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Asymptotic behavior of Structures made of Plates

G. Griso
Laboratoire J.-L. Lions—CNRS, Boite courrier 187,
Université Pierre et Marie Curie, 4 place Jussieu, 75005 Paris, France,

Email: griso@ann.jussieu.fr

Abstract. The aim of this work is to study the asymptotic behavior of a structure made of plates of thickness 26 when §—0.
This study is carried on within the frame of linear elasticity by using the unfolding method. It is based on several decompositions of
the structure displacements and on the passing to the limit in fixed domains.

We begin with studying the displacements of a plate. We show that any displacement is the sum of an elementary displacement
concerning the normal lines on the middle surface of the plate and a residual displacement linked to these normal lines deformations.
An elementary displacement is linear with respect to the variable x3. It is written U (&)+R(Z)Ax3€3 where U is a displacement of the
mid-surface of the plate. We show a priori estimates and convergence results when §—0. We characterize the limits of the unfolded
displacements of a plate as well as the limits of the unfolded of the strained tensor.

Then we extend these results to the structures made of plates. We show that any displacement of a structure is the sum of an
elementary displacement of each plate and of a residual displacement. The elementary displacements of the structure (e.d.p.s.) coincide
with elementary rods displacements in the junctions. Any e.d.p.s. is given by two functions belonging to H! (S;Ra) where S is the
skeleton of the structure (the plates mid-surfaces set). One of these functions : U is the skeleton displacement. We show that U is
the sum of an extensional displacement and of an inextensional one. The first one characterizes the membrane displacements and the
second one is a rigid displacement in the direction of the plates and it characterizes the plates flexion.

Eventually we pass to the limit as §—0 in the linearized elasticity system, on the one hand we obtain a variational problem that
is satisfied by the limit extensional displacement, and on the other hand, a variational problem satisfied by the limit of inextensional

displacements.

Résumé. Le but de ce travail est d’étudier le comportement asymptotique d’une structure formée de plaques d’épaisseur 2§ lorsque
5—0. Cette étude est menée dans le cadre de I’élasticité linéaire en utilisant la méthode de ’éclatement. Elle est basée sur plusieurs
décompositions des déplacements de la structure, et sur le passage a la limite dans des domaines fixes.

On commence par une étude des déplacements d’une plaque. On montre que tout déplacement d’une plaque est la somme d’un
déplacement élémentaire concernant les normales & la surface moyenne de la plaque et d’un déplacement résiduel 1ié aux déformations de
ces normales. Un déplacement élémentaire est affine par rapport a la variable x3, il s’écrit U(&)+R (&) Axz€3 ot U est un déplacement
de la surface moyenne de la plaque. On établit des estimations a priori et des résultats de convergence lorsque §—0. On caractérise les
limites des éclatés des déplacements d’une plaque, ainsi que les limites des éclatés du tenseur des déformations.

On étend ensuite ces résultats aux structures formées de plaques. On montre que tout déplacement d’une structure est la somme
d’un déplacement élémentaire de chaque plaque et d’un déplacement résiduel. Les déplacements élémentaires de la structure (d.e.s.p.)
coincident avec des déplacements élémentaires de poutres dans les jonctions. Tout d.e.s.p. est donné par deux fonctions appartenant
a Hl(S;RS) ol S est le squelette de la structure (’ensemble des surfaces moyennes des plaques). L’une de ces fonctions : U est le
déplacement du squelette. On montre que U est la somme d’un déplacement extensionnel et d’un déplacement inextensionnel. Le
premier caractérise les déplacements membranaires des surfaces moyennes, le second est un déplacement rigide dans la direction des
plaques; il caractérise la flexion des plaques.

Pour finir on passe a la limite pour § —0 dans le systéme de 1’élasticité linéaire, on obtient d’une part un probléme variationnel
vérifié par la limite des déplacements extensionnels, et d’autre part un probléme variationnel vérifié par la limite des déplacements

inextensionnels.



1. Introduction

Many articles and books have been dedicated to the mathematical justification of plates models (see
for example [1,2]). A first study concerning the asymptotic behavior of a structure made of two thin plates
of thickness ¢, is due to Le Dret [7]. The obtained asymptotic model derives from the three-dimensional
system of elasticity thanks to a thin domain standard technique (the plates are transformed into a fixed
domain). At the limit, Le Dret obtains a two-dimensional system coupling the flexion displacements of the

two mid-surfaces of the plates.

Our study continues [4] and [5]. In this paper we use again the notions of elementary displacements
and of extensional and inextensional displacements and we extend them to the plates displacements and to
the displacements of structures made of plates. Our paper is organised into three parts. In the first one we
study the displacements of a plate, the second one is devoted to the displacements of a structure made of
plates from which we deduce the asymptotic behavior of a structure made of thin plates. And in the third

part we prove the technical lemmas used in the two first parts of our paper.

In Section 2 we consider a plate of thickness 2§. We first introduce the elementary displacements of a
plate (Definition 2.1). These are the displacements of the normal lines of the mid-surface of the plate. An
elementary displacement is linear with respect to the variable 3. It is written U (&) + R(Z) A x3€5 where
U is a displacement of the mid-surface. By such a displacement the normal line is transformed into a line
which is generally no longer perpendicular to the mid-surface. With each displacement u of the plate we
associate an elementary displacement U, (Definition 2.2). Theorem 2.3 gives estimates of appropriate norms
of U, and of the displacement u — U, in terms of §. Using the elementary displacement U, we show (formula
(2.3)) that the displacement u is the sum of a Kirchhoff-Love displacement and of a residual one @, which
satisfies estimate (2.4). We are now equipped to obtain the asymptotic behavior of a displacements sequence
(w) 550 with strain energy of order §. This is the main result of this section and it is given in Theorem
2.6. The previous decomposition allows us to give a simple interpretation (see Theorem 2.6) of the limits of
the unfolding 75 ('yl-j (u,;)) of the strain tensor v;;(us) (where the unfolding operator 75 is given in Definition
2.5) in terms of the derivatives limits of the Kirchhoff-Love displacements and of the residual displacements.
There is not a unique associated elementary displacement that satisfies estimates (2.2). In Definition 2.2 we
give the simplest one. But the one we give in Definition 2.9 is more suitable for the study of a structure

made of plates.

The structure S5 made of plates of thickness 2§ is introduced in Section 3. Our hypotheses about
the skeleton of the structure S (i.e. the plates mid-surfaces set) allow us to consider a wide range of
structures. We extend to them the notions and decompositions of Section 2. Definition 3.1 gives us the
elementary displacements of plates-structure (e.d.p.s.). These displacements coincide with elementary plate
displacements in each plate and there are rods elementary displacements in the junctions (see [5]). Any
e.d.p.s. is known by two functions belonging to H'(S;R?). The first one U is the skeleton displacement,
the second one gives the rotations of the normal lines of the mid-surfaces. We show that U is the sum of an
extensional displacement and of an inextensional one (Definitions 3.6 and 3.5). The first one characterizes
the membrane displacements and the second one is a rigid displacement in the direction of the plates and it
characterizes the plates flexion. Corollary of Lemma 3.7 gives estimates for them with an appropriate norm.

In subsection 3.4. we consider an e.d.p.s. sequence (w) with strain energy of order §. Thanks to all

6>0
these decompositions we give the limits of the unfolding 7;5('}/1']‘(11;5)) of the strain tensor as in the case of a
plate. We also characterize the space of the inextensional limits displacements. In the last subsection, we
give the limit for 6 — 0 of the linearized elasticity system (3.9), written in S5, where the applied forces Fj

satisfy assumptions (3.11). The main results are Theorem 3.8 and Theorem 3.10. In the first one we show
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that the extensional displacement limit is the solution of a second-order system, and in the second one we

show that the limit of the inextensional displacement is the solution of a fourth-order system.

In this work we use the Einstein convention of summation over repeated indices. As a rule, the Greek

indices a and 3 take values in {1,2} and the Latin indices i, i, j and j take values in {1,2,3}.

2. The plate displacements
2.1. The elementary plate displacements

The Euclidian space R? is related to the frame (O;é},é,¢3). Let w be a bounded domain in R? with a
lipschitzian boundary. The plate 25 = wx] — §,0[, § > 0, is the open set having as middle surface w and
as thickness 25. The direction of the normal lines of w is given by €3.The reference plate is the open set
Q=wx]-1,1].

The running point of Q5 (respectively Q) is denoted © = (z1,x2,23) = (T, x3), (resp. (T,t3)) where T € w
and t3 €] — 1, 1].

For any open set w of R", n € {2,3}, and any displacement u belonging to Hl(w,7 R™), we put

’ 8ul 8Uj } ’ 6ul 6ul

1
E(u,w)Z/,%‘j(U)’Yij(U)7 ’Vij(“):§{3m + o1 D(u,w) = + Oz Oz’
- j i w J J

Definition 2.1 : An elementary plate displacement (e.p.d.) is an element ® belonging to H'(Qs, R3),
such that
O(z) = A(Z) + B(Z) A x3€5, a.e. v = (T,x3) € wx] —0,d[= Qs,

where A and B belong to H'(w,R3); A is the first component and B the second component of the e.p.d. ®.
Elementary plate displacement associated with a displacement of H!({;, R?).

Definition 2.2 : With any displacement u € H* (25, R3), we associate the elementary plate displacement
U, defined as

Ue(l') = U(EC\) + R(f) A x3€3, T = (/l'\, {E3) € Qyg,

(21) U N 1 ) R ; » R 3 5 ) R )
2 : =553 3 A .
(Z) 55 /_Ju(x,xs) T3, (z) 553 /_5 2383 A u(Z, x3)ds

The component R3 of R is equal to 0.

Theorem 2.3 : The elementary plate displacement U, verifies

1
= Uel|72(0, 58y < CE(u, Q).

(2.2) E(Ue, ) + Dl — U, ) + 55

The constants depend only on w.

Proof : See Annex A. O

Proposition 2.4 : Any displacement u belonging to H'(Qs, R3) is the sum of a Kirchhoff-Love displacement

and a residual one u

23)  u(z)= (ul@) - xgg—Z’f@))a + (Z/lz(f) - xgg—i’j(a:‘))gz FUs(R)E +a(z), € Qs

where U is the first component of the e.p.d. U,. The residual displacement @ belongs to L*(w, H'(]—46,46[,R?))

and verifies

2
< CE(’U,,Q(;).

o1
L2(Qs,r3)

8173

1
(2.4) EHUH%/?(Q&R?’) + H
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Proof : We define uw by

() = ulz) — (ul #) — 13%@))51 - (uz(f) - xg%(f))gz —Us(3)E.

X1 2

This displacement belongs to L?(w, H'(] — 6,6[,R?)). We obtain (2.4) using the estimates of Theorem 2.3.01

2.2. Limit of a plate displacements sequence.

Definition 2.5 : The unfolding operator 75 from L?(Q5,R™) into L?(2, R™) is defined by
(2.5) T5(o) (T, t3) = o(T, 6t3), a.e. in Q.
For any element ¢ € H!(5), we have 75(¢) € H*(2) and

(2.6)

Tl am) e om(a)

Theorem 2.6 : Let (u5)5>0 be a sequence of displacements of H'(Qs,R3) verifying
(2.7) E(us, Q) < C6.

There exist (as,bs) € R® x R3 and extracted sequences (still denoted in the same way), such that

2.8) {UL(; —ay,5 + x2b3 5 — Uy, Us 5 —ags — x1b3 5 — Us weakly in Hl(w)

5{2/13’5 —ass+ T1b2s — .’Egbl,g} — Uz  weakly in H'(w).

Moreover Us belongs to H*(w). We have the following weak convergences of the unfolded of us, us and of
the components of the strain tensor :

ouU. oU.
TJ(UM —ais+ I2b3,5) —~U; - t3—3, TzS(UQ,zS —ag§ — I1b3,5) — Uy — t3_33

oxy Oz

675 (us,5 — as,s + x1ba,s — x2b1,5) — Us, weakly in  H'(),
1
g’]:s (us) — @ weakly in  L*(w, H*(] — 1,1[,R?)),

1{8Ua 3U5}_t 02Us

1 0u,
T « - = )
5 (Yap(us)) 5 Dby

2 0t

dzg  Ozq 73(%3@6)) -

9 ‘
Ts(vss(us)) — a%j weakly in  L*(9).

Proof: With each u; we associate the e.p.d. U, s with components Us and Rs. From (2.4) the displacement
C C
Un,s = U 61 + Uz 565 has a strain energy E(Unss,w) < —E(Ues,Q5) < —E(us,Qs) < C. The classical

) )
. . . . .. . ~ a175 — b375l’2

Korn inequality applied to Uz affirms the existence of a rigid displacement rar () = RIS P
2,6 T 03,671

such that
E(us,Qs5) < C.

> Q

lUnts — TM,5||%2(MR2) +DUns — rms,w) < CEUMs,w) <

If b, 5 is the mean of R4 5 on w, we obtain from the Poincaré-Wirtinger inequality

C C
1Ras = baslli2() < ClIVRas[Fraquye < & (us, Q) < 52

=53
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The estimate of £(U, s, {25) obtained in Theorem 2.3, gives

(2.10) Ha;{;’f +R2,5‘ ;(W) + Hagfj - R4 5( ;(w) < %E(u&ﬂs) <C,
hence
Hag;’f +b2,5‘ ;(w) + Hag;,; - 1,5\ ;(w) < %S(ué,m) < 592

Now we apply the Poincaré-Wirtinger inequality to the function Us s + b 521 — b1 sx2. There exists a3 s such
that

C
[lUs.s — a5 + basx1 — b1,5$2||%2(w) < 5

1 -
The sequences Uns,s — 7,5, 5{213,5 —azs + ba sz — bl,(;;vg}, 0(Ra,s — ba,s) and g’fg(u(;) are bounded in

H'(w,R?) (respectively H'(w) and L?(w, H'(] — 1,1],R3)). We extract from these sequences some subse-

quences, still denoted in the same way, such that

UL(; —ays+ $2b3’5 — Uy, UQ’(; — a5 — x1b3,5 — Usy Weakly in Hl(w),
(5{1/{3’5 — a3+ T1bas — I,Cgbl’g} — Uz weakly in Hl(w)7

(2.11) §(Ra,5 _ ba,5) — R, weakly in Hl(‘”)?

%%(ﬂé)éﬂ weakly in  L%(w, H'(] — 1,1[, R?)).

19) 19
The limits of the sequences (5{ 513,5 + Rg}g} and 5{ (;/{3,5 — Rl,é} are equal to zero by (2.10), hence the
£ T2
equalities
oU3 oU;
2.12 2 —_R SR
( ) 6.’E1 25 6332 1

and the belonging of Us to H?(w). From the limits (2.11) and from the equalities (2.12) we immediately
deduce the limits of the unfolded 75 (ulyg —ais +$2b3,5), Ts (’LLQ}& —ag5— l‘lbg,g) and 675 (u;),’(s —azs+T1bas—
Igblﬁ) in Hl(Q)

To calculate the components of the strain tensor we use the equality (2.3)

1 OUys  OUgs 521/[3)5 1 (0uqns = Ougys
Yas(us) = 2{ Oz + O0rq } maxaax,g 2{ Oxp + 0xq }’
1 0uss | Ouss _ dus,s
Va3 (us) = 2{ Ox3 + 0% }’ Yss(us) = Oxs

These equalities are transformed through unfolding. All the sequences 75 (7;; (us)) are bounded in L?(2) and
they have a limit in H~!(Q), which can be explained thanks to the convergences (2.11) and the equalities
(2.12). Hence the last limits of (2.9). O

Remark 2.7 : We consider again the sequence of displacements (u5) of Theorem 2.7. We put (U ; 5)

6>0 >0

another sequence of e.p.d. verifying
’ ’ 1 ’ 2
- —|ug — < <
» » ) 5 - —
(2.13) EUe,5,26) + Dlus — U 5,25) + 53 llus — Ue sll12(0; 50) < O (us,825) < €9,
where the constant is independent on §. Then we obtain

s = Ul 2oy S C8 [[Ras = Ripsllzze) < C.



The displacement ugs is decomposed now into the sum of a new Kirchhoff-Love displacement and a new

. ~!
residual one u;

’ ’

’ 8[/[376 5 ’ 82/{3,5 . r, !
Us = (Z/{L(; — T3 B, )61 + (Z/Ig’(; — 3 B2y )62 +Us; €3 + Uy

)
Oug |12

0z3 11L2(25.2%)
subsequences expressed by the same notation, we obtain the convergences

< (83, After extraction of

The displacement g verifies the inequality ||1~L:;||%2(957R3) + §2H

Us — Z/l[/; — 0 §(Rs — R:;) —0 strongly in  L*(w,R?)

%%(a;)éa’ weakly in - L?(w, H'(] — 1,1[,R?)).

on _ o

The limits of the unfolded 7 (v;3(us)) give Eraialen
3 3
1/675(ts), the limits (2.8) and (2.9) do not depend on the decomposition of the displacement wus into the

sum of an e.p.d. and a residual displacement. What matters is to be able to approximate us with the help

. Except for the limit of the sequence of the unfolded

of an e.p.d. that verifies the estimates (2.13). It is to be noticed that the mere knowing of the limits of the

unfolded of the stain tensor components of the sequence (’LL5) is not enough to determine completely the

>0
residual displacement w. It is obtained but for a function of L?(w, R3).

2.3. A second decomposition of a plate displacement

We consider now a round-rimmed plate Q:s with a middle surface ws. We denote

Q:; = {ac € R? | dist(x,w) < § }, s = {x € R3 | dist(x,0w) < 6)}
Q5 = {x € R? | dist(z,w) < 20 } x| — 8, 6|= wagx] — 4, 4.

Lemma 2.8 : For any 6 €]0,0d0], there exists an extension operator Ps, linear and continuous from
H (5, R3) into H'(Q5,R?) such that

(2.14) Ps(u), oy

S

. { E(Ps(u), Q) < CE(u, Q)
E(Ps(u), Qs \ Q) < CE(u,Ty)

The constants do not depend on 6.
Proof : See Annex B. O

The extension of u to §~25 is still denoted wu.

A second elementary plate displacement associated with a displacement of Hl(Q/é,]R?’).

Definition 2.9 : With any u € H' (5, R?) we associate the e.p.d. U, defined by
Ulx)=U (&) + R (&) Awsds,  x €y,
2.15 / 6 / 60
(2.15) U@ =— w(M)dM, R (Z)=—= M Au(M)AM, 7€ ws.
0 B(&;6/2) o B(&;6/2)

Theorem 2.10 : We have the following inequalities:

/ au 2 . ,

S3||VR ||2, ; (5H——’R A €Eq E(U., Q) < CE(u, ),

(216) || HL (WE’RO) + 8a:a € L2(w5,R3) + ( € 5) — (u 5)
D(u—=Ue, Q) < CE(u, Q) = Uell72qr oy < CFE(w, Q).



The constants depend only on w.

Proof : We now consider the covering {w:in}neNJ (see Lemma 4.1 in Annex A). We put Wg,n ={z e
w:;n | dist(Z, 8w;,n) > 5/2} and O;’n = w;,nx]—& o, Og,n = wg’nx]—& 0[, n € Ns. The family {wg7n}1<n<N5
verifies

"
measure( U Wsn \ w5) =0

NENs

From Lemma 2.3 in [4] there exists a rigid displacement r,, such that
’ 1 2 ’ T 3
(2.17) D(u —14,04,,) + 6—2||u - rn||L2(O;m7R3) <CE(w,O5,,),  Tal(T) = an+by ANApz,  (an,by) € R

The constants do not depend on n nor §. We calculate the mean of (u —r,)(M) and of ZM A (u — 1) (M)
in the ball B(Z,§/2), T € w:s:n. Due to (2.17) we obtain

APPR ﬁ O ’ ’
U (Z) — an — by A ApZ)|3 < gg(u, Osn) = U = an — by A A, ||L2 ) < C6&(u, Os ),
’ C C
and HR (x >_ bn, ||2 S(u Oé n) = ||R bn ||L2( 1 S Eg(uvod,n%

(2.18)

where || - ||2 refers to the euclidian norm of R3. From the inequalities (2.17), (2.18) and after elimination of

the rigid displacement r,,, we obtain |ju — U, ||2 ) S C5%&(u, (9;1,5). We add all these inequalities to

< 828 (u, Q).

Lz(o//

obtain ||u — U||L2(Q, 5

The components U and R of Ué belong to H'(ws,R?). The partial derivatives of these functions are
ou . 6 du OR . 24 —  du

2L (MydM,

FE el S 900 D =75 sy o

0 0 "
Let us calculate the means of 37(u —1rp)(M) and of ZM A aT(u —7,)(M) in the ball B(%,0/2), T € ws,,.
Thanks to (2.17) we obtain :

) — bn A €q +52

Haxa |56 = Feewon

(2.19)
— by Ay

<
L2(w? m3)

E(u, 05.,),

Haxa L2 (wy &8 Hc‘)xa

hence, on the one hand 5’ < CS(U,O;M;) using (2.18) and on the other hand

(o3 a
L2 (w;/_’ 5E3)

(53HVR||L2( w) < CE&(u, (’);w;) . We add all these inequalities
au 2 : 5 ) ,
5“% “RONE S CEWR), PIVRIE, ) < CE@,05)

From (2.18) and (2.19) once more we obtain
D(u—U,,0, ;) < CEw, 0, 5) = D(u—U,, Q)< CE(u, ).

Theorem 2.10 is proved. |



3. The displacements of a structure and the asymptotic behavior of a structure made of plates
3.1. The structure made of plates

We work on a set of N plane bounded domains with polygonal boundary, included in R3, (wl)l <i<n- The

skeleton S is the union of (Ul) A face of S is a closed set w;. An edge of S is a maximal segment

1<I<N®
shared by a set of faces or a maximal segment belonging to the boundary of a face. A wvertexr of S is an

extremity of an edge.
Hypotheses : We suppose
H1 e for any pair of faces (w;,w,), there exists a sequence of faces w; = wy,, @y, ... w;, = W, such

that w;, and w; have an edge in common, 0 <r <k —1,

r+1

H2 e for any vertex A and any pair of faces (w;,w,) containing A, there exists a sequence of faces

W, =Wy, Wi, ... Wy, =Wy, such that ; and W, , have an edge in common containing A, 0 <r <k —1,

H3 e the skeleton S is fixed all along some edges.

Figure 1. The skeleton S.

We denote
e 'y the fixed part of the skeleton,
e 7 the set of edges common to several faces,

o N the set of vertexes common to several faces.

The structure made of plates is the domain S5 = {z € R® | dist(z,S) < §}. This structure is made of the
gathering of the plates Q; s with thickness 20, with middle surface w; s and with rounded rim. Each domain
9275 is equipped with a local frame (O(l);é(ll),ég), égl)), oW e w, égl) is the normal direction to the face
w;. The plate 9275 contains the plate ;5 = w;x] — 6,0 (R3 being equipped with the above local frame).
The reference plate is the open set €; = w;x] — 1,1] obtained through the transformation of ;5 by the
orthogonal affiniy of ratio 1/0.

The structure Ss is fixed to part I'g 5 = {:r € 0S5 | dist(z,Ty) = 5} of its boundary . For each edge J € J

we choose a unit vector €5 in the direction of the edge.
N

We consider S5 = U w5, the set of the middle surfaces of the plates.
1=1
There exist two constants dg > 0 and pg > 0 depending only on the skeleton S such that for any ¢ €]0, o)

the parts common to several plates are in the union of the junctions

U {x € R? | dist(z,J) < 770(5}.
JeJ



The restriction of a function ¢, defined on S, (resp. Ss, Ss), tow, (resp. wy s, Q;yé) is denoted ¢*). In the same
way, we denote 2P =20 . &) and xél) =z . éél) the local variables (z(!) = (a?(l),xg)) = (acgl),xél),mél))).
The space H'(S,R") (resp. H'(Ss,R™)) is the set of the functions ¢ defined a.e. in S (resp. Ss), with
values in R™, such that the restriction ¢(!) belongs to H'(w;, R™) (resp. H'(w;s,R™)) and such that for
any edge J € J and any pair of faces (w;,wy) containing J, we have the equality of the restrictions to J,
(6115 = (¢™); in H'2(J,R™).

The space H%O(S, R") is the subspace of H!(S,R") the elements of which are a.e. equal to zero on I'g. We
equip H!(Ss, R3) with the inner product

U oy®
u,v) = / ZACR VOIS St
; wz,a{ 837&[) (“)xg) }

The associated norm is denoteted || - ||.
3.2. The elementary displacements of plates structure

Definition 3.1 : An elementary displacement of a plates structure (e.d.p.s.) is a displacement
® € H'(S;,R?), such that there exist two elements A and B belonging to H'(Ss,R?), such that for any
le{l,...,N},

o0 (z) = AV(20) + BV (@0) A e

is an e.p.d. of the plate Q;,&

The functions A and B are respectively the first component and the second component of the e.d.p.s. .
The function A accounts for the displacement of the skeleton faces while B accounts for the rotation of the

normal directions to the plates and of the rotation of the faces around the edges.

Theorem 3.2 : For any displacement u € Hllo (Ss,R3) there exists an e.d.p.s. U, of components (U, R) €
Hy (S5, R?) x H} (S5, R?) such that

N ) 2
S {SITROZ: ) + csHm RO A b <cew,s;),

o L2 (w1,5,8%)

E(Ue,Ss5) + D(u—Ue, S5) < C&(u,85), || — U725, 3y < C5°E(u, ).

(3.1)

Proof: Let u bein H%O(S(;, R3). Thanks to Lemma 4.1, for any [ belonging to {1,..., N}, we extend the
restriction u(Y) to the plate Q; s, into a displacement of 51,5 (the plate of thickness 2§ and of middle surface
wi 2s). Therefore, using the formulas (2.15), we can define an e.p.d. Ué(l) of the plate Q;,(; verifying (2.16).
Both components & ) and R'®) of U." are the restrictions of elements belonging to H{ (S5, R?) (corollary

of Lemma 2.8 in Annex B).

Then we build a new e.d.p.s. U, equal to Ué in the open set U {x € Ss | dist(xz,J) > 27706} and equal to
an elementary displacement of rods structures in the junctionb{ e(‘s7ee Annex B). We then can deduce (3.1). O
Proposition 3.3 (Korn inequality) : For any displacement u € H%O (S5, R3), we have

(3.2 SIIRI + 811 + D, 83) + [l 5,0y < pECon S5)

The constant does not depend on 6.



Proof :  The estimates (3.1) of the gradients of the R() functions, the nullity of R on I'y and the
hypothesis H1 allow us to obtain step by step ||R||2L2(S&R3) < C/6%E(u,Ss). This inequality and (3.1)
give then an upperbound of the L? norms of the functions gradients ¢/(). The nullity of ¢ on TI'y and
the hypothesis H1 imply then that ||u”%2(sa,11@) < C/63%E(u,Ss). From these estimates of U and R follow
D(U,,Ss5) < C/5%E(u, S5) and ||U€Hi2(55,m3) < C/6%€(u,Ss). Then again, thanks to (3.1), we obtain the

estimates of the L? norm of u and of its gradient. O

3.3. Inextensional displacements, extensional displacements

The space H) . (S,R?) is the set of the functions ¢ defined a.e. in S, with values in R?, such that:
e for any [l € {1,..., N}, the restrictions ngl) and (bgl) belong to H'(w;) and qi)él) belongs to

Hy(w) = {v € L*(w) | VA V¥ € [L*(@)]? }

where p(Z) = dist(Z,N') (distance from the point Z € S5 to the vertexes belonging to several faces),

e for any edge J € J and any pair of faces (w;,wy) containing J, we have (qi)(l))u = (¢®); in
HV2(J,R3),

e the function ¢ is equal to zero on I'y.

We equip H;,FO(S, R3) with the inner product

N
<UV>=Y / {Has @D 0V O) + pvtts” - TP,
=1 "t
and with the norm [U|, = \/<U,U >,. The usual norm on H) . (S,R?) is
N
el = | [ {1vue + e+ plved}
=17t
Lemma 3.4 : The norms || - ||, and | -|, are equivalent in H;’FO (S,R?). Moreover the space Ht, (S,R%) is
dense in H) - (S,R?).
Proof : See Annex C. O

Definition 3.5 : An inextensional displacement of the skeleton is an element U belonging to
H) 1 (S,R?) such that

Vie{l,...,N}, qpUY)=0, in w.

The membrane component U ]s/ll) =U fl)é(ll) +U. 2(1)5(21) of an inextensional displacement is a rigid displacement

of the face w;. The inextensional displacements space of the skeleton is denoted Dy (S).

Definition 3.6 : An extensional displacement of the skeleton is an element of the orthogonal Dg(S)

of Dy(S) in H} 1 (S,R?).

The set of extensional displacements is equipped with the semi-norm

N
1015 = | Y- [ 0s@®)1as@®), U € Di(S).

[=1"wt

The semi-norm || - ||z is a norm, because if U € Dg(S) is such that ||U||g = 0 then, v,5(U®") = 0 for any

[. The displacement U is then of inextensional type and is equal to zero.
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Lemma 3.7 : The norms || - ||g and | -|, are equivalent in Dg(S).
Proof : See Annex C. O
Corollary of Lemma 3.7 : Let u be a displacement belonging to Hllo (Ss,R3) and U, the e.d.p.s. given by

Theorem 3.2. The restriction to S of the first component U of U, can be written as the sum of an extensional

displacement and an inextensional displacement,
(3.3) U=Ug+ Uy, Ug € Dg(S), Ure€ Di(S).
According to the inequalities (3.1) and Lemma 3.7 we have

c c
(3.4) Ug|2 < Cl|Ug|% < 5 €W S), U2 < 53¢ (U, S)-

The constants are independent of §.
3.4. The limit displacements

Let (’IL§) be a sequence of displacements belonging to H%O (Ss,R3) and verifying

6>0

(3.5) E(us,Ss) < C6,

where the constant is independent of §. Thanks to the estimates (3.2), (3.4) and (2.4), from the sequences
1__ . . .
0Us, 0Rs, 6Ur s, Ug,s and Sﬂ(ug”) we extract some sub-sequences, still denoted in the same way and which

weakly converge,

SUs — Uy, §Rs =R  weakly in Hf (S,R?),
0Urs — Uy weakly in  Dy(8S),

(3.6) Ugs = Ug weakly in  Dg(S),

1__ -
gmugwpw weakly in  L?(w;, H'(] — 1, 1], R®)).

The sequences dUs and 06U s have the same limit in le,l“o (S,RB) because the sequence 6Ug s converges to
0 in H; (S,R?). After passing to the limit and from (3.1) comes

U
833&[ )

(3.7) vie{l,...,N}, VYae{1,2}, =RO AW,

Now we define the space of the inextensional displacements limits. We put

0
Dy(S) = {A € Dy(S)n HE (S,R?) | 3B € HE (S, R?), % =BOAED, viedl,... J\f}}

(63

For any A € D;(S), there is only one B which we denote V.A. Then we have

oA
PO

[

vie{l,...,N}, Vae{1,2}, VAD A

We equip Dy (S) with the norm [|A||; = ||V.A]| H1(s,23)- The inextensional limit displacement U belongs to
Di(S).

11



3.5. Limit of the unfolded displacements and limit of the unfolded strain tensor components

Using (2.8) and after transformation by unfolding we have the following limits in the refering plates :

5Ty = UY weakly in  H' (9, R?)
8U(l)

Ty~ U 5) = UP, — 1) —L2 weakly in H'(5),
Lo

)

l l
(3.8) 10Uy, Uy,

82
@ ) 1 3 .
%(7&[3(“6 )) ) P (l) ax(l) }7153 W weakly in LQ(QZ),
1 0uY l) 8~(l) .
75(%43(“55[))) B 675(” ; TJ(’Y:;B(Uf;”)) 0 weakly in  L2(€).
3

3.6. Elasticity problem

The plates are made of an homogeneous and isotropic material. Our equations are given within the framework

of linearised elasticity. In Ss let the elasticity system be

0 8“2 0
_8—%{ Q5 5 } =F;s in S;,
(3.9) us=0 on IDog,
duy s .
aiji/j/ 895', n; = 0 in F(;, F5 = 885 \FO,(;.
J

The variational formulation of the problem (3.9) is
us € HE (S5, R?)

3.10
o | awimatushe @ = [ Fo voe SR
) )

where a, ;7 v = A6i;6; ;v + (8,76, +0,;6;; ). The constants A and p1 are the Lamé constants of the material.
The plates Qz s are submitted to volume applied forces . Among these forces we make a distinction between

those concerning the extensional displacements and those concerning the inextensional displacements.

N

(3.11) Fs(x) =Y _{0f1@D) + fe@V)}1q,,(x),  fr, f& € L*(S,R®),
=1

where € 5 = w;x] — 0,0[ (in the local frame ) and where 1g, ; is the characteristic function of the open set
Q; 5. Hence several volume forces are stacked up in the junctions.

The function fg verifies the condition of orthogonality
(3.12) VVGD[(S), /fE'VZO.
]

Let (Us,Rs) be the two components of the e.d.p.s. associated to the solution us of the problem (3.10). In
the plate Q; s, the displacement ug) is the sum of the e.p.d. Z/l (A(l )+ RO @O A xg)égl) and a residual
displacement. The displacement Us is the sum of an extensional displacement Ug s and of an inextensional
displacement Ur 5. Then, thanks to (3.1) and (3.4), we have

1
(3.13) ‘% : Fé'ué_/SfE'UE,zi_5/SfI'UI,6’ < CH{|Ifellrzs e + | frll2s e} VE (us, Ss)
S5

12



hence

\/S Fy - us| < C{l ol 2y + [1flle 800 }VEVE (unr S5).
S

We deduce that the solution of the variational problem (3.10) verifies the estimation
(3.14) E(us, S5) < Co{llfellta(s ) + 1f1ll12(s.09) }-

3.7. Asymptotic behavior of the stress tensor

We begin with determining the partial derivatives of the residual displacements %Y in the normal directions

to the plates.

Let ¢ be a displacement of H(;,R?), equal to zero in the neighborhood of all the sets Jx] — 1, 1[ where .J
()

is an edge of the face ;. For § small, the displacement ¢s(x) = 6(1)(?5(1), xi) is an acceptable displacement

of the full structure S5. We have the following strong convergences of the unfolded of the strained tensor

components of ¢g:

’]jg(yag(gb(;)) —0 strongly in LQ(Ql)7

1 0¢

T5(Va —_— ——

(3.15) 3 (1a3(69)) — 3 oD

0 .
7:5('733(¢6)) — 8%3) srtongly in - L%(€Y).
3

strongly in  L*(€),

We now take ¢5 as a test-displacement in (3.10), we transform by unfolding the integral on ;5 into an

integral on €2; and after dividing by the thickness of the plate we pass to the limit. We obtain

Uy, woruly ouy, ULl oul1 gy 0u 01 ol 9g
(3.16) / S LG R (l)’z}“”z“) 0 ] ot
Oxy Oz Oxs Oxy” Ot oty Oty’  Oty’ Oty

1
because the right member of (3.10) tends to 0 (%|/ Fs - ¢s| < C6|9|] 12 (0 3 ) -
Qs

The set of these test-displacements is a dense subset in L?(w;, H*(] — 1,1[,R?)). Hence the equality (3.16) is

o
verified for any element of L?(w;, H'(] — 1,1[,R3)). We deduce the partial derivatives ﬁ in terms of the
t3
first partial derivatives of U g) and of the second partial derivatives of U I(l),
a0 o) 70 ouy, Uy,
ou (9 (9U3 A E,1 (1) )
(3.17) S _ 22y, = - A
ot 8t3 ot T2t ) Oy

We give now the weak limit in L%(€);) of the unfolded of the stress tensor components

T (011 (u)) = —

) 1 ) 1
E [aUﬁm 0 82U§,:)>> { aU]EE,Q 0 82U§,:)>> H

1-12L g0 % 5,02 0z a2
ouy, Uy 9*U ;"
l El E2 l I
73(‘712(%(;)))_\:“{ @ O -2ty PSEGYSRO) }
(3.18) Oy ox oz 3
l l
Tonl) ~ 15[ e P (M 07U
1 -2 axgl) oz (1),2 ( axgl)g

T5(0is(ug’)) = 0.
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3.8. The extensional displacement Ur or the problem of coupled membrane plates

Theorem 3.8 : The extensional displacement Ug is the solution of the variational problem

2

(3.19)

[(1 = )78 )08 (VD) + 0700 (U )18V )] /fE YV € Dg(S).

where E is the Young modulus and v the Poisson constant . |

The proof of Theorem 3.8 requires the next lemma.

Lemma 3.9 : For any element V € H%O(S(;O,R?’), there exists a sequence of displacements (V5)0<5§50
belonging to Hy. (Ss,, R*) N Hy, (S5, R?) such that

(3.20) Vs — V strongly in  Hf, (S, R?).

Proof : See Annex E. O

Proof of Theorem 3.8 : Let V be an element of Hllﬂo(S7 R3), we extend V into an element, still denoted
V, of the space Hf (Ss,, R?). We take Vs as a test-displacement in (3.10), we transform, by unfolding, the
integrals on the plates into integrals on the reference plates then we divide by 2§. Thus we are led to take
into account again and again the neighborhoods of the edges belonging to 7.

Let J be an edge common to several faces. For any face w; containing J, we have

(3.21) {I(I)Em‘dm(w Henst D T (vi; (V7)) — 0 strongly in  L?(Q).

The part of Ss neighbour of the edge J and common to several plates is contained into the cylinder
{z € R® | dist(z,J) <mod}. Thanks to the convergences (3.21) its contribution in the limit problem is
equal to zero. Then we can make 0 tends to 0 in order to obtain (3.19) with the displacement V. The limit
of the right handside term of (3.10) is given by (3.13).

The set Hf (S,R?) is dense in H)p, (S,R?) (Lemma B.3), which gives (3.19) with any displacement of
3.9. The inextensional displacement U; or the problem of coupled bending plates

Theorem 3.10 : The inextensional displacement Uy is the solution of the variational problem

aQU(l 62‘/3“
V) out axg”a Yoy

N
(3.22) PV EECIY
3(1—v ; /wz

+uAU,<gAVSU>} _ / f1-V, WV eDy(S).
S

The proof of Theorem 3.10 requires the next lemma.

Lemma 3.11 : For any element V € D;(S), there exists a sequence of displacements (W5)0<6<50 such that

%(Wé(l)) — VO strongly in  L*(Q,R®),

"0

o2V, ‘
(3.23) Ws € Hp (S5, R?),  and %(Pyaﬁ(Wél))) — —tg)ﬁ strongly in L*(Q),
oxy 833[3

%(Vks(Wél))) — 0 strongly in  L?(€Y).
Proof : See Annex E. O
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Proof of Theorem 3.10 : Let W be an element of D;(S). For any edge J and any face W, containing J

we have
l .
(3.24) l{i(l)Ewl,s | dist(i(l>,J)<n05}%(%J'(Wé( ))) —0 strongly in  L*(€Y).

We take W;s as a test-displacement in (3.10). We transform, by unfolding, the integrals on the plates into
integrals on the reference plates, then we divide by 26. We pass to the limit (thanks to (3.24) the contribution
of the immediate junction neighborhoods tends to 0). We obtain (3.22) with the test-displacement V. |

Remark 3.12 :  The problems (3.19) and (3.22) are coercive. It results that the whole encountered
sequences converges to their limit. We are going to show now that these convergences are strong. We

consider the formal displacement U of the structure Ss defined in each plate by
1 ~
U (2) =0V @) + SU}”(@\(”) +vUPEOY A LPED,  ze,

Let 17¢ be the characteristic function of the complement in Ss of the union of the edges neighborhoods

U {z € S5 | dist(z, J) <mod}. In the reference plate €, we have the convergences
JeJg

T5(7ij(u§)T5(17e) = 0 weakly in L2(S).

Hence
N N
> [ @O < 1m 37 [ Tio )T 4 ) 1)
=1 §—0 =1 97}
1 1

= lim 6/ U”(u(s)'y”(u(g)ljc < lim — / oij(us)vij(us)
5_)0 Ss 5—0 20

_(}1_{%25/ Fs - us = l1m 6/ Fs-us = /fE UE+/fI Ur

The first term of (3.24) is the sum of the left handside members of (3.19) and (3.22). Hence the above

inequalities are equalities. Besides

.1 1 — 1
tim o5 [ ot (a1 < Jim g | ovtos)gtus) < T 5 | g ()
5 5

6—0 2 §—0 5—0 2
and élirg%/ 0ij ug)%j(u(;)ljc < hm 25/ 0ij u,;)%j(u(;)lgc < hm 25/ 045 (us)vij (us)
We deduce that hm — a” (us)vij (U5)(1 — 1j0) = 0. All the sequences of the unfolded of the strained

25
tensor components Strongly converge in L?();). We have also the strong convergences

oUs — Uy, 6Rs — R strongly in H'(S,R?),
oUrs — Ur strongly in  D;(S),
Ugs — Ug strongly in  Dg(S).
3.10. Complements

The orthogonal condition (3.12) requires an explanation . First, for any function ¢ € H'(w;) equal to zero

on the edges, the displacement ® defined by

o1 = (bégl), in wy, and by 0 in the other faces,
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belongs to D;(S). We deduce that the function fg?g is orthogonal to ¢ and then, by density of these

test-functions in L?(w;), we get
1
(3.25) vie{l,...,N}, W =o.

Let Dy o(S) be the space of the inextensional displacements equal to zero on the edges belonging to J and
let (DLO(S))J' be its orthogonal in D;(S) for the inner product < -,- >,. The subset (DLO(S))J' is of finite

dimension. The condition (3.12) is then equivalent to
(3.26) YV e (Dro(9))", / fz-V =0
S

This last condition results in a finite number of equalities related to the means in the faces w; of the

components fg)a of fg.

4. Annexes
4.1 Annex A. Proof of Theorem 2.3

The proof of Theorem 2.3 is based on Lemma 2.3 in [4] and on Lemma 4.1.
We denote

wy = {T € R? | dist(z,w) < n}, n > 0.

Lemma 4.1 : There exist R > 0 and &y > 0, depending only on w, such that for any § €0, 8], was is
covered by a family of open sets, of diameter less than RS, star-shaped with respect to a disc of radius §/2
and such that any point of was belongs to a finite number (independent of §) of open sets of that family.
Proof : The open set A,, =](p — 1/2)4, (p + 3/2)8[x](q — 1/2)8, (¢ + 3/2)d[, (p,q) € Z?, has a diameter
of 2¢/26 and is star-shaped with respect to the disc of center ((p + 1/2)d, (¢ + 1/2)8)) and of radius §/2.
Let Zs be the set of the pairs (p,q) of Z? such that A,, C w. The distance between the boundary of w and
Up.g)ez; Apq 18 less than 36.

Let us proceed now to the covering of the neighborhood of the boundary of w.

The boundary of w is lipschitzian. Hence there exist constants A, B, C, M strictly positive, a finite number
N of local coordinate systems (z1,, x2,) in (Oy; €1, €2,-) and maps f, : [—A, A] — R, Lipschitz continuous
with ratio M, 1 <r < N, such that

N
ow = U {($1T7$2T) | Tor = fr(xlr)a T1r E] - AaA[}v
r=1
N
{z e w|dist(z,0w) < C} C U{(l‘h-,l‘g»p) | fr(z1r) < 22r < fr(z1r) + B, |z1r| < A} Cw,
r=1
N
UJC\W C U {(ZM’aIQr) ‘ fr(xlr) - B < Tor < fr(xlr)v |x1r| S A} C R2 \w-
r=1

Through the use of easy geometrical arguments we show that if 46 < inf{C, B/v/1 + M?}, we have

N
was \w © (J{ @irsw20) | frl@rr) = 28VTH M2 < oy < frlany), o] < A},
r=1

N

{ac € wldist(z,dw) < 45} C U{(xlr,xzr) | fr(z1r) < ®or < fr(T1r) + 46V 1+ M2, |21,] < A}.

r=1
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For any a €] — A, A — 2§, the domains
Bé,a,r = {(I1T7I2r) | fr(‘rlr) - (GM + 2)6 < Topr < fr(xlr) + (GM + 2)67 Z1r €]a7a+ 25[}

and Bs o, Nw are star-shaped with respect to the disc of center (a + 6, f-(a) + (3M + 1)) and of radius §/2.
These open sets have a diameter less than 6(3M + 1) = R0.

For 0 < § < & = inf{B/(6M +2),A/2,C/4} the open sets Ap, ((p,q) € Zs), Bs.a,r, Where ap, = pé €
[—A, Al (p €Z), Bs—a, and Bs a—25, (r € {1,...,N}) cover was; their diameter is less than R and they
are star-shaped with respect to a disc of radius 6/2. Any point of wes belongs to a finite number (depending

only on w) of open sets of that family. O

We denote {wé "}nEN5
by ws.n = w;,n Nw, n € Ns.

the covering of wys obtained in Lemma A.1 and {w(;,n} the covering of w defined

nENs

lines of slope
+M and -M

—

Figure 2. The domain Bs 4 »

Proof of Theorem 2.3 : The open set ws,, is star-shaped with respect to a disc of center A, and of
radius 6/2. We put Os,, = wsnX] — 0,[C Qs, n € Ns. The domain Os,, has a diameter less than (R + 2)4,
and is star-shaped with respect to a ball of center A,, and of radius §/2. From Lemma 2.3 of [4], there exists

a rigid displacement r,, such that
1 9 T 3
(41) Duw—rn,0s5,) + 6—2||u — TnHL2((95,n,m3) < CE(u,0sr), To(r) =an+by ANAsz, (an,b,)€R°.

The constant depends only on R.
We calculate the mean of (u —r,)(x) and of z3€5 A (v —r,)(x) on the intervals {Z} x] —6,d[, T € ws,y, then

we integrate on wy, s the inequalities we have obtained. Thanks to (4.1), we have
. — iy . . _C
(4.2) / U@ — an — b, A A22dT < CSE(u, Of.p), / |Ra(Z) — ban|?dT < gg(u, Os.n)-
wWs,n ws,n

In (4.1) we eliminate the displacement r,, thanks to the estimations (4.2). Hence we have ||u—U,| |2L2(05 Ly S

C5%E(u, Os ), then we add these inequalities and we obtain
||u — UeHiz(Q&u@) < 0525(11,,95)
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Both components of e.p.d. U, belong to H'(w,R?). We calculate the mean of the gradient of (u — r,)(z),
then the mean of zzé3 A V(u — r,)(x) on the intervals {Z}x] — 4, [, T € ws,. Using (4.1) we obtain

(4.3) H (%L'a L2 (ws, n,R‘?‘) H axa L2 (ws. n,R2) = gf(u Osn),
hence, after elimination of b, in the first inequality,
H oUy ||1? Hau2 H oUy 81/{2 2
(4.4) 221 L2 (ws,y 2 Oy L;uws n) 32332 axl 52(«05,”)
+H 835? 2‘ Lz(w,n)JrHaTz B Rl‘ L2 (ws.n) = XE(U,OM)

From (4.3) and (4.4) we deduce the estimate of £(Ue, Os.,)
EWUe, Os,n) < CE(u,Os.1) hence E(Ue,Qs5) < CE(u, Q).
From (4.3), (4.4), (4.1) and after elimination of the gradient of r,, we also deduce
Du—Ue,Os5,) < CE(u,0s,), hence D(u— U, Qs) < CE(u, Q).

Theorem 2.3 is proved. |

4.2 Annex B. About the second decomposition of a plate displacement
4.2.a Extension of a plate displacement

Let w be a polygonal bounded domain in R?. The boundary of w is made of a finite number of segments.

Let C be a connected component of dw. There exists d, > 0 such that for any & €]0, d,] the domains
Q:{xeRﬂdwwu@<5} amlcwz{xekﬂﬁﬁuﬁ)<%}

are rods structures. Then there exists i > 0 such that all the balls centered in a vertex of C, and of radius
37765 contain the junctions of the rods belonging to Css.

We recall that for any § €]0, d'g], there exists an extension operator, linear and continuous, Ps from H'(Cs)
into H'(Css) such that for any ¢ € H'(Cs),

(4.5) Ps(¢)c, = ¢, [[1Ps(&)[|£2(css) + OV Ps(D)[l122(ca5)s < C{||¢||L2(Cs) + 5\|V¢||[L2(c5)]3}-

The constant does not depend on 4.

Proof of Lemma 2.8 : We begin with extending « in the neighborhood of a connected component of dw.
Let C be a connected component of w. The restriction of u to Cs is a displacement belonging to H!(Cs, R3).
Hence there exists an elementary displacement of a rods structure (e.d.r.s.) U g (see [5]) which coincides

with a rigid displacement in each set B(A, 31,0) N Cs where A is a vertex of C and which verifies
1

(46) 6(U67R,C§) + D(’LL — U€7R,C(S) + 5—2”’& - U€7R||%2(C(;,1R3) < CE(U,C(S)

The displacement U, g is also an e.d.r.s. of C35 and E(Ue g, Css) < CE(u,Cs). The displacement

Ue,, = Ue,r + Ps(u— Ue )
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is an extension of u to the set Cs5. From (4.6) we have the following inequalities:
(4.7) E(ug,,Cs5) < 2{E(Ue,r,C35) + E(Ps(u— Ue,r),Ca5)} < CE(u,Cs)

In the same way we build an extension of u in the neighborhood of the other connected components of dw.
The extension Ps(u) is then the displacement which coincides with w in Q:; and which is equal to one of the
previous extensions in 25 \ Q:;. The estimates (2.14) are the immediate consequences of the inequalities (4.7)

obtained in the neighborhood of each connected components of w. 0

Remark 4.2 : If one of the edges of the boundary of w is fixed we can take an e.d.r.s. with its two
components equal to zero on this edge without modifying the estimates (4.6) and then extend u beyond this

edge by 0. |

Remark 4.3 : We also can construct an extension operator Ps when w is of lipschitzian boundary with

the help of a few changes. |

4.2.b Modification of an e.p.d. in the neighborhood of an edge.
Let J be an edge contained in the face w, Js the rod

Js = {z € R® | dist(z,J) < 5} C Vs,

and u a displacement of the plate Qs. Without being detrimental to the general case we can suppose that
the edge’s direction is € and that one of these extremities is the chosen origin on the face, so that J is
identified with the segment [0, L] x {0} where L is the edge’s length.

The restriction of the displacement u to the rod Js can be decomposed into the sum of the elementary rod
displacement (e.r.d.) U. r of components U and R and of a residual displacement. We choose an e.r.d.

U.,r coinciding with a rigid displacement in the balls centered in the extremities of J and of radius 704 (see
[5]). We have

Ue,r(z) = Ur(w1) + Re(r1) A (228 + 2363).
We know (see [4] and [5]) that the components Uz and R of U, g belong to H'(J,R?), and verify

du 2
—R—RR &

e
L2(]0,L[,3) dzq

(4.8) da
5(UE’R, Ja) + D(u - Ue,Ra J5) +

C
< =& i
L2(]0,L[r3) — 02 (u, Js)

Ue,RH%?(J&n@) < C(‘:(’LL, Jg)

5—2””—

The functions Ur and Rp are extended into functions belonging to H} (R,R3) (by construction Rp is
constant and Up is linear in a neighborhood of the extremities of J). These extensions are then identified
with elements belonging to H} (R? R) depending only on the variable z1.

Let

Iy = {x € Oy | dist(, J) < (2o + 1)d }
be the rod and jg the neighborhood of J in wy,
Js = {x € ws | dist(Z,J) < 2npd }

From the estimates (4.8) of the restriction of u—U, g to Js we deduce the following estimates of the restriction
of u — U, g to J:;:

’ 1 ’
(4.9) D(u — U g, J5) + 5—2||u - U67R||2LQ(J;7R3) < CE(u, Jy).
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The constant depends on L and 1.
The displacement u of the plate Q:; is decomposed into the sum of an elementary plate displacement U, p,

given by (2.15), and of a residual displacement,
UE’P(.’E) = UP(/Z’\) + RP(ZE\) A x3€3, T € Q:;

Besides the inequalities (2.16), we also have

oUp 2

3 2 . N < '
) IIVRPHL?(JJ,WG) * 5” 0z, Re A ea‘ L2(J5.23) &, Js)
(4.10) .
D(u - Ue,Pa Jé) + ﬁ”u - U67P|‘i2(Jé,R3) < Cg(uv Jé)a

This allows us to compare the different elementary displacements. We obtain

(4.11) |Uer — up||§2@,m3) + 0%||RR — RPH;@M < Co6&E(u, Jy).
The estimate of ||[Rg — Rp||2L2(JA ) follows from the nullity of Rgp — Rp on J.
R

We are now going to modify the e.r.d. U p in the neighborhood of J.
We consider a function m belonging to C>(R™, [0, 1]) such that

(4.12) mt)=1  Vt>2, mt)=0 Vt<1, m' ()| <2 VteR
We define the components, U and R, of a new e.r.d. Ue/ by

U (7) = U&R@)(l B m(cﬁst(;f, J)>> +up@)m<dz‘st(§, J) )

7705 7706
;o . dist(z,J 5 dist(z,J .
W RE (R ) (PR, e

’

U,

€

() =U' (7)) + R (3) Nasés, xeQs.
Hence we have by construction of U,

if ©€Q; and dist(Z,J) <nod then U,(zx) = U r(x)
if €Oy and dist(z,J) > 26 then U,(zx)= Ue,p(z).

Thanks to (4.8), (4.10), (4.12) and (2.16) the e.p.d. U, verifies

: ou' , 2 )
3 2 o > ') < /
S IVR |72 (s ) + H_axa R A&, o +EWU,,Qs) < CEM, ),
D(u—U,, Q) < CE, Q) Nu—Upll3aq, oy < C62E (u, Q).

The constants depend only on w, J and 7.

4.3 Annex C. About the spaces H) . (S,R*) and Dg(S)

For any 6y €]0,7[ and any r > 0, we denote C. 9, = {(a:,y) €B(O;r) [0<0< 00}, Jo the segment of origin
O and of extremity A = (0, 1) and we denote Jp, the segment of origin O and extremity B = (cos(fy), sin(fp)).

We denote r = dist(z,0), z € R%
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Lemma 4.3 : Let ¢ belong to H'(C} 4,), for any a €]0,1], we have
(1.14) 6Pr°72 < 26l ) + oIV
' Crng < SNz + 53V OllTzz 01 012

Proof : We recall that for any u € H*(0, L) and for any « €]0, 1], we have

r 2,a0—1 4 v 2 2 o / 2
(4.15) /0 lu(t)| 2t Lt < QLH/O lu(t)] tdt+a2La/0 o () [2dt

Let us take ¢ € C>®(C14,). We apply the inequality 4.4 to the restriction of ¢ to a radius coming from the

origin and contained in C g,. This gives

1 0),rsin(6))[2 4 1 ) 2 (4o . 2
/0 |¢(TCOS(T3_ZSIH( ))l dr < 5/0 |¢(rcos(¢9),rsm(9))|2rdr+E/O ‘a—f(rcos(ﬁ),rsm(@))‘ rdr.

We then integrate with respect to 6 between 0 and 6y and we obtain (4.14). The density of C*(C1 g,) into
H*(C4 g,) gives the inequality for any function of the space H'(C1 g, ). O

Lemma 4.4 : Let u be in HY?(Jy), v be in HY/?(Jp,) and a €]0,2]. There exists a function w belonging
to HE (Cy.9,) N L*(Chp,) such that

loc
Wy, = U, W ge, =V, and

C
Hw”%Z(CLQO) Jr/c [Vw[?r® < ?{HUH?{UZ(J(J) + ||UH§-11/2(J90)}'

1,00

The constant depends only on 6y. Moreover w belongs to WHP(Cy g,) for any p, such that 1 < p < Tt
@

Proof : We denote J, (resp. Jéo), the segment of same direction as Jy (resp. Jp,) and of length tan(6y/2).
The function u (resp. v) extends by reflexion into an element still denoted u (resp. v) belonging to H'/2(.J;)
(resp. H'/2(Jy,)).

Let @ and © be the functions belonging to Hl/Q(J(; U J(;O) defined by

’l]uzo = u, ﬂlJ; (tgeo) = u(téb),
- . L . t €]0,tan(6p/2)|
vu(/)(teo) = v(tey,), vy =,

where & = cos(A)é; + sin(6)&, 0 € [0,0]. There exists a continuous lifting operator from H'/2(.J; U Jéo)
into H'(Cian(e, /2).6,)- Let U (resp. V) be the lifting of @ (resp. ©). In the triangle Tp, of vertexes (0,0),
(0, tan(6y/2)) and tan(fo/2)(cos(6p),sin(bp)), containing Ci,9, and contained in Cian(g, /2),0,» We define w
by

x1 sin(fy) — 2 cos(bp)
x2(1 — cos(fy)) + x1 sin(fp)

T2
1‘2(1 — 005(90)) +x1 sin(GO) ’

w(ry, x2) = U(w1, T2) + V(xy,22)

In the above expression the coefficients of U(z1,22) and V(x1,22) are barycentric coordinates of point
(z1,22) belonging to Tp,. By construction we have w;, = v and Wy, = . The function w belongs to
L?(Tp,) and

||wHL2(T90) S ||U‘|L2(Ctan<90/2),90) + ||VHL2(C¢M,(90/2),90) S C{||u‘|§{1/2(JU) + HUH%{l/Q(JeO)}'
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We then calculate the partial derivatives of w and we conclude that w belongs to H}. .(Ty,). Moreover we

have
[Vw(z1,22)| < C{|VU (21,22)| + |VV (z1,22)| + |(U = V) (21, 22)[r '} (z1,22) € Cian(so/2),00

The constant depends on 6y. Thanks to the inequality of Lemma 4.3, we have
2.a-2_ 4 2 2 2
U=V < —||lU = Vlli2 (016, + IV = Vllf2 (64 0012
C1.00 (0% (0%

C

2 « 2 2

c [Vw|r® < az{‘|U||H1(Ctan(90/2),60) + ||V‘|H1(ctan(90/2),60)}.
1,60

Eventually we obtain the estimate of Lemma 4.4. Moreover we have

% ap | 32
/ |[Vw|? < {/ \Vw\27“a} {/ r_z_w}
C1,04 C1,6, C1,04

Hence w belongs to WP (Cy g,) if a_p

5 p<2. Thatistosayfor1§p<2+a.

Corollary : If a = 1, the function w belongs to W?(Cy 4,) for any 1 < p < 4/3. O
Proof of Lemma 3.4 :

Step 1 The norms are equivalent.
Let be V in H;,FO(S7 R3). We applied the classical Korn inequality to the membrane displacements Vj&l) =
Vl(l)é(ll) + V;”éél) and then we add all the inequalities to obtain

N

l l
S UV g + IVVA e} S CUVE + IV a0y
=1

hence

VI, < C{IVIp+ IVIlz2(sem }-

The space le,ro(sz?)) is embedded in L?(S,R?) (see Lemma 4.4). Then we prove by contradiction that
there exists a constant Cyp such that ||V]|, < Cy|V|,. Moreover we can immediately see that there exists C;
such that [V'|, < C1]|V]|,. The norms |- |, and || - ||, are therefore equivalent.
Step 2 The space H} (S,R?) N L>(S,R?) is dense in H) 1 (S,R*) N L>®(S,R?).
Let be V € H) . (S,R?) N L>(S,R?), we consider the sequence (V5),., defined by

V@) =V@) Y m(w), Zes

AeN

where m is given by (4.12). The displacement Vj is equal to zero in the neighborhood of each vertex belonging
to NV. This displacement belongs to Hp, (S, R3) N L>°(S,R3) and we have

[[Vs = V[z2(s,r3) < CO||V||Loo(8,53) V] Loe(s,28) < ClV || Lo (3,53) -

We calculate the gradient of the restriction of V:;(l) to each face ;. Using the L? estimate of Vs—V, we obtain
[Vslp < C{IVI],+IV|lL(s 2 }- The constant does not depend on 8. The sequence (V(5)5>0 weakly converges

to Vin H} 1 (S,R?), which gives the density of Hf (S,R?) N L>(S,R?) into H) 1, (S,R?*) N L>(S,R?).
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Step 3 The space H!

pIO(S,RB) N L>(S,R3) is dense in H}!

p,Fo (S7 RS) :

We consider the truncature function Th; from R3 into R3 defined by

x if ||z|]e < M

T =Y 20 it ol > M,
Tels

where M belongs to R% and where || - [|2 is the euclidian norm of R3. The map T is piecewise C! verifying
Th(0) = 0 and |[VTa||{zo (23 23y < C (the constant does not depend on M).
Let V € H;,FO (S,R?), Vas = Tar (V) belongs to H;FO (S,R3) N L>=(S,R3) and verifies

[IVarll2(ses) < [V [|L2(s g8)s [IVar|| Lo (s,28) < M, Vimlp < CIV],.

The constant does not depend on M. When M tends to infinity, V), tends strongly to V in H;’FO(S,RS).

Hence the density of H) . (S,R*) N L>®(S,R?) in H] . (S,R?). o

Proof of Lemma 3.7 : We put V € Dg(S). As in the proof of Lemma 3.4 we get
N
1 l
> IV e + IV e} < CUVIE + IV 2(s o))
1=1

We put J € J a common edge to the faces @; and wy. The restrictions to J of the membrane displacements

V]\(/p and V]\(f ) completely define the restriction V|;. Hence we get

S IVl sz ey < CUVIE + V1B .00)
JeJg

With the help of Lemma 4.4 we build a displacement W € H} - (S,R?) such that

wO =vW vie{1,.. . N}, Wiy =V, VJeJ,

and verifying
N
l l
W2 < CY VA IR + IV 1R} +C D0 Vil sz < CUVIE + 11V s,00)):
=1 JeJg

The displacement V' — W is of inextensional type and hence orthogonal to V', hence
(4.16) VIp < W], < C(IV Il + VIl ).

Now we show that the norm || - || is equivalent to the norm |- |, in Dg(S). We already have ||V||g < |V,
for any V' € Dg(S). We suppose that the norms are not equivalent. For any n € N*, we can find V,, € Dg(S)
such that ||V,||[g < 1/n and |V,|, = 1. The sequence (Vn)nGN* being bounded in H}(S,R?), we can then

extract a sub-sequence, still denoted in the same way, such that
Vo =V weakly in H;’FO(S,R3).

The limit V' belongs also to Dg(S). Let us make n tend to infinity in the inequality ||V, ||z < 1/n, we obtain

Yap (V(l)) = 0. The displacement V is of inextensional type, and hence is equal to zero.
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If p € [1,4/3[ the space H (S, R?) is continuously imbedded in W"P(S, R?) (see Lemma 4.4) and if p €]1,4/3]
the space WP(S,R?) is compactly imbedded in L?(S,RR?). Hence the sequence (‘/")nGN* converges strongly
to 0 in L*(S,R?), hence |[Vp||12(ss3) — 0. From (4.16) follows then that the sequence (V) _ .
strongly to 0 in H) 1, (S,R?). This stands in contradiction with |V;,], = 1. O

converges

4.4 Annex D. The inextensional displacements
4.4.a. The inextensional displacements of D;(S)

Let U be an inextensional displacement. From the definition of the inextensional displacements we have

Wa,@(U(l)) = 0 in @;. Hence, in each face the membrane displacement U](\? = Ul(l)égl) + UQ(l)éél) is a rigid

displacement. The restriction of U to an edge J € J is then
(4.17) UsM)y=A,+B; NAM  YMelJ

where Aj is an vertex of the edge. The vectors A 7 and B J depend only on the edge. We choose B J
orthogonal to €; to have the unicity of this vector.
4.4.b. The inextensional displacements of D;(S)

A0

azY

A displacement A € Dy(S) verifies = VAD A éﬁl). This displacement belongs also to D;(S), hence

@Ag) is constant in each face. Let A be a vertex belonging to A and let J and L be two edges sharing the
vertex A. The functions A and V.A belong to H!(S,R?). The hypothesis H2 implies that

(4.18) A sorll a2 gures) < ClIAllL VA oLl e gunesy < ClAllr-

From (4.17) we have Aj;(M) = ZJ + ?J A AM and AL(M) = 71)L + E)L A m, hence Z)J = Z)L. We

denote A(A) this value which is common to all the edges containing the vertex A.

We also have ﬁ] NeEy= @A‘J A €y. The vector @AU A €y is constant along the edge J, hence
§J~(€JA€L)=§L-(€J/\5L).

There exists a vector B 7, € R3 (depending on B, and B)L) such that

?J/\é’]zﬁJL/\é'J7 ?LAngﬁJLAgL.

Since ﬁA‘L(M) A€Er = E)L ANEL = ?JL A ey, for any M € L. From (4.18) we deduce that

2
dt < C||AH17

/LJ |§A|J(A+t€J)A€L_§JLAgL|
t
0

hence

/L" |€~A\J(A +t€;) — By
0

; dt < C[|All1,

because we have @A‘J(M) NEy= §JL A€y for any M € J. The vector ﬁJL does not depend on the edge
L. Hence this vector is independant from the edges that go via A, and is denoted V.A(A).
The restriction of the displacement A to any edge that goes via A is the restriction to that edge of a rigid

displacement depending only on the vertex A,

VieJ, VYMelJ,  Ay(M)=A(A) +VAA)AAM.
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4.5 Annex E. The test functions
Proof of Lemma 3.9 : Let U be an element belonging to Hf (Ss,, R?).

We suppose that the real g is such that the two balls centered in the extremities of the edges and of radius

8npdy do not share any common point.

Step 1 For any § in the interval |0, dp], we build a displacement Us; constant in the neighborhood of each

vertex belonging to A and approaching U.

We begin with modifying U in the neighborhood of an vertex. Let A be an vertex common to the faces
_ _ =)
Wiy -veyg,; A
—(13)

A" 7. If the vertex A belongs to I'g we replace A by 0.
We define the displacement Us 4 in Wy 5, by

the mean value of U in the disc B(A;6) Nwy, s, and A the mean value of the vectors

vl @) = U@<l>)m(2’;;:5) +{1- m<27;;:5> VA, e )

where m has been introduced by (4.12) and where ) = dist(z("), A). Tn B(A; 2108) N@y5, the displacement

U (;(li‘ is by construction constant and equal to A. We have

oud) 0 IO 0 )
it = o =0T G s~ {1 G}

Let us estimate the L? norm of the gradient of Uég —UW e {l, ..., L},

l C —
||VU§,L - VU(I)H[zL?(wl,,;O,RS)p < C\|VU(Z)||[2L2(B(A;4n05)mwl,5o w32 T 5—2||U(l) - A ||3;2(B(A;4n05)mwl,50,u@)

O]

!
The Poincaré-Wirtinger inequality allows us to estimate the L? norm of U(®) — A" in the disc B (A;0)Nwy 50,

=0
jo® -4 H%Z(B(A;(S)ﬁwl‘go,ne?’) < C52||VU(Z)|\[2L2(B(A;5)nwl,50 NENER
If J is an edge of vertex A contained in @, then we have
v, — AY)12 < Cs||VUO| 2
|J IZ2(B(A8)n0m3) < CO| H[Lz(B(A;&)mEZ,JO,RS)P

For any other face wy, 5, containing J N B(A4; ), we also have the above estimate, hence

k) ()
A —A7)3 < C{HVU(Z)||[2L2(B(A;5)ﬂ51,50,R3)]2 + ||VU(k)||[2L2(B(A;5)mwk,so 282 )

We deduce that

p
— .
||U(l) - AH%Q(B(A;(;)F‘M[,(;O JR3) < 052 Z ||VU(ZZ)H[2L2(B(A;5)ﬁwliygo JR3)]2

=1

p
—
= VY = Al (Bamsyrwn s e < CO D VU e (B asanosyn, gm0
k=1

And eventually

p
1Us.a = Ullr 85,6 < C D _IIVU |25 (astnos)n0n, s 5202
k=1
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We can do the same with all the structure vertexes. We denote Us ; the displacement obtained after having

modified U in a neighborhood of each vertex. Hence we have

|Us1 = Ullm(ss, zs) < C Z U 1. (B(Aan08)nS 5 22) -

AeN
Step 2 Let J be an edge belonging to J. This edge is common to the faces wy,, ...,w;,. We denote V[;(}l})
the element of H!(J,R3) defined by
( 1
Vi @) = 55 / Usit) @+ set)ds

and we denote Vs ; the mean values of V(l’c ({ef,lk) ey l} is an orthonormal basis of the direction of the face
@, ). We have %{l}) € HY(J,R3) and

(4.19) { 10 = Vasll23 u0y < COUs1 g 5, ) = OOl g 5, )

U = Vsl < Cl|Us.l <cul|

H1(Js23) = H1(J5,23) H1(J5 23)

where J5 = {7 € S5, | dist(z,J) < mod}, Js is the union of two-dimensional sets of breadth 2nyé and of
length L + 2npd. If the edge J is contained in I'g, we take Vs ; = 0, in this case we have again the estimate
(4.19). The displacement

U= 3 Usa{1—m( BTy} 57 v ()

JeJg JeJ

belongs to Hf (S5, R?) and verifies

1Us = Ull i ssy o) < C Y Ui (B(Astnes)nssy w2y + C D U 1.5 29)
AeN JeJ

The constant is independant of §. Lemma 3.9 is proved. |

Proof of Lemma 3.11 : Let be U € Dr(S). We recall that there exists only one function in Hf (S,R?)
ou®
ax&“
Step 1 Extension of U® and of YU to wy,s5. The displacement

denoted VU such that

=VUBDrnel 1e{1,... N}, ae{1,2}.

1 ~
u®O () = S{U(l)@(l)) + VU0 GEO) A xgt);gn} 2 € Qs =wix]— 6,4,

of the plate € 5 extends into a displacement still denoted u") of the plate Q;:a = w; 5%X]—0,d[. The extension

u® is by construction equal to zero on I'g 5 N (22/76. We have
£, 5) < CEWY, Qu5) < CSIIVUO T 0y E@, 5\ Qug) < COINVUD 3 r, , o)

where I'; 5 = {E(l) € w | dz’st(f(l),awl) < 27705)}. Let Ue(l) be the e.p.d. associated to u¥) by the formulas
1 1 1 1

(2.1), its components gu“) and =R® are the restrictions to wy,25 of elements (denoted SU, ER) belonging

to H(Ss,R3). They verify ufj)l —Uw, Rfj} = VU® and

ous” v
|2+ =] < COlIVU Oy 5,00)

()
L2 (wl,(s) 8.’E2

(4.20) Oxq L2(w1,5)
HV'R’SZ) ||L2(wz,5\wz,R2) + HV'Rél) HLz(WL,é\WL,]KZ) < OHVU(”||H1(FZ,6R3)
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Step 2 We denote V(;(l) the displacement
V(@) = 6{u<l>(A<l>) +ROG) pad ), v e

We modify V(;(l) in the neighborhood of the vertexes belonging to A.
Let A be an vertex belonging to AV, for any edge J containing A, we have

~

Upy(x) = U(A) + VU(A) NAZ = 14(x), a el

For any face w; containing the vertex A, we define the displacement U é,l,)ﬁx by

0 ) dist(xz, A) I dist(z, A) ,
Usalz) =V; (x)m(72n05 ) + 5{1 m<72n05 )}TA(:C), ey,

where m has been introduced by (4.7). We have U(gz(x) =1/6ra(z) in B(A,2n00) N ;5. Let us remind
that for any edge J containing the vertex A, we have R|; = @U‘J and Ry Aéy = @U‘J NEj = §U(A) NEj.
Hence, thanks to (4.20), we have the following inequality :

U
— VU (A) A e

[e%

R —-VU
IR = VU(A)|| 22(B(Adnos)ss, L2 (B At ) S5

<CO{|IVU|| 11 (B (A ane5)85 52) + ||VU( HHl(Fz,am@)}-

This inequality implies that

I ! = =
||U(§,lx -V )||%2(B Anosynsswd) < COIVUI i1 (B(Aan00) S5 29) + VU g, 500}
and  E(UY, VY, 215) < C8{|IVU 1 (B(aamosyss ) + VU [mar, e }-

(l)

The displacement U, Z U 5.A coincides with a rigid displacement independent of [ in the neighbor-

AewinN
hood of each vertex contained in the face w; and verifies

EUN -V 15 <080 S VUi sanesnssss) + VU Ol g, 500} -
Acw,NN

Step 3 We modify Uég in the neighborhood of each edge belonging to J.

Let J be an edge belonging to several faces and w; a face of S containing J. We take the orthornormal
frame (Oy; €y, e“f])u éél)) linked to the edge J and to the plate £ 5 containing this edge, O is an extremity
of J and €; the direction of the edge (;vglj) =z0.¢g; [0, Ls], Ly the length of the edge). In this frame we

consider the neighborhood of J

T 210, Ly[x] =, ndlx] = 6,5l =1L

The restriction of Ué ) to J;l) (n = 1) is decomposed into the sum of an elementary rod displacement U, 6(@

and of a residual displacement,

U (1,25, 28)) = UL (@10) + RY (@15) A (28, +20e).
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Let us remind that (see [4]) the components Z/ly) and Rf]l) of U, (,(Z}

=y

belong to H'(J,R?), and verify

dR () 1 2 C 0 0 C 0
AL+ D, = Gt = G,
L2(J,r3) driy RJ Ner L2(Jr3) 525(U5 17‘]6 ) = 625(u J6 )

de]

l l ! l l ! l !
DUy - U, ) + 2||U“ ul)|2 < e, 10y < ce@®, M)

L2(JM w2y =

By construction, the displacement Ue(l} coincides with a rigid displacement in the neighborhood of the edge

extremities. We deduce that

! ! S ! ¢ !
1017 = U F2ge) < CE@DTD). VU = R a0y < 558w, 710)
The edge J belongs to the faces w;,,...,w;,. Let Uc j be the elementary rod displacement equal to the mean

(ll)

value of the displacements U e U( ”) The components of U, ; being U; and R, we have

dR ; J 2 C " (L)
-R — J
Hdmu‘w JE3) Hdmu 7N L2(JR3) 5 z:: J
P
l L 1 L L
Z{ (U(g’l)_UeJ,Jé ))+5_2||U‘§71) eJ”L? oy 3)}<CZS( () J( ))
i=1 i=1
We deduce (see [4]) that

- (“)
Z e J005) < €3S (), 1)
=1 =1

1) I 1 L 1)
Z{ Utgl - 5J7J2(770)6) 5_2||U(§,1) - €J||L2(J(l) Rg)} CZ“: ) J2(7706

Now we modify the displacement U gli in the neighborhood of the edge J,

0w = U8 {1 - m(TELIN g (BELINY e ay,

Then we have
P
S e - Ul ) < czg () g5y
i=1
Eventually the displacement Uy obtained by modifying U é,l in the neighborhood of each edge of J belongs

to Hp (S5, R*) and for any I € {1,..., N} verifies (3.23). O
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