∆((0, 0), (−1, 0)), and so is intersecting all the diagonal lines modulo s. If d(u, v) > ⌊r⌋+ ⌊r+∆⌋,
then Br(v) \ Br+∆(u) = Br(v). The set Br(v) is intersecting all diagonal lines modulo s ≤ diag(Br(v)) =
diag(Br((0, 0))) and so is the set Sr,∆(u, v).

Therefore, we can now assume that 4x0+2 ≤ d(u, v) ≤ ⌊r⌋+ ⌊r+∆⌋. Without loss of generality, we assume

that u = (−k′, 0) and v = (k, 0) with k =
⌊

d(u,v)
2

⌋

, k+k′ = d(u, v) and k′ ≥ k. We have ∆(2r+∆) ≤ 2x0+1 ≤
k ≤ ⌊r⌋. Let wu be the vertex u +

(

−
⌊

r√
2

⌋

,
⌊

r√
2

⌋)

and wv be the vertex v +
(⌊

r√
2

⌋

,−
⌊

r√
2

⌋)

. We will

show that Sr,∆(u, v) is intersecting all the diagonal lines between wu and wv, which is more than s consecutive
diagonal lines.

Consider the diagonal line D defined by y = x. We want to prove that all the diagonal lines between D and
wv are intersecting Br(v) \ Br+∆(u). Since k ≤ ⌊r⌋, all those diagonal lines are intersecting Br(v) in a vertex
of Z2 with positive abscissa. If D is not intersecting Br+∆(u) with a nonnegative abscissa, then we are done.
Hence, we can assume that D is intersecting the circle Cr+∆(u) in a point with nonnegative abscissa xu (not
necessarily an integer point). Let xv be the nonnegative abscissa of the intersection between D and the circle
Cr(v). Then if the distance d between the two points (xu, xu) and (xv, xv) is more than

√
2, we are sure that

there is at least one integer point in D that lies in Br(v) \Br+∆(u). Since the distance between the two circles
on each diagonal on the right of D will be also greater than

√
2, there will an integer point for all the diagonal

lines between D and wv in Br(v) \Br+∆(u).
We know that the distance d is

√
2(xv − xu). Hence, we need to show that xv − xu ≥ 1. We have:

xv − xu =
k + k′

2
+

1

2
(
√

2r2 − k2 −
√

2r2 − k′2 + 4r∆+ 2∆2)

7



Either x0 = 0 and then ∆ = 0,k = k′ = 1 and we are done, or x0 ≥ 1 and then, k ≥ 3 and:

xv − xu ≥ k +
1

2
(
√

2r2 − k2 −
√

2r2 − k2 + 2k)

= k +
2r2 − k2 − (2r2 − k2 + 2k)

2(
√
2r2 − k2 +

√
2r2 − k2 + 2k)

≥ k − k

2
√
2r2 − k2

≥ k

2
> 1.

Now we can do the same for Br(u) \Br+∆(v) and then show that there exists a vertex in Br(u) \Br+∆(v)
that lies in each diagonal between wu and the diagonal defined by y = x+ 1, completing the proof. �

The following proposition gives, for given r and ∆, a method to construct better (r,∆)-identifying codes
than in the previous section. When r and ∆ are given, it is relatively easy to check with the patterns that the
code constructed in the proposition is an (r,∆)-identifying code. However, the general proof is very technical
even for restricted values of r and the outline of the proof is given in Appendix. Nevertheless, we believe that
the method can be used for any value of (r,∆).

Proposition 9 Let s ≤ diag(Br((0, 0))) and t be integers. Let Ld
s = {(x, y)|y − x ≡ 0 mod s}. Assume that

the following conditions hold:

(a) Sr,∆((0, 0), (−1, 0)) is intersecting all the diagonal lines modulo s,

(b) Sr,∆((0, 0), (−1,−1)) is intersecting all the horizontal lines modulo t,

(c) r is not too close to an integer :
√

⌊r⌋2 + 4 ≤ r < ⌊r⌋+ 1.

Then the code C = Ld
s ∪ Lh

t is an (r,∆)-identifying code of density 1
s + 1

t − 1
st .

We can sometimes improve the code of the previous proposition by removing the vertices in the intersection
between the horizontal and diagonal lines. The reason is that in the horizontal pattern, for any vertex there
is another vertex in the same horizontal line. Hence, if the distance between any pair of vertices in the same
line is not s, then if one vertex of the code is missing in a diagonal line, the horizontal pattern will intersect
the code in the same horizontal line with the other vertex. The same holds for the diagonal pattern with the
diagonal lines. As an example, in the case (r,∆) = (

√
5, 3 −

√
5), the horizontal pattern is intersecting all the

diagonal lines modulo 4, the diagonal pattern is intersecting all the horizontal lines modulo 6, and the code
C = (Ld

4 ∪Lh
6 ) \ (Ld

4 ∩Lh
6) is a (

√
5, 3−

√
5)-identifying code of density 1

3 . This is not always working, as in the

case (r,∆) = (
√
41, 5

√
2−

√
41).

4.2 Optimal constructions

If in the diagonal pattern there are all the diagonal and anti-diagonal lines modulo s, we do not need to put
horizontal lines in the code of Proposition 9, and then we obtain a code of density 1

s . This is in particular the
case when s is fixed and r is big enough:

Proposition 10 Let s be a fixed integer.
(i) There exists r0 ∈ N such that for all r ≥ r0 and all ∆ ∈ [0,∆m(r)] the set Sr,∆((0, 0), (−1,−1)) contains

all the diagonal and anti-diagonal lines modulo s in the first quadrant.
(ii) If, furthermore, the set Sr,∆((0, 0), (−1, 0)) contains all the diagonal lines modulo s, then there is an

(r,∆)-identifying code of density 1
s .

Proof. Claim (i): Since ∆m(r) ≤ 1, everything that is contained in Sr,1((0, 0), (−1,−1)) is also contained
in Sr,∆((0, 0), (−1,−1)). Therefore, for the first claim, we assume that ∆ = 1. We consider the vertex set Z

2

being partitioned into two subsets (see Figure 5) of ‘even vertices’ Z2
e = {(i, j) ∈ Z

2 | i + j ≡ 0 mod 2} and
‘odd vertices’ Z2

o = {(i, j) ∈ Z
2 | i + j ≡ 1 mod 2}. Clearly, Z2

e can be considered as Z
2 rotated (clockwise)

by π/4 where the unit length between closest vertices being
√
2 (instead of 1). Now the diagonal lines (resp.

anti-diagonal lines) of the original lattice Z
2 are vertical (resp. horizontal) lines of the new lattice Z

2
e.

1) Let us first consider the anti-diagonal lines and our focus is only on the first quadrant. The result of the
equation (1), when applied to the new lattice (where the radius is accordingly r/

√
2 and ∆ = 1/

√
2), implies

that there are at least r/
√
2 − x1(r/

√
2, 1/

√
2) horizontal lines of Z2

e (i.e. anti-diagonal lines of the original
lattice) which gives at least one vertex to Sr,1((0, 0), (−1,−1)). Between these lines, there are the horizontal

8



Figure 5: Partition of Z2 in ’even’ and ’odd vertices’

lines (anti-diagonal in the original lattice) of the odd lattice Z
2
o. Hence, the number of consecutive diagonals in

Z
2 contributing a vertex to Sr,1((0, 0), (−1,−1)) is approaching infinity as r grows. Trivially, these contain s

consecutive anti-diagonal lines intersecting Sr,1((0, 0), (−1,−1)) in the first quadrant, when r is big enough.
2) Now we consider the diagonal lines (again in the first quadrant). Applying the result on m(r,∆) in the

equation (3) we see that there is an horizontal line in Z
2
e (which is an anti-diagonal line in Z

2) such that the
number of its vertices in Sr,1((0, 0), (−1,−1)) tends to infinity as r grows. Similarly, there is a vertical line in Z

2
o

with growing number of intersecting vertices. Consequently, there are s consecutive diagonal lines intersecting
Sr,1((0, 0), (−1,−1)) in the first quadrant, when r is big enough.

This result implies by symmetry and translation that Sr,∆(u, v) contains all the diagonal lines modulo s in
the first quadrant (resp. second quadrant) for any u, v with v = u+ (1, 1) (resp. v = u+ (1,−1)), u, v ∈ Z

2.

Claim (ii): Let us now assume that Sr,∆((−1, 0), (0, 0)) contains all the diagonal lines modulo s. Let C = Ld
s

(see Proposition 9). We show that C is an (r,∆)-identifying code. Let u = (xu, yu) ∈ Z
2 and v = (xv, yv) ∈ Z

2

be two distinct vertices. Without loss of generality, it suffices to consider the following two cases:
(a) If |xu − xv| ≥ 1 and |yv − yu| ≥ 1, then by the first claim there is a diagonal line providing at least one

element of C to Sr,∆(u, v).
(b) Let now yv = yu or xv = xu, meaning that u and v lie in the same vertical or horizontal line. Then by

Lemma 8, Sr,∆(u, v) is intersecting all the diagonal lines modulo s. Hence we are done. �

4.3 Infinite families with good constructions

It is in general hard to get good values for s and t in Proposition 9. In this section, we give infinite families
of values (r,∆) for which s = 2, 4, 6 or 8 and |Sr,∆((0, 0), (−1, 0))| = s, leading by Proposition 10 to infinite
families with optimal codes.

We first start with s = 2. In this particular case, there is always a code with density 1
2 :

Proposition 11 If r is an integer and if r+∆ ≥
√
r2 + 2r − 1, then |Sr,∆((0, 0), (−1, 0))| = 2, and D(r,∆) = 1

2 .

Proof. The first part of the proposition is not difficult: if r is an integer, then for any ∆ < 1, (−r − 1, 0)
and (r, 0) are in Sr,∆((0, 0), (−1, 0)) and they are the only vertices with ordinate 0. If r + ∆ ≥

√
r2 + 2r − 1

and if (x, y) is a vertex of Br((0, 0)) with y 6= 0, x ≤ r − 1 and (x + 1)2 + y2 ≤ r2 + 2r − 1 ≤ (r +∆)2 and so
(x, y) ∈ Br+∆((−1, 0)). Clearly, Sr,∆((0, 0), (−1, 0)) is intersecting all the diagonal lines modulo 2.

For the second part of the proposition, we know by Proposition 10 that it will be true for r big enough, but
we will next construct a code that is an (r,∆)-identifying code for any r. Figure 6 gives the construction for
r = 4.

We construct the code with the following vertical lines of density 1/2: L
(o)
0.5 = {(0, y) ∈ Z

2|y odd} and

L
(e)
0.5 = {(0, y) ∈ Z

2|y even}. If r is odd, let X = {0, 1, . . . , 2r}. If r is even, let X = {0, 2, 4, . . . , r − 2} ∪ {r −
1} ∪ {r + 1, r + 3, . . . , 2r − 3} ∪ {2r} (see Figure 6). Then we construct the subset of Z2:

U = {(x, 0)|x ≡ i mod 4r + 2, i ≤ 2r and x ∈ X} ∪ {(x, 0)|x ≡ i mod 4r + 2, i ≥ 2r + 1 and i− (2r + 1) /∈ X}.

Finally, we define C = ∪u∈U (u+ L
(o)
0.5) ∪u/∈U (u+ L

(e)
0.5).

To show that this is an identifying code, we only need to check that it is intersecting the diagonal pattern,

for both orientations. Indeed, there is no free L-pattern in the code (each L-pattern contains a vertex of C).
Since Sr,∆(u, v) is containing an L-pattern whenever d(u, v) >

√
2, it is intersecting C. Furthermore, it is clear

that C is intersecting the horizontal and the vertical pattern, so only the case d(u, v) =
√
2 remains.

We will just prove the result for v = u + (1, 1) and r is even, the other cases are similar. In Sr,∆(u, v),
there are at least the following four vertices, namely : A = u + (−r, 0), B = u + (0,−r), C = v + (0, r) and

9



X

Figure 6: Optimal code of density 1
2 for r = 4 when

√
23− 4 ≤ ∆ < 1.

D = v+ (r, 0). Because we use the vertical lines L
(o)
0.5 and L

(e)
0.5, B (resp. C) is in the code if and only if u (resp.

v) is in the code. Let (x, y) be the coordinates of A. If both A and u are not in the code, then either y is even
and x ≡ 2r − 1 mod 4r + 2, or y is odd and x ≡ 4r mod 4r + 2. In both cases, it is easy to check that v is in
the code, finishing the proof. �

We now consider the case when Sr,∆((0, 0), (−1, 0)) has four elements:

Proposition 12 Let (r,∆) be such that |Sr,∆((0, 0), (−1, 0))| = 4. There is an (r,∆)-identifying code of density
3
8 .

Proof. In Sr,∆((0, 0), (−1, 0)) there is necessarily a vertex (a, b) with a ≥ b > 0. Then the other vertices of
Sr,∆((0, 0), (−1, 0)) are (a,−b),(−a− 1, b) and (−a− 1,−b). We write b = 2kb′ with b′ odd. We construct the
code C in two parts C1 and C2. Define C1 = {(x, y) ∈ Z

2|x and y are even} and C2 = {(x, y) ∈ Z
2|(y − x) =

i mod 2k+2 with i ∈ {2, 4, 6, . . . , 2k+1}}. Then the code C = C1 ∪ C2 has density 3
8 .

In the diagonal pattern Sr,∆((0, 0), (−1,−1)) there are at least the four vertices (a, b), (b, a), (a, b − 1),
(b − 1, a) and their symmetric images by a central rotation in (−0.5,−0.5). Note that some vertices can be
equal (if a = b for example) but in any translation of the pattern, there is always a vertex with both coordinates
even. Hence, C1 is intersecting the diagonal pattern. By symmetry, it is also intersecting the anti-diagonal
pattern.

We can show that C2 is intersecting the horizontal pattern by noticing that for any c ∈ Z, among the four
values c + b − a, c − b − a, c + b + a + 1 and c − b + a + 1 modulo 2k+2, there is exactly one of them in
{2, 4, 6, . . . , 2k+1}. The same holds by symmetry for the vertical pattern.

Let u and v be a pair of vertices of Z2 with d(u, v) >
√
2. If u and v are in the same line and d(u, v) ≤ 5, then

by Lemma 4, Sr,∆(u, v) is containing a set isomorphic to the horizontal or vertical pattern and so is intersecting
C2. Otherwise, Sr,∆(u, v) always contains a square of four vertices and so is intersecting C1. Finally C is an
(r,∆)-identifying code. �

In addition, there are some infinite families of (r,∆) for which we have optimal codes:

Proposition 13 Let k and i be two integers such that i is odd and i2 < 2k + 1. Let r =
√
k2 + i2 and

r+∆ =
√
r2 + 2k. Then |Sr,∆((0, 0), (−1, 0))| = 4 and Sr,∆((0, 0), (−1, 0)) is intersecting all the diagonal lines

modulo 4. If r is big enough, there is an optimal (r,∆)-identifying code of density 1
4 .

Proof. To prove that |Sr,∆((0, 0), (−1, 0))| = 4, we show X1 = Sr,∆((0, 0), (−1, 0))∩ {(x, y)|x > 0, y ≥ 0} has
only one vertex, and that vertex has strictly positive ordinate. Let (x, y) ∈ X1 , we have x ≤ ⌊r⌋ = k. If x = k
then y ≤ i. If y < i then (x + 1)2 + y2 ≤ (k + 1)2 + i2 − 1 ≤ r2 + 2k = (r +∆)2, so (x, y) /∈ X1. If y = i then
(x+1)2+y2 = r2+2k+1 > (r+∆)2 so (k, i) ∈ X1. If x < k, then (x+1)2+y2 ≤ r2+2k−1 ≤ (r+∆)2 and again
(x, y) /∈ X1. Therefore, the only vertex in X1 is (k, i), and i > 0. This implies that |Sr,∆((0, 0), (−1, 0))| = 4
and the four vertices of Sr,∆((0, 0), (−1, 0)) are (k, i), (k,−i), (−k − 1, i) and (−k − 1,−i). It remains to show
that the four values i− k, −i− k, i+ k + 1, −i+ k + 1 are different modulo 4. By adding i+ k, it is the same
to show that the four values 0, 2i, 2k+ 1, 2k+ 1+ 2i are different modulo 4, which is clear. The last claim is a
direct consequence of Proposition 10. �

Proposition 14 Let k be an odd integer not divisible by 3 and let r = 2k2 + 1, r + ∆ =
√
r2 + 2r − 3. Then

|Sr,∆((0, 0), (−1, 0))| = 6 and Sr,∆((0, 0), (−1, 0)) is intersecting all the diagonal lines modulo 6. If r is big
enough, there is an optimal (r,∆)-identifying code of density 1

6 .

Proof. Let again X1 = Sr,∆((0, 0), (−1, 0)) ∩ {(x, y)|x > 0, y ≥ 0}. The only vertices of X1 are (r, 0)
and (r − 1, 2k). This implies that |Sr,∆((0, 0), (−1, 0))| = 6 and that the 6 vertices of Sr,∆((0, 0), (−1, 0)) are
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(r, 0),(−r− 1, 0), (r− 1, 2k),(r− 1,−2k),(−r, 2k),(−r,−2k). Then the six values −r, r+1, 2k− r+1,−2k− r+
1, 2k + r,−2k + r are all different modulo 6, and we can conclude with Proposition 10. �

Proposition 15 Let k ≥ 18 be an integer such that k ≡ 2 mod 16 and let L =
(

k
2

)2 − 1. Let r =
√
L2 + 8 and

r +∆ =
√
L2 + 2L+ 4. Then |Sr,∆((0, 0), (−1, 0))| = 8 and Sr,∆((0, 0), (−1, 0)) is intersecting all the diagonal

lines modulo 8. If r is big enough, there is an optimal (r,∆)-identifying code of density 1
8 .

Proof. We first show that the vertices of X1 = Sr,∆((0, 0), (−1, 0)) ∩ {(x, y)|x > 0, y ≥ 0} are (L, 2) and
(L− 2, k). Those two vertices clearly are in X1. It is also clear that there are no other vertices with abscissa L
or at most L − 2. It remains to show that there are no vertices with abscissa L − 1. If there will be a vertex
(L− 1, y) in X1 then necessarily, y2 ≤ 2L+7. But 2L ≡ 0 mod 16, so 2L+5, 2L+6 and 2L+7 are not square
of integers, and so y2 ≤ 2L+ 4. Then (x + 1)2 + y2 ≤ (r +∆)2, a contradiction. A simple computation shows
that the eight vertices of Sr,∆((0, 0), (−1, 0)) are on different diagonal lines modulo 8, and again we conclude
with Proposition 10. �

5 Study of small values of (r,∆)

We finish with a study of the first values of (r,∆). Table 1 is summing up the results.

r\r +∆ 1
√
2 2

√
5

√
8 3

√
10

√
13

1 1 0.5b,c X X X X X X√
2 − 2

9

a
[ 1657

d
, 1
3

e
] X X X X X

2 − − [0.15, 0.17]a 0.5b,c 0.5b,c X X X√
5 − − − 0.125a [0.17f , 2

9

g
] [0.25b, 1

3

h
] X X√

8 − − − − 0.125a [ 17
i
, 4
21

j
] [0.25b, 0.375k] X

3 − − − − − [ 1
13.66 ,

1
6 ]

a [ 16
b
, 13
48

h
] 0.5b,c

X: No (r,∆)-identifying code
a: See [9] and the references therein
b: Trivial lower bound of Proposition 5
c: Code of Proposition 11
d: Lower bound in Proposition 17
e: Code of Figure 9
f: Lower bound in Proposition 18

g: Code of Figure 11
h: Code of Subsection 4.3
i: Lower bound in Proposition 19
j: Code of Figure 13
k: Code of Proposition 12

Table 1: Bounds for small values of r

5.1 Case (r,∆) = (
√
2, 2−

√
2)

In Figures 7a and 7b, the horizontal and diagonal patterns for (r,∆) = (
√
2, 2 −

√
2) are shown. That directly

gives, with Proposition 5, the lower bound D(
√
2, 2 −

√
2) ≥ 1

4 . We can improve this lower bound using
discharging methods. We first give an easy improvement on this bound to give an idea of the method we are
using.

Proposition 16 We have

D(
√
2, 2−

√
2) ≥ 4

15
.

Proof. To prove this lower bound, we use the frame of Figure 7c. Let F be a fixed set of vertices of Z2

forming the frame of Figure 7c. Let C be a (
√
2, 2 −

√
2)-identifying code. Then for any u ∈ Z

2, C ∩ (u + F )
contains at least three vertices. Indeed, F contains two disjoint horizontal patterns, so C ∩ (u + F ) contains
at least two vertices. Assume there are only two vertices, then there must be one of the vertex in a corner,
otherwise one horizontal or vertical pattern is empty. Then the other one must be in the opposite corner, but
that implies that a diagonal pattern is empty.

In fact, if C ∩ (u+ F ) contains exactly three vertices, there are, up to obvious symmetry, only five different
possibilities for the positions of the three vertices, depicted in Figure 8. We can observe that for any of those
possibilities, one of the neighbouring frame, i.e. one set v + F with d(u, v) = 1, is containing at least four
vertices of C: the frame on the top for case (c) and the frame on the left for the other cases.
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vu

(a)

vu

(b) (c)

Figure 7: The set S√
2,2−

√
2(u, v) when (a) v − u = (1, 0) and (b) v − u = (1, 1). In (c), the frame used to

increase the lower bound in the case (r,∆) = (
√
2, 2−

√
2).

(a) (b) (c) (d) (e)

Figure 8: In a (
√
2, 2 −

√
2)-identifying code, there are only those five possibilities for the frame of Figure 7c

to have three vertices. For each of them, there is a frame in the neighbourhood with at least four vertices.

We now give, for any u ∈ Z
2, charge |C ∩ (u+ F )| to each set u+ F . We apply the following rule: each set

u+ F with charge at least 4 gives charge 1
5 to the neighbouring sets v + F , with d(u, v) = 1 which have charge

3. By the previous remark, after this process, each set u+ F will have charge at least 3 + 1
5 = 16

5 .
That means that on average, the number of vertices of C in a frame u + F is at least 16

5 . Using the same
method as in the proof of Proposition 1 (see [4] and [9]), we can conclude that the density of C is at least
16
5 × 1

|F | =
4
15 . �

We can improve this lower bound by further analysis and more advanced discharging rules. That leads to
the following proposition, which is shown in Appendix B:

Proposition 17 We have

D(
√
2, 2−

√
2) ≥ 16

57
.

For the upper bound, we use the code C of Figure 9 that has density 1
3 . To show that C is a (

√
2, 2−

√
2)-

identifying code, we only need, in this particular case, to check that it is a
√
2-dominating set and that the

sets S√
2,2−

√
2(u, v) are intersecting C for d(u, v) ≤

√
2. Indeed, for the other pair of vertices, S√

2,2−
√
2(u, v) is

either containing a set S√
2,2−

√
2(u

′, v′) with d(u′, v′) ≤
√
2 or the set Br(u). This is not true for general values

of r and ∆.

5.2 Case (r,∆) = (
√
5,
√
8−

√
5)

In Figures 10b and 10c, the horizontal and diagonal patterns for (r,∆) = (
√
5,
√
8−

√
5) are shown. As before,

we can improve the straightforward lower bound of 1
6 using the frame of Figure 10d and discharging rules:

Proposition 18 We have
D(

√
5,
√
8−

√
5) ≥ 0.17.

Proof. We use frame F of Figure 10d. One can notice that in a (
√
5,
√
8 −

√
5)-identifying code, there

are at least three vertices in each translation of frame F . Furthermore, if there are only three vertices in one
translation u + F of F , then, necessarily, one of the three vertices, say c, is in a corner and without loss of
generality, we can assume it is in the top left corner. Then there must be one vertex of the code in position
c+(3, 0) or c+(3,−6) (positions A in Figure 10d) and one vertex in position c+(0,−3) or c+(6,−3) (positions
B in the figure). Then the frame on the left and on the top have necessarily four vertices. This is not enough
to improve the lower bound of 1

6 , but we can use further analysis. Let C be a (
√
5,
√
8−

√
5)-identifying code.
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Figure 9: A (
√
2, 2−

√
2)-identifying code of density 1/3.

u

(a)

vu

(b)

vu

(c)

A

A

BB

(d)

Figure 10: In (a), the set Br(u) for r =
√
5 and r =

√
8. In (b) and (c), the set S√

5,
√
8−

√
5(u, v) when

(b) v − u = (1, 0) and (c) v − u = (1, 1). In (d), the frame used to increase the lower bound in the case
(r,∆) = (

√
5,
√
8−

√
5).

Let F3A (resp. F3B) be all the sets u+ F such that |(u+ F ) ∩C| = 3 and there are exactly two (resp. at least
three) neighbouring frames v + F with d(u, v) = 1 such that |(v + F ) ∩ C| ≥ 4. Let Fi (resp. F≥i) be all the
sets u+ F such that |(u+ F ) ∩C| = i (resp. |(u+ F ) ∩ C| ≥ i). We have the following facts:

1. If a set u+ F ∈ F≥4 has four neighbours in F3A, then it has at least five elements of C.

2. A set u+ F ∈ F4 cannot have three neighbours in F3A and one in F3B.

3. If a set u+ F ∈ F3B, then either it has a neighbour in F≥4 which has a neighbour in F≥4, or it has four
neighbours in F≥4.

Indeed, let us for example show the first fact. Let us assume there exists u + F ∈ F4 with four neighbours
in F3A. Among the four frames v + F with d(u, v) =

√
2 (frames in diagonal), exactly two of them are in F≥4,

and they are in diagonal. Without loss of generality, we can assume that (u+(1, 1))+F and (u+(−1,−1))+F
are in F≥4. Then the four vertices of the code in u+F are fixed. Indeed, each neighbouring frame of u+F has
its corner fixed, and it is in u + F (the corner is fixed by the position of the two neighbouring frames in F≥4).
But then a diagonal pattern in u+ F is free (it contains no vertex of the code) in u+ F , a contradiction. The
other facts are proved in a similar way.

Now we give charge |(u+F )∩C| to each set u+F . Each set u+F of F≥4 gives charge 1
5 to each neighbour

of F3A and gives to each neighbour of F3B:

• 1
10 if u+ F has no neighbours in F≥4,

• 1
5 if u+ F has one neighbour in F≥4.

Then a set of F≥4 gives at most 3
5 if it has four elements of the code, and 4

5 otherwise, and each set of F3A

or F3B receives at least 2
5 . After the discharging, each set u + F has at least charge 3 + 2

5 = 17
5 . That means

that in the pattern F , there are in average at least 17
5 vertices of the code. As before, there are 20 vertices in

F so D(C) ≥ 17
100 = 0.17. �

13



Figure 11: A (
√
5,
√
8−

√
5)-identifying code of density 2

9 .

We believe that the lower bound in the previous proposition is not the optimal one. We can certainly
improve it with further analysis of this frame, but we think that will lead to very small improvements. For
upper bound, we use the code of Figure 11 of density 2

9 . Here, the code is clearly a
√
5-dominating set, and even

a 2-dominating set. It is also intersecting the horizontal and diagonal patterns (with rotations). If u and v are
distinct vertices of Z2, we can prove that either S√

5,
√
8−

√
5(u, v) contains an horizontal or a diagonal pattern,

or it contains a ball of radius 2, showing that C is a (
√
5,
√
8−

√
5)-identifying code.

5.3 Case (r,∆) = (
√
8, 3−

√
8)

In Figures 12b and 12c, the horizontal and diagonal patterns for (r,∆) = (
√
8, 3 −

√
8) are shown. Again, we

can improve the straightforward lower bound of 1
8 using the frame of Figure 12d:

Proposition 19 We have

D(
√
8, 3−

√
8) ≥ 1

7
.

u

(a)

vu

(b)

vu

(c)
(d)

Figure 12: In (a), the set Br(u) for r =
√
8 and r = 3. In (b) and (c), the set S√

8,3−
√
8(u, v) when (b) v − u =

(1, 0) and (c) v−u = (1, 1). In (d), the frame used to increase the lower bound in the case (r,∆) = (
√
8, 3−

√
8).

Proof. Let F be the frame of Figure 12d and let C be a (
√
8, 3−

√
8)-identifying code. Then for any vertex

u ∈ Z
2, (u+ F ) ∩ C must have at least two vertices. And so the density of C is at least 1

7 . �

The code of Figure 13 is a (
√
8, 3−

√
8)-identifying code of density 4

21 . Here checking that the horizontal and
diagonal patterns are intersecting the code is not enough. Indeed for (u, v) with v = u + (1, 2), S√

8,3−
√
8(u, v)

is not containing any diagonal, horizontal or vertical pattern.
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Figure 13: Code of density 4/21 for (r,∆) = (
√
8, 3−

√
8).

Appendix A: Proof of Proposition 9

In this appendix, we give an outline of the proof of Proposition 9:
Proof. We assume that the conditions of the statement of the proposition are satisfied.

First note that there are at most 2⌊r⌋ + 2 different horizontal lines in Sr,∆((0, 0), (−1,−1)), so necessarily
t ≤ 2r + 2.

The set Ld
s corresponds to a code with diagonal lines repeated modulo s. The code C = Ld

s ∪Lh
t has density

1
s + 1

t − 1
st . We will now prove that C is an (r,∆)-identifying code.

We have s ≤ diag(Br((0, 0))), so C is a dominating set. Let u and v be two vertices, u 6= v. Without loss
of generality, we can assume that v = u+ (x, y), with x ≥ 0. By Lemma 8, C ∩ Sr,∆(u, v) is nonempty when u
and v lie on the same horizontal or vertical line. Hence, we can assume that x ≥ 1 and |y| ≥ 1.

Let k be the maximum positive ordinate of a vertex with abscissa ⌊r⌋ in Br((0, 0)). Condition (c) says
that k ≥ 2. Let E = {(x1, y1), . . . , (xt, yt)} be a set vertices of Sr,∆((0, 0), (−1,−1)) such that yi ≡ i mod t.
We can assume that xiyi ≥ 0 for all i. Indeed, assume for example that xi < 0 and yi > 0. If (xi, yi) ∈
Br((0, 0)) \ Br+∆((−1,−1)), then (−xi, yi) ∈ Br((0, 0)) \ Br+∆((−1,−1)) and we change (xi, yi) to (−xi, yi).
Otherwise, (xi, yi) ∈ Br((−1,−1)) \ Br+∆((0, 0)), then (−xi + 1, yi) ∈ Br((0, 0)) \ Br+∆((−1,−1)), and we
change (xi, yi) to (−xi + 1, yi).

This implies that for 0 ≤ i ≤ k, E+(0,−i) is included in Sr,∆((0, 0), (−1,−2i)) and Sr,∆((0, 0), (−1,−2i−1)).
Therefore, by translation, Sr,∆(u, v) is intersecting all the horizontal lines modulo t for |y| ≤ 2k+ 1 and x = 1,
and by symmetry, this is also true for any x > 0. If x > 0 and y > 2k + 1, then it is clear that Sr,∆(u, v) is
intersecting all the diagonal lines modulo diag(Br(0, 0)); so Sr,∆(u, v) ∩ C is nonempty.

We assume now that x > 0 and y < −(2k+1). We first deal with the case x = 1. Without loss of generality,
we can assume that u = (0, h) and v = (1,−h′), with h′ + 1 ≥ h ≥ h′ ≥ k + 1. If h ≥ r, the diagonal
line y = x is not intersecting the circle Cr+∆(v) in a positive abscissa, and then it is clear that Sr,∆(u, v) is
intersecting at least diag(Br((0, 0))) diagonal lines. On the other case, as in the proof of Lemma 8, we will
show that the distance on the diagonal line y = x between the circle Cr(u) and the circle Cr+∆(v) is at least√
2. That will imply that Sr,∆(u, v) is intersecting at least diag(Br((0, 0))) consecutive diagonal lines. Let say

that the diagonal line y = x is intersecting Cr(u) in a vertex (xu, xu) and Cr+∆(v) in a vertex (xv, xv). Then

xu = h
2 +

√
2r2−h2

2 and xv = 1− h′

2 +
√
2r2−h′2+4r∆−2h′+2∆2−1

2 . Hence:

xv − xu =
h+ h′

2
− 1 +

√
2r2 − h2 −

√
2r2 − h′2 + 4r∆− 2h′ + 2∆2 − 1

2
≥ h′ − 2 ≥ 1.

Therefore, the distance between (xu, xu) and (xv, xv) is at least
√
2 and we are done.

With the same method, we can show that Sr,∆(u, v) is also intersecting diag(Br((0, 0))) consecutive diagonal
lines for x ≥ 2. �

Appendix B: Proof of Proposition 17

In this appendix, we prove the proposition 17:
Proof. We consider the pattern F of Figure 7c. We say that a pattern u + F is a neighbour of a pattern
v + F if u and v are neighbours, i.e. d(u, v) = 1. Then a pattern has four neighbours: on the left, on the right,
on the bottom and on the top. Let C be a (

√
2, 2−

√
2)-identifying code. We will show that in average, there

are at least 64
19 vertices of C in each pattern, proving the result.
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We first notice, that there are at least three vertices of the code in each pattern u + F and there are only
five possibilities, up to symmetry and rotations, that are shown on Figure 8. For i ≥ 3, let Fi be the set of all
patterns u + F ,u ∈ Z

2, such that |C ∩ (u + F )| = i. We define as well F≥i as the union of set Fj with j ≥ i.
We call a pattern A (resp. B,C,D,E) if it corresponds to the case of Figure 8a (resp. 8b,8c,8d,8e). We call a
pattern A+ if it is a frame A and if it has three neighbours in F3. We will show that each frame of F3 has as
neighbours:

• a frame in F≥5 and a frame in F≥4, or,

• a frame in F≥5, and it is a frame C, or,

• three frames in F4 or,

• two frames in F4 with one of them having at most three neighbours in F3, or,

• one frame in F4 and, at distance exactly
√
5, a frame in F≥5 and it is a A+.

In order to prove this, we consider the different type of frames and study their neighbourhoods. We always
choose for the starting frame the orientation of Figure 8. We first notice that except frame A and C all the
frames have at least two neighbours in F≥4, on the left and on the top.

Frame A : A frame A must have at least one neighbour in F≥4 (on the left). Assume first that there is the only one
(case A+), then necessarily the right neighbour of the frame is also a frame A. For domination reason,
there must be at least one code vertex in position 1 or 2 in Figure 14a.

– If there is a code vertex in position 2 (and maybe one in position 1), then the top-neighbour is
necessarily a frame E and there is a contradiction for the diagonal pattern in the top-right neighbour.

– Hence, the code vertex is necessarily in position 1, then the bottom-neighbour is a frame D. The
frame in bottom-right is in F4 and is fixed. The top-neighbour is necessarily a frame D and the
top-right neighbour is in F4 and is fixed. Then the right-right-up neighbour has at least five code
vertices. We say that this frame of F≥5 and the basic frame A+ are A-associated. Note that the
three first columns of the frame of F≥5 are completly fixed and give the direction of the frame A+,
so a frame in F≥5 can be A-associated to at most one frame A+. Moreover, the frame of F≥5 has at
most two neighbours in F3, in top and right position. They cannot be frames C or A+.

×
×
×

×
×
× ×

×
×
×
×

×
×
×

1

2

(a)

×
×

×

× ×

×
×
×

×

1

3

2

4

(b)

Figure 14: Black dot is a vertex of the code and × means there is no code vertex.

Assume now that the basic frame A has only two neighbours in F4 with all of their neighbours in F3, and
that the two other neighbours of the basic frame are in F3. One of the two neighbours in F4 is on the
left. Assume first that the second one is on the right. Then the frame in top of frame A must be in F3

and three of its neighbours are frames of F3, so it must be a frame A or C. It cannot be frame A, so it
must be a frame C and it is completely fixed. For the bottom neighbour, it must also be a frame A or C,
and it can only be a frame C. Then we have a contradiction because one vertex is not dominated. Hence,
we can now assume that the right neighbour of the basic frame is in F3. Then it is necessarily a frame A
and as before, there must be at least one code vertex among position 1 and 2.

– If there is a code vertex in position 2, then the top-neighbour is in F≥4, and the top-right neighbour
is also in F≥4, a contradiction.

– Otherwise there must be a code vertex in position 1. The top-left neighbour must be in F3. It
cannot be a frame E because a diagonal pattern would not be caught on position top-right. Also,
the top-left neighbour is a frame A. Then the top-neighbour is also in F3 and is a frame D. The
bottom-left neighbour is also in F3 and is fixing the bottom neighbour which is in F4. But then the
bottom-right is in F≥4, a contradiction.
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Frame B: We show that a frame B must have at least three neighbours in F4 or one in F4 and one in F≥5. Assume
that is not the case, then necessarily, the frame B must have exactly two neighbours in F4 (the left and
top-neighbours), the others must be in F3. We denote the central squares of the frame with 1,2,3,4 (see
Figure 14b). At least one of those vertices must be in the code for domination reasons.

– If there is a code vertex in position 1, then the bottom and right frames are necessarily frame D,
and then a diagonal pattern in position bottom right is not caught.

– If the code vertex is in position 2, then the bottom frame is a frame E, but then the left frame must
be in F≥5.

– By symmetry the code vertex is not in position 3

– Finally, if there is a code vertex in position 4 with no code vertices in positions 1 to 3, then the four
code vertices in position left and top are completely determined, and with a contradiction for the
diagonal pattern in position top-left.

Frame C : A frame C has a neighbour (the top one) in F≥5, and the top-top-one must be in F≥4. We say that the
frame C is C-associated to the top-neighbour in F≥5. Clearly, a frame in F≥5 is C-associated to at most
two frames C.

Frame D : Assume that a frame D has only two neighbours in F4 (the top- and left-ones) and two neighbours in F3.
We will show that one of the neighbours in F4 must have at most three neighbours in F3. We numerate
as before the vertices of the central square 1 to 4. By contradiction, we assume that the neighbours in F4

have all their neighbours in F3.

– If there is a code vertex in position 1, then on the right, there must be a frame C and then the frame
of F4 on the top has a neighbour frame in F5.

– If there is a code vertex in position 2 and none in position 1, then the bottom frame is a frame C,
the left frame, in F4, is fixed. For domination reason, there must be a code vertex in position 3, and
the top-left must be in F≥4.

– If there is a code vertex in position 3 and none in positions 1 and 2, then it must be a frame A on
the right, then on top-right it must also be a frame A, then the top-frame is fixed, and the left-up
must be in F≥4.

– Otherwise, there must be a code vertex in position 4, and none in positions 1 to 3, the top-frame is
completely fixed, and its right neighbour is in F≥4.

Frame E: Assume that a frame E has only two neighbours in F4 (in top and left positions) and two in F3. We will
show that one of the neighbours in F4 has at most three neighbours in F3. We numerate as before the
vertices of the central square 1 to 4. Here we also have the possibilities that none of the four vertices is
in the code. We assume that the two neighbours of F4 have only neighbours in F3.

– If there is one code vertex in position 1, there must a be frame A on right and bottom, and frame of
F4 on top-right.

– If there is one code vertex in position 2, then the bottom one is a frame C, and then the left-frame
is fixed, the top-top-frame must be in F3, and will necessarily be a frame D. Then the top-left is
necessarily a frame A and we have a contradiction for the top-frame.

– By symmetry, it is the same for position 3,

– If there is only a code vertex in position 4, then the left frame is fixed, and then the bottom-left must
be in F4.

– If there is no code vertices in the square, then the left-left-frame, which must be in F3, is a frame A
and fixes the left-frame. The same holds for the top-frame, but then there are at least four vertices
in the top-left-frame.

We can show from the previous analysis that a frame in F≥5 has:

• one A-associated A+ and then at most two neighbouring frames in F3. They are not frame C or A+ and
so have as neighbour at least one other frame in F≥4, or,

• no A-associated frame, two C-associated frames and no other neighbouring frames in F3, or,

• no A-associated frame, one C-associated frame and at most two other neighbouring frames in F3, or,

• no A-associated frame, no C-associated frame and at most four other neighbouring frames in F3.

17



Let now α = 12
19 . We give charge i to a frame of Fi. We apply the following discharging rules :

1. A frame in F4 gives α
4 to each neighbour in F3 different from frame A+, if there are four of them, and α

3
if there are at most three.

2. A frame in F≥5, gives
7
12α to A- and C-associated frames and α

3 to all its remaining neighbour in F3 at
distance 1.

Then, after applying those rules, every frame has at least charge 4− α = 3+ 7
12α = 64

19 . Indeed:

• A frame in F4 gives at most α so end with at least 4− α

• A frame in F≥5 gives at most max
(

14
12α, (

7
12 + 2

3 )α,
4
3α
)

= 4
3α, and so end with at least 5− 4

3α > 4− α,

• A frame A+ receives 7
12α and so ends with 3 + 7

12α.

• A frame C receives at least 7
12α from a frame of F5.

• The others frame of F3 receives at least α
4 + α

3 = 7
12α.

�
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