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ASYMPTOTIC BEHAVIOUR OF CURVED RODS

BY THE UNFOLDING METHOD

G. GRISO

Laboratoire J.-L. Lions–CNRS, Bôıte courrier 187, Université Pierre et Marie Curie,

4 place Jussieu, 75005 Paris, France, Email: griso@ann.jussieu.fr

Abstract. We consider in this work general curved rods with a circular cross-section of radius δ. Our aim is to study the

asymptotic behaviour of such rods as δ→0, in the framework of the linear elasticity according to the unfolding method. It consists in

giving some decompositions of the displacements of such rods, and then in passing to the limit in a fixed domain.

A first decomposition concerns the elementary displacements of a curved rod which characterize its translations and rotations,

and the residual displacements related to the deformation of the cross-section. The second decomposition concerns the displacements

of the middle-line of the rod. We prove that such a displacement can be written as the sum of an inextensional displacement and of an

extensional one. An extensional displacement will modify the length of the middle-line, while an inextensional displacement will not

change this length in a first approximation. We show that the H1−norm of an inextensional displacement is of order 1, while that of

an extensional displacement is in general, of order δ.

A priori estimates are established and convergence results as δ→0, are given for the displacements. We give their unfolded limits,

as well as the unfolded limits of the strain and stress tensors. To prove the convergence of the strain tensor, the introduction of

elementary and residual displacements appears as essential. By passing to the limit as δ→0 in the linearized system of the elasticity,

we obtain on the one hand, a variational problem that is satisfied by the limit extensional displacement, and on the other hand, a

variational problem coupling the limit of inextensional displacements and the limit of the angle of torsion.

Introduction

The rods we consider here are thin curved cylinders built around a middle-line which is a smooth curve

in R
3. To be more precise, given a curve ζ in R

3, the cross-section of a rod with the middle-line ζ (i.e., its

intersection with a normal plane at each point M of ζ), is a disk D(M ; δ) of radius δ.

Our work is essentially based on two decompositions of the displacements of the rod. Under the action

of any displacement uδ, the disk D(M ; δ) is submitted on the one hand to a translation and a rotation, that

we call elementary displacements of the rod, and, on the other hand, to a displacement that deforms the

disk, called residual displacement.

The second decomposition concerns the displacements of the middle-line of the rod. We prove that

such a displacement can be written as the sum of an inextensional displacement and of an extensional one.

As suggested by its name, an extensional displacement will modify the length of the middle-line, while an

inextensional displacement will not change this length in a first approximation. If the H1−norm of the

inextensional displacement is of order 1, that of the extensional displacement is in general, of order δ.

The proofs of a priori estimates are based on the method used by Kondratiev and Oleinik [9] and by

Cioranescu, Oleinik and Tronel [2] to establish Korn inequalities for frame-type structures and junctions.

Once a priori estimates are established, we study the convergence, as δ → 0, of the displacements of a

curved rod. We give their unfolded limits, as well as the unfolded limits of the strain and stress tensors.

In the next step, we turn our attention to the linearized system of the elasticity written for a family of

curved rods. By passing to the limit as δ → 0, we obtain on the one hand, a variational problem that is

satisfied by the limit extensional displacement, and on the other hand, a variational problem coupling the
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limit of inextensional displacement and the limit of the angle of torsion, see Theorems 7.1 and 7.2 below. To

establish these results, we first prove the convergence of the strain tensor. As can be seen in the sequel, this

is the step where the introduction of elementary and residual displacements appears as essential.

There is a vast litterature on the asymptotic models for straight rods, e.g., Griso [4], Le Dret [10],

Murat and Sili [12], [13], Trabucho and Viano [18]. Concerning previous works on curved rods, let us

mention that of Arunakinirathar and Reddy [1] whose aim is to present a mechanical theory in this field.

The first mathematical approaches of the asymptotic behaviour of curved rods is due to Jamal and Sanchez-

Palencia [6], Sanchez-Hubert and Sanchez-Palencia [15], Sanchez-Palencia [16], and Jurak and Tambača [7],

[8], Tambača [17]. In these papers, by using thin domains techniques and multiple-scale methods, the authors

obtain a limit problem coupling the inextensional displacement and the limit of the angle of torsion. In [15]

and [16] an interpretation of the limit stress tensor is also given. Let us mention also the work of Neunkirch

and al [14] where very interesting numerical results are presented.

The paper is organized as follows: in Section 1 we introduce the notation, make preliminary hypotheses,

recall some results that will be used in the sequel and give the definition of a curved rod. We also recall the

definition of the unfolding operator for thin rods. The same operator for the case of plates was introduced

in Griso [5]; for the periodic case, we refer the reader to Cioranescu, Damlamian and Griso [3]. In Section

2 we show that for star-shaped domains, one can always approach an H1− displacement by a rigid body

one. In Section 3 we define the class of elementary displacements associated to a curved rod. Theorem

3.3 gives sharp estimates with respect to δ for this kind of displacements. Section 4 defines the notions

of elementary displacements and residual displacements, and introduces the two decompositions mentioned

above. The first decomposition is based on elementary displacements and the second one uses the residual

ones. In Section 5 we suppose that we are given a bounded sequence of displacements and we study the limit

as δ → 0 of a convergent subsequence. We also give the limit of the unfolded strain tensor. In Section 6, the

linearized problem of elasticity for a curved rod is formulated. We show that under appropriate hypotheses

on the applied forces, the solutions (i.e., the displacements of the rod) are bounded, so that the convergence

results from Section 5 can be used. Further results, concerning the convergence of the stress tensor are also

established. Finally, in Section 7 the complete characterization of the limit problem is given. The last section

is dedicated to comments and remarks.

1. Notations and preliminaries

Let ζ be a smooth curve belonging to the euclidian space R
3. This curve is parametrized as follows

−−→
OM(s) = φ(s),

where s is the arc length and φ is a function belonging to C3(0, L; R3).

Introduce the Frenet frame

(1.1)






d
−−→
OM

ds
=

−→
T , ‖

−→
T ‖

R
3 = 1,

d
−→
T

ds
= c

−→
N, ‖

−→
N ‖

R
3 = 1,

−→
B =

−→
T ∧

−→
N,

where ‖ · ‖
R
3 is the euclidian norm in R

3.

We have

(1.2)






d
−→
N

ds
= −c

−→
T + τ

−→
B,

d
−→
B

ds
= −τ

−→
N,
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where c = c(s) is the curvature and τ = τ(s) is the torsion of the curve ζ in the point M(s).

In the sequel, D(a; r) denotes the open disc of center a and radius r (while obviously, D(a; r) denotes

the closed disc).

In this work we assume that the following hypothesis holds true:

HYPOTHESIS 1.1. The Frenet frame
(
M ;

−→
T ,

−→
N,

−→
B
)

given by (1.1) and (1.2), is defined in any point of the

interval [0, L] and belongs to C1
(
0, L; (R3)4

)
. Moreover, the function φ is one-to-one.

For more details, we refer the reader to [11].

Introduce now the mapping Φ : [0, L] × R
2 −→ R

3 defined by

(1.3) Φ : (s, s2, s3) 7−→
−−→
OM(s) + s2

−→
N (s) + s3

−→
B (s)

There exists δ0 ∈ R depending only on ζ, such that the restriction of Φ to the compact set [0, L]×D(O; δ0)

is a C1− diffeomorphism of that set onto its range. As a matter of fact δ0 is such that

0 < δ0 ≤
1

2 ‖c‖L∞(0,L)
.

DEFINITION 1.2. The curved rod Pδ is defined as follows:

(1.4) Pδ = Φ
(
]0, L[×D(O; δ)

)
, for δ ∈]0, δ0].

A portion of Pδ is defined by

(1.5) Pδ(t, t
′) = Φ

(
]t, t′[×D(O; δ)

)
, 0 ≤ t < t′ ≤ L.

The boundary of the rod Pδ is made, on one hand, of the two discs D(M(0); δ) and D(M(L); δ),

belonging to the normal plane to the curve ζ in the points M(0) and M(L), respectively. On the other

hand, the boundary of Pδ also contains the lateral surface of the rod. This surface is parametrized by

(s, θ) 7−→ K(s, θ), where

(1.6) K(s, θ) =
−−→
OM(s) + δ

(
−→
N (s) cos θ +

−→
B (s) sin θ

)
, s ∈ [0, L], θ ∈ [0, 2π].

NOTATION 1.3. (i). Reference domains and running points. We denote by x the running point of Pδ, by dx

the volume element and by dsx the surface one in Pδ. The running point of the cylinder ωδ =]0, L[×D(O; δ)

is (s, s2, s3). To simplify, dωδ denotes the volume element dsds2ds3 in ωδ, while dsωδ denotes the surface

one. The reference domain

ω =]0, L[×D(O; 1),

is obtained by transforming ωδ by an orthogonal affinity of ratio 1/δ. The running point of ω is (s, S2, S3),

dω and dsω denote respectively, the volume element and the surface element in ω.

(ii). Displacements. For any displacement u ∈ H1(Pδ; R
3), we write u instead of u ◦ Φ.

The Unfolding Operator. Let w be a function defined on ωδ. We denote Tδ(w) the function defined on ω

as follows:

Tδ(w)(s, S2, S3) = w(s, δS2, δS3), ∀(s, S2, S3) ∈ ω.
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REMARK 1.4. Obviously, if w ∈ L2(ωδ; R
k), then Tδ(w) ∈ L2(ω; Rk).

When not precised, C will denote in the whole work, different constants independent of Ω, ω and δ.

For any function ψ ∈ L2(Ω), MΩ(ψ) denotes the mean value of ψ in Ω,

MΩ(ψ) =
1

measure Ω

∫

Ω

ψ(x) dx.

We will make use several times of the Poincaré-Wirtinger inequality in star-shaped domains with respect to

a ball. For the reader’s convenience we give here its proof.

PROPOSITION 1.5. ( Poincaré-Wirtinger Inequality). Let Ω be a bounded open set in R
n of diameter R.

Assume that Ω is star-shaped with respect to the ball B(O;R1). Then, for all φ ∈ H1
loc(Ω),

(1.7)






‖φ−MΩ(φ)‖2
L2(Ω) ≤ C

( R
R1

)n+1
∫

Ω

ρ2(x)|∇φ(x)|2 dx,

‖φ−MB(O;R1)(φ)‖2
L2(Ω) ≤ C

( R
R1

)n+1
∫

Ω

ρ2(x)|∇φ(x)|2 dx,

where the constant C depends only on n and ρ(x) is the distance from x to the boundary ∂Ω.

The proof of Proposition 1.5 is based on the following result:

LEMMA 1.6. Let Ω be a bounded open set in R
n of diameter R. Assume that Ω is star-shaped with respect

the ball B(O;R1). Then

‖φ‖2
L2(Ω) ≤ (2n+5 + 1)

Rn+1

Rn+1
1

[
‖φ‖2

L2(B(O;R1)
+

∫

Ω

ρ2(x)|∇φ(x)|2 dx
]
, ∀φ ∈ H1

loc(Ω).

Proof of the lemma 1.6. As said above, the proof is based on arguments used by Kondratiev and Oleinik

[9] (see also [2]). Let θ be a function in C∞(R+) such that






θ(t) = 0 if 0 ≤ t ≤
R1

2
,

θ(t) = 1 if t ≥ R1,

0 ≤ θ(t) ≤ 1 if
R1

2
≤ t ≤ R1,

|θ′(t)| ≤
4

R1
, ∀t ∈ R

+.

Let also φ ∈ C∞(Rn), and consider the ray (segment) (O,P ) joining the origin O to an arbitrary point

P ∈ ∂Ω. We denote by ℓ its length, ℓ = ‖OP‖
R
3 . The Hardy inequality yields,

(1.8)

∫ ℓ

0

|θ(r)φ(x)|2 dr ≤ 4

∫ ℓ

0

∣∣r − ℓ
∣∣2
∣∣∣
∂(θφ)

∂r

∣∣∣
2

dr,

where r = ‖Ox‖
R
3 with x ∈ (O,P ). Since

∣∣r − ℓ
∣∣ = dist (x, P ) ≤

R

R1
ρ(x) and

∣∣r − ℓ
∣∣ ≤ R,
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from the properties of θ and (1.8) one has

(1.9)

1

Rn−1

∫ ℓ

R1

|φ(x)|2rn−1 dr ≤

∫ ℓ

R1

|φ(x)|2 dr

≤ 4
( R
R1

)2[∫ ℓ

R1

2

ρ2(x)|∇φ(x)|2 dr + 16

∫ R1

R1

2

|φ(x)|2 dr
]

≤ 4
R2

R2
1

2n−1

Rn−1
1

[ ∫ ℓ

R1

2

ρ2(x)|∇φ(x)|2rn−1 dr + 16

∫ R1

R1

2

|φ(x)|2rn−1 dr
]
.

Multiplying (1.9) by
(R1

2

)n−1

, and integrating on all the rays, leads to

∫

Ω\B(O;R1)

|φ(x)|2 dx ≤ 2n+5R
n+1

Rn+1
1

[ ∫

Ω

ρ(x)2|∇φ(x)|2 dx+

∫

B(O;R1)

|φ(x)|2 dx
]
,

whence

(1.10) ‖φ‖2
L2(Ω) ≤ (2n+5 + 1)

Rn+1

Rn+1
1

[ ∫

Ω

ρ(x)2|∇φ(x)|2 dx+

∫

B(O;R1)

|φ(x)|2 dx
]
.

By density, inequality (1.10) is satisfied for all φ ∈ H1(Ω).

Now, choose φ ∈ H1
loc(Ω) such that

∫

Ω

ρ2(x)|∇φ(x)|2dx < +∞.

Denote by Ωε the image of Ω by the homothety of center O and ratio 1 − ε, 0 < ε < 1. Since, obviously

φ ∈ H1(Ωε), from (1.10) one has

‖φ‖2
L2(Ωε) ≤ (2n+5 + 1)

Rn+1

Rn+1
1

[ ∫

Ωε

ρ2
ε(x)|∇φ(x)|2 dx+

∫

B(O;(1−ε)R1)

|φ(x)|2 dx
]

≤ (2n+5 + 1)
Rn+1

Rn+1
1

[ ∫

Ω

ρ2(x)|∇φ(x)|2dx+

∫

B(O;R1)

|φ(x)|2 dx
]
,

where ρε(x) is the distance from x to ∂Ωε, ρε(x) ≤ ρ(x). Then, the result follows by passing to the limit as

ε→ 0 .

Proof of Proposition 1.5. Let φ ∈ H1
loc(Ω). Applying the classical Poincaré-Wirtinger inequality to the

restriction of φ to the ball B(O;R1/2), gives

‖φ−MB(O;R1/2)(φ)‖2
L2(B(O;R1/2)) ≤ CR2

1

∫

B(O;R1/2)

|∇φ(x)|2 dx,

where C depends only on n. One has successively,

(1.11)

‖φ−MB(O;R1/2)(φ)‖2
L2(B(O;R1/2)) ≤C

∫

B(O;R1/2)

ρ(x)2|∇φ(x)|2 dx

≤C

∫

Ω

ρ2(x)|∇φ(x)|2 dx.
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Now, let us apply Lemma 1.6 to the function φ−MB(O;R1/2)(φ) since Ω is obviously star-shaped with

respect to the ball B(O,R1/2). We get

(1.12) ‖φ−MB(O;R1/2)(φ)‖2
L2(Ω) ≤ C

( R
R1

)n+1
∫

Ω

ρ2(x)|∇φ(x)|2 dx.

On the other hand, by using Cauchy-Schwarz inequality, one has

∣∣∣
∫

Ω

φ dx−

∫

Ω

MB(O;R1/2)(φ) dx
∣∣∣
2

≤
(∫

Ω

dx
)(∫

Ω

∣∣φ−MB(O;R1/2)(φ)
∣∣2dx

)
,

so that, due to (1.12),

∣∣MΩ(φ) −MB(O;R1/2)(φ)
∣∣2 ≤

C

measure Ω

( R
R1

)n+1
∫

Ω

ρ2(x)|∇φ(x)|2 dx,

which, combined with (1.11) leads to the first inequality in (1.7).

Observe now that for any x ∈ B(O;R1), one has

∣∣R1 − ‖Ox‖
R
3

∣∣ ≤ ρ(x).

Therefore, applying the first inequality in (1.7) to the restriction of φ to the ball B(O;R1), one gets

‖φ−MB(O;R1)(φ)‖2
L2(B(O;R1))

≤ C

∫

Ω

ρ2(x)|∇φ(x)|2 dx,

from which, due to Lemma 1.6, one has the second inequality in (1.7). The proof of the proposition is now

complete.

2. Approximation of a displacement by a rigid body displacement.

In this section we first show that for some classes of star-shaped domains, one can approximate an H1−

displacement by a rigid body one. This result can be applied to curved rods. To do so, we prove in Lemma

2.3 below, that any sufficiently small portion of a curved rod as defined in Definition 1.2, is star-shaped.

In the sequel, the Einstein summation convention on repeated indices i, j ∈ {1, 2, 3} is adopted.

Let Ω be an open set of R
3 and u a displacement belonging to H1(Ω; R3). The deformation energy of

u is defined by

E(u,Ω) =

∫

Ω

γij(u)γij(u) dx,

where

γij(u) =
1

2

( ∂ui

∂xj
+
∂uj

∂xi

)
,

are the components of the the linearized strain tensor γ = (γij)1≤i,j≤3. We also introduce the bilinear form

D(u,Ω) =

∫

Ω

∂ui

∂xj

∂ui

∂xj
dx.

LEMMA 2.1. Let Ω be a bounded open set of diameter R, star-shaped with respect to B(O;R1). For any

displacement u ∈ H1(Ω; R3), let us consider the rigid body displacement r defined by

(2.1) r(x) = A+B ∧ x,
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where

(2.2) A =
3

4πR3
1

∫

B(O;R1)

u(x) dx, B =
15

8πR5
1

∫

B(O;R1)

x ∧ u(x) dx.

Then, the following estimates hold:

(2.3)






D(u− r,Ω) ≤ C
( R
R1

)13

E(u,Ω),

‖u− r‖2
L2(Ω;R3) ≤ C

( R
R1

)13

R2 E(u,Ω).

Remark 2.2. The first inequality in (2.3) is the Korn inequality corresponding to Ω. The coefficient

(R/R1)
13 is sharp.

Proof of Lemma 2.1. Following [2] or [9], let v ∈ H1
0 (Ω; R3) be the solution of the problem

{
∆v = ∆u in Ω,

v = 0 on ∂Ω.

One knows that w = u − v belongs to H2
loc(Ω; R3) ∩ H1(Ω; R3). Moreover, the following Korn inequality

holds (see [2] or [9]:

(2.4)






∫

Ω

ρ2(x)

3∑

i,j,l=1

∣∣∣
∂2wi

∂xj∂xl

∣∣∣
2

dx ≤ CE(u,Ω),

D(v,Ω) ≤ CE(v,Ω) ≤ CE(u,Ω),

where ρ(x) is the distance from x to ∂Ω.

Applying Poincaré-Wirtinger inequality (1.7) to the components of gradient of ∇w and using inequality

(2.4), we get the following estimate:

(2.5)

∫

Ω

3∑

i,j=1

∣∣∣
∂ui

∂xj
−MΩ

( ∂ui

∂xj

)∣∣∣
2

dx ≤ C
( R
R1

)4

E(u,Ω).

Let a = MΩ(u) and B be the skew–symmetric part of the matrix
(
MΩ

( ∂ui

∂xj

))

1≤i,j≤3
. Introduce also

the vector b ∈ R
3 such that

r1(x) = a+ B · x = a+ b ∧ x.

Using (2.5) and applying again the Poincaré-Wirtinger inequality to u− r1, we obtain

(2.6)






D(u− r1,Ω) ≤ C
( R
R1

)13

E(u,Ω),

‖u− r1‖
2
L2(Ω;R3) ≤ C

( R
R1

)8

R2E(u,Ω).

To derive estimate (2.3), it is now sufficient to take in (2.6) the mean value of u and of (· ∧ u(·)) in the ball

B(O;R1).

Let now consider a partition of the rod Pδ in several small portions of the form Pδ(t, t
′) (for notation,

see (1.4) and (1.5) in Definition 1.1). We prove that all these portions are star-shaped with respect to an
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appropriate ball. This will allow us to apply Lemma 2.1 to a curved rod in order to obtain an approximation

of its displacements by a discrete family of rigid body displacements.

LEMMA 2.3. Let t, t′ such that 0 ≤ t < t′ ≤ L. The domain Pδ(t, t
′) is star-shaped with respect to the ball

B
(
M
( t+ t′

2

)
;
δ

5

)
if

δ ≤ t′ − t ≤
3δ

2
.

Proof. Observe that the diameter of Pδ,t,t′ is smaller than 4δ. Since, due to Hypothesis 1.1, the Frenet

frame is sufficiently smooth, by Taylor inequality we have






∥∥∥
−−−−−−−−→
M(s)M(s′)

∥∥∥
R
3

≤ |s′ − s|,

∥∥∥
−−−−−−−−→
M(s)M(s′) − (s′ − s)

−→
T (s)

∥∥∥
R
3

≤
1

2 ‖c‖L∞(0,L)
(s′ − s)2, ∀s, s′ ∈]0, L[2.

Let K = K(s, θ) be a point of the lateral boundary of Pδ(t, t
′). The above inequality implies that the

distance from K to the point M
( t+ t′

2

)
, satisfies, since δ < δ0.

∥∥∥∥∥

−−−−−−−−−→

M
( t+ t′

2

)
K

∥∥∥∥∥
R
3

≥

(∣∣∣∣s−
t+ t′

2

∣∣∣∣
2

+ δ2

)1/2

−
1

2 ‖c‖L∞(0,L)

∣∣∣∣s−
t+ t′

2

∣∣∣∣
2

≥ δ.

If K belongs to one of the discs D(M(t); δ) and D(M(t′); δ), then

∥∥∥∥∥

−−−−−−−−→

M
( t+ t′

2

)
K

∥∥∥∥∥
R
3

≥

∣∣∣∣
t′ − t

2

∣∣∣∣−
1

2 ‖c‖L∞(0,L)

∣∣∣∣
t′ − t

2

∣∣∣∣
2

≥
2δ

5
.

The ball B
(
M(s); δ

)
, t < s < t′, contains the ball B0 = B

(
M
( t+ t′

2

)
;
δ

5

)
because the distance between

their centers is smaller than 3δ/4. From the above inequalities, we know that the distance between M(s)

and any point on the lateral boundary of Pδ(t, t
′) is greater than or equal to δ. Therefore, the intersection

of the ball B
(
M(s); δ

)
with the boundary of Pδ(t, t

′) is included in the discs D(M(t); δ) and D(M(t′); δ).

Thus, B
(
M(s); δ

)
∩ Pδ(t, t

′) is a convex open set containing B0 and so, it is star-shaped with respect to

all points of B0. But any point of Pδ(t, t
′) belongs to a ball of radius δ and of center the point M(s) with

t < s < t′. Consequently, the domain Pδ(t, t
′) is star-shaped with respect to the ball B0 and this ends the

proof of Lemma 2.3.

3. Elementary displacements of a curved rod.

DEFINITION 3.1. We call elementary displacement of a rod, any element η of H1(ωδ; R
3) that is written in

the form

η(s, s2, s3) = A(s) + B(s) ∧
(
s2
−→
N (s) + s3

−→
B (s)

)
, ∀(s, s2, s3) ∈ ωδ,

where A and B are vector-functions in H1(0, L; R3).

The first component A of η is the displacement of the middle-line. The second component B, gives us

an information about the relative displacement of the cross section D(M(s); δ) of the rod, that is to say, it

is a rotation whose axis is directed along the vector B(s).

To any displacement w of the rod we associate an elementary displacement defined as follows:
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DEFINITION 3.2. The elementary displacement We, associated to w ∈ H1(Pδ; R
3), is given by

(3.1) We(s, s2, s3) = W(s) + Rw(s) ∧
(
s2
−→
N (s) + s3

−→
B (s)

)
, (s, s2, s3) ∈ ωδ,

where

(3.2)






W(s) =
1

πδ2

∫

D(O;δ)

w(s, s2, s3) ds2ds3,

Rw(s) ·
−→
T (s) =

2

πδ4

∫

D(O;δ)

[(
s2
−→
N (s) + s3

−→
B (s)

)
∧ w(s, s2, s3)

]
·
−→
T (s) ds2ds3,

Rw(s) ·
−→
N (s) =

4

πδ4

∫

D(O;δ)

[(
s2
−→
N (s) + s3

−→
B (s)

)
∧ w(s, s2, s3)

]
·
−→
N (s) ds2ds3,

Rw(s) ·
−→
B (s) =

4

πδ4

∫

D(O;δ)

[(
s2
−→
N (s) + s3

−→
B (s)

)
∧ w(s, s2, s3)

]
·
−→
B (s) ds2ds3.

The next theorem plays a fundamental role in our study. It provides sharp estimates of the components

of the elementary displacement We in terms of δ and of the energy of deformation of w. It also shows that

the displacement w −We is negligible (in the L2−norm) with respect to w.

THEOREM 3.3. Let w ∈ H1(Pδ; R
3) and We be the elementary displacement defined by (3.1)–(3.2). Then,

the following estimates hold:

(3.3)






D(w −We, ωδ) ≤ C E(w,Pδ),

‖w −We‖
2
L2(ωδ;R3) ≤ C δ2E(w,Pδ),

δ2
∥∥∥
dRw

ds

∥∥∥
2

L2(0,L;R3)
+
∥∥∥
dW

ds
−Rw ∧

−→
T
∥∥∥

2

L2(0,L;R3)
≤
C

δ2
E(w,Pδ).

The constants are independent of δ, they depend only on the middle-line of the rod.

Proof We are led in the course of the proof, to take integrals over the domains Pδ, ωδ or on subsets of

these domains and estimate them in terms of w. To compute these integrals, one has to make the change of

variables Φ, defined in (1.3). Observe that the jacobian J (Φ) of Φ is such that

1

2
< J (Φ) <

3

2
.

This will allow us to neglect it in all the estimates below.

Let N be an integer such that

N ∈
(2L

3δ
,
L

δ

)
,

and set

sp = p
L

N
, p ∈ {0, . . . , N}.

In the sequel we will work with portions of the rod Pδ of the form Pδ(sp, sp+1), that for the sake of

simplicity, will be denoted Pδ,p,

Pδ(sp, sp+1) = Pδ,p.

From Lemma 2.1 and Lemma 2.3, there exist rigid body displacements rp such that

(3.4)

{
D(w − rp,Pδ,p) ≤ CE(w,Pδ,p),

‖w − rp‖
2
L2(Pδ,p;R3) ≤ Cδ2E(w,Pδ,p),

9



where the constants are independ of p and δ. Recall that the displacements rp are of the form

rp(x) = Ap +Bp ∧ x, x ∈ Pδ,p, Ap, Bp ∈ R
3.

Taking the mean value over the cross-section of the curved rod, and using definition (3.2) of W and Rw,

from (3.4) we derive the estimates

(3.5)






∥∥W −Ap −Bp ∧
−−→
OM(·)

∥∥2

L2(pε,(p+1)ε;R3)
≤ CE(w,Pδ,p),

∥∥Rw −Bp

∥∥2

L2(pε,(p+1)ε;R3)
≤
C

δ2
E(w,Pδ,p),

where the constants are again independent of p and δ. Consequently,

‖w −We‖
2
L2(ωδ;R3) ≤ Cδ2E(w,Pδ),

where C depends on the middle-line of the rod only.

Note now that the vector-functions W and Rw belong both to H1(0, L; R3). Then, by using Definition

3.2 as well as definitions (1.1) and (1.2) of the Frenet frame, we compute the derivatives of the displacement

u to get

(3.6)






∂w

∂s
= ∇xw ·

[
(1 − s2c)

−→
T + s2τ

−→
B − s3τ

−→
N
]
,

∂w

∂s2
= ∇xw ·

−→
N,

∂w

∂s3
= ∇xw ·

−→
B.

Taking the restrictions of these derivatives to ωδ,p =]pε, (p+ 1)ε[×D(O; δ), from (3.4) we have the estimates

(3.7)






∥∥∥
∂w

∂s
−Bp ∧

[
(1 − s2c)

−→
T + s2τ

−→
B − s3τ

−→
N
]∥∥∥

2

L2(ωδ,p;R3)
≤ C E(w,Pδ,p),

∥∥∥
∂w

∂s2
−Bp ∧

−→
N
∥∥∥

2

L2(ωδ,p;R3)
≤ C E(w,Pδ,p),

∥∥∥
∂w

∂s3
−Bp ∧

−→
B
∥∥∥

2

L2(ωδ,p;R3)
≤ C E(u,Pδ,p),

whence, by taking the mean value on the cross-section of the rod,

∥∥∥
dW

ds
−Bp ∧

−→
T
∥∥∥

2

L2(pε,(p+1)ε;R3)
≤
C

δ2
E(w,Pδ,p).

Then, from (3.5) we get

(3.8)
∥∥∥
dW

ds
−Rw ∧

−→
T
∥∥∥

2

L2(0,L;R3)
≤
C

δ2
E(w,Pδ).

We now estimate the norm of
dRw

ds
in L2(0, L; R3). To begin with, let us introduce the function

V (s) =
4

πδ4

∫

D(O;δ)

(
s2
−→
N (s) + s3

−→
B (s)

)
∧ w(s, s2, s3) ds2ds3.
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Using (1.1) and (1.2), we have

dV

ds
=

4

πδ4

∫

D(O;δ)

[(
s2
−→
N + s3

−→
B
)
∧
∂w

∂s
(s, s2, s3)

+
(
−s2c

−→
T + s2τ

−→
B − s3τ

−→
N
)
∧ w(s, s2, s3)

]
ds2ds3.

From (3.4) and using estimate (3.7) for
∂w

∂s
, it follows that

∥∥∥
dV

ds
− c
(
Bp ·

−→
N
)−→
T − c

(
Bp ·

−→
T
)−→
N
∥∥∥

2

L2(pε,(p+1)ε;R3)
≤
C

δ4
E(w,Pδ,p),

whence, due to (3.5),

(3.9)
∥∥∥
dV

ds
− c
(
Rw ·

−→
N
)−→
T − c

(
Rw ·

−→
T
)−→
N
∥∥∥

2

L2(0,L;R3)
≤
C

δ4
E(w,Pδ).

Using the definitions of Rw and V , one can write

Rw = V −
1

2

(
V ·

−→
T
)−→
T ,

and so,

dRw

ds
=
dV

ds
−

1

2

( dV
ds

·
−→
T
) −→
T −

c

2

(
V ·

−→
N
)−→
T −

c

2

(
V ·

−→
T
)−→
N.

Since
(
V ·

−→
N
)

=
(
Rw ·

−→
N
)

and
(
V ·

−→
T
)

= 2
(
Rw ·

−→
T
)
, recalling (3.9), we deduce that

(3.10)
∥∥∥
dRw

ds

∥∥∥
2

L2(0,L;R3)
≤
C

δ4
E(w,Pδ).

Now, observe that

∂

∂s

(
w −We

)
=
∂w

∂s
−
∂W

∂s
−
∂Rw

∂s
∧
(
s2
−→
N + s3

−→
B
)
−Rw ∧

(
−s2c

−→
T + s2τ

−→
B − s3τ

−→
N
)
,

∂

∂s2

(
w −We

)
=
∂w

∂s2
−Rw ∧

−→
N,

∂

∂s3

(
w −We

)
=
∂w

∂s3
−Rw ∧

−→
B.

From these expressions, taking into account (3.5), (3.7), (3.8) and (3.10), we finally obtain the first estimate

in (3.4 ) and this ends the proof of the theorem.

From now on, we will assume that the curved rod Pδ is clamped at the end

Γ0δ = Φ
(
{0} ×D(M(0); δ)

)
.

Then, the space of admissible displacements of the rod is

(3.11) H1
Γ0

(Pδ; R
3) =

{
v ∈ H1(Pδ; R

3)
∣∣ v = 0 on Γ0δ

}
,

equipped with the semi-norm

|v|E =
√

E(v,Pδ).

According to estimates from Theorem 3.3, and since the elementary displacement Ve associated to any

v ∈ H1
Γ0

(Pδ; R
3) is equal to zero on the clamped part of the rod, the semi-norm (3.11) is actually a norm.

Consequently, the space H1
Γ0

(Pδ; R
3) equipped with the norm | · |E is a Hilbert one.
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4. Inextensional and extensional displacements, angle of torsion.

Let us introduce now two sets of displacements of a rod Pδ.

DEFINITION 4.1. The set of inextensional displacements of the middle-line of the rod is defined as follows:

(4.1) DIn =
{
U ∈ H1(0, L; R3)

∣∣∣
dU

ds
·
−→
T = 0, U(0) = 0

}
.

The set of the extensional displacements of the middle-line of the rod is defined by

(4.2) DEx =
{
U ∈ H1(0, L; R3)

∣∣∣
dU

ds
·
−→
N =

dU

ds
·
−→
B = 0, U(0) = 0

}

Observe that by definition, for any U ∈ DEx, one has

∥∥∥
dU

ds

∥∥∥
L2(0,L;R3)

=
∥∥∥
dU

ds
·
−→
T
∥∥∥

L2(0,L)
.

Let w ∈ H1
Γ0

(Pδ; R
3), and We be the associated elementary displacement as defined in (3.1) and (3.2).

Obviously, We ∈ H1
Γ0

(Pδ; R
3) too. Its first component W, which is the displacement of the middle-line, can

be written as the sum of an inextensional displacement and an extensional one, i.e.

(4.3) W = WI +WE , WI ∈ DIn, WE ∈ DEx.

From (3.3), definitions (4.1) and (4.2), the following a priori estimates are obvious:

(4.4)






∥∥WI

∥∥
H1(0,L;R3)

+
∥∥∥
dWI

ds

∥∥∥
L2(0,L;R3)

≤
C

δ2
|w|E ,

∥∥WE

∥∥
H1(0,L;R3)

+
∥∥∥
dWE

ds

∥∥∥
L2(0,L;R3)

≤
C

δ
|w|E .

The second component Rw of We, not only allows us to correct the traction resulting from a shearing

effect which depends only on Rw ∧
−→
T , but it also gives information about the torsion of the rod. This

displacement is measured by the angle of torsion of the rod which is given by the inner product of the

vector Rw and of the unit tangent vector
−→
T to the middle-line,

(4.5) Θw = Rw ·
−→
T .

If the displacement is small, Θw is almost equal to the rotation of the cross section D(M(s); δ) around

its axis.

To complete the decomposition of the displacements of the rod, we only need to introduce what we will

call “residual” displacements. These displacements will play an essential role in the study of the strain and

stress tensors of the rod.

To begin with, observe that any w can be written in the form

(4.6)
w(s, s2, s3) = W(s)+Rw(s) ∧

(
s2
−→
N (s) + s3

−→
B (s)

)

+
(
w −We

)
(s, s2, s3), ∀(s, s2, s3) ∈ ωδ.

On the other hand, using decomposition (4.3) and since

Rw = Θw
−→
T −

dWI

ds
∧
−→
T +

(dWI

ds
−Rw ∧

−→
T
)
∧
−→
T ,
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one can also rewrite (4.6) as

w(·, s2, s3) = WI +WE −
[
s2

(dWI

ds
·
−→
N
)

+ s3

(dWI

ds
·
−→
B
)]

−→
T +

(
−s3

−→
N + s2

−→
B
)
Θw

+ s2

(dWI

ds
−Rw ∧

−→
T
)
·
−→
N + s3

(dWI

ds
−Rw ∧

−→
T
)
·
−→
B +

(
w −We

)
(·, s2, s3).

Let now introduce the following space:

H
R
3

(
{∂S2

, ∂S3
};ω

)
=
{
v ∈ L2(ω; R3)

∣∣∣
∂v

∂S2
,
∂v

∂S3
∈ L2(ω; R3)

}
.

DEFINITION 4.2. Let w ∈ H1
Γ0

(Pδ; R
3). We call residual displacement associated to w, the vector-function

ŵ ∈ H
R
3

(
{∂S2

, ∂S3
};ω

)
:

(4.7)
ŵ(s, S2, S3) = δ S2

(dWI

ds
−Rw ∧

−→
T
)
·
−→
N + δ S3

(dWI

ds
−Rw ∧

−→
T
)
·
−→
B

+
(
w −We

)(
s, δS2, δS3

)
, ∀(s, S2, S3) ∈ ω.

DEFINITION 4.3. By analogy with the case of a straight rod, we call Bernoulli-Navier displacement of a

curved rod, any displacement of the form

v(s, s2, s3) = VI(s)+VE(s) −
(
s2
dVI

ds
(s) ·

−→
N (s) + s3

dVI

ds
(s) ·

−→
B (s)

)
−→
T (s)

+
(
−s3

−→
N (s) + s2

−→
B (s)

)
· Θv(s), ∀(s, s2, s3) ∈ ωδ,

where VI ∈ DIn and VE ∈ DEx.

Definitions 4.2 and 4.3 (see also Notation 1.3) imply that any displacement w in H1
Γ0

(Pδ; R
3), can be

written as the sum of two displacements, a Bernoulli-Navier one and a remainder term

(4.8)
w(·, s2, s3) = WI +WE −

(
s2
dWI

ds
·
−→
N + s3

dWI

ds
·
−→
B
)
−→
T

+
(
−s3

−→
N + s2

−→
B
)
Θw + ŵ

(
·,
s2
δ
,
s3
δ

)
, ∀(s2, s3) ∈ D(O; δ).

From (3.3) it follows that

(4.9) ‖ŵ‖L2(ω;R3) +
∥∥∥
∂ŵ

∂S2

∥∥∥
L2(ω;R3)

+
∥∥∥
∂ŵ

∂S3

∥∥∥
L2(ω;R3)

≤ C |w|E .

REMARK 4.4. Let us mention that decomposition (4.8) is somewhat “false” in the sense that nor the

Bernoulli-Navier displacement neither the residual displacement ŵ are admissible displacements (see (3.5))

of the curved rod.

On account of the definitions of the different elements in (4.7), it is easily seen that ŵ satisfies the

following equalities (see Notation 1.3):

(4.10)






∫

D(O;1)

ŵ(·, S2, S3) dS2dS3 = 0,

∫

D(O;1)

ŵ(·, S2, S3) ·
[
S3.

−→
N (·) − S2

−→
B (·)

]
dS2dS3 = 0.
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The set Vm of the residual displacements,

(4.11) Vm =
{
ψ ∈ H

R
3

(
{∂S2

, ∂S3
};ω

) ∣∣ ψ satisfies (4.10)
}
,

is a a Hilbert space for the norm

‖ψ‖m =

(∥∥∥
∂ψ

∂S2

∥∥∥
2

L2(ω;R3)
+
∥∥∥
∂ψ

∂S3

∥∥∥
2

L2(ω;R3)

)1/2

.

5. Limit of displacements and of the strain tensor.

5.1. Limit of displacements

Suppose we are given a sequence (wδ) ⊂ H1
Γ0

(Pδ; R
3). Applying the results from Section 4, we can decompose

wδ in a sum of displacements of the form (4.8) as follows:

(5.1)
wδ(s, s2, s3) =W δ

I (s) +W δ
E(s) −

(
s2
dW δ

I

ds
(s) ·

−→
N (s) + s3

dW δ
I

ds
(s) ·

−→
B (s)

)
−→
T (s)

+
(
−s3

−→
N (s) + s2

−→
B (s)

)
Θδ

w(s) + ŵδ
(
s,
s2
δ
,
s3
δ

)
, ∀(s, s2, s3) ∈ ωδ,

where W δ
I ∈ DIn, W δ

E ∈ DEx and

(5.2)
ŵδ
(
·,
s2
δ
,
s3
δ

)
= s2

(dW δ
I

ds
−Rδ

w ∧
−→
T
)
·
−→
N + s3

(dW δ
I

ds
−Rδ

w ∧
−→
T
)
·
−→
B

+
(
wδ −W δ

e

)
(·, s2, s3), ∀(s2, s3) ∈ D(O; δ).

We are interested to describe the behaviour of the sequence (wδ) when δ → 0. The next result answers this

question:

PROPOSITION 5.1. Suppose that for any δ > 0, one has the estimate

(5.3) |wδ|E ≤ Cδ,

where the constant C is independent from δ. Then (up to a subsequence), the following convergences hold:

(5.4)






(i) W δ
E ⇀WE weakly in H1(0, L; R3),

(ii) δW δ
I ⇀WI weakly in H1(0, L; R3),

(iii) δRδ
w ⇀ R⋆

w weakly in H1(0, L; R3),

(iv)
1

δ
ŵδ ⇀ ŵ weakly in Vm,

(v) δTδ(w
δ) ⇀WI weakly in H1(ω; R3),

(vi) Tδ(w
δ) −W δ

I ⇀W ⋆ weakly in H1(ω; R3),

where Vm is defined by (4.11) and

W ⋆ = WE −
[
S2

(dWI

ds
·
−→
N
)

+ S3

(dWI

ds
·
−→
B
)]

−→
T + (−S3

−→
N + S2

−→
B ) Θ⋆

w,

with

(5.5) Θ⋆
w = R⋆

w ·
−→
T .
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Proof. Thanks to hypothesis (5.3), from Theorem 3.3, estimates (4.4) and (4.9), we immediately have

(5.6) ‖W δ
E‖H1(0,L;R3) + δ‖W δ

I ‖H1(0,L;R3) + δ‖Rδ
w‖H1(0,L;R3) +

1

δ
‖ŵδ‖m ≤ C,

from which convergences (5.4)(i)–(iv) are straightforward. Moreover, since by definition (4.5), Θδ
w = Rδ

w ·
−→
T ,

one also has

(5.7) δΘδ
w ⇀ Θ⋆

w weakly in H1(0, L),

with Θ⋆
w verifying (5.5).

Now, let us turn to formula (5.2). Recalling that

W δ
e (s, s2, s3) = W δ

I (s) +W δ
E(s) + Rδ

w(s) ∧
(
s2
−→
N (s) + s3

−→
B (s)

)
, (s, s2, s3) ∈ ωδ,

by using estimate (5.6), from (5.2) we obtain that

‖Tδ(w
δ) −W δ

I ‖H1(ω;R3) ≤ C,

which, together with (5.4)(ii) implies convergence (5.4)(v). Convergence (5.4)(vi) follows simply by passing

to the limit in (5.1) and using the former convergences.

REMARK 5.2. From (3.8), one gets

∥∥∥
dW δ

I

ds
+
dW δ

E

ds
−Rδ

w ∧
−→
T
∥∥∥

2

L2(0,L;R3)
≤ C,

whence, due to (5.4)(i)–(iii)

dWI

ds
= R⋆

w ∧
−→
T .

Consequently, WI ∈ DIn where (see Definition 4.1 for comparison)

DIn =
{
U ∈ H2(0, L; R3)

∣∣∣
dU

ds
·
−→
T = 0, U(0) = 0,

dU

ds
(0) = 0

}
.

Also WE ∈ DEx.

REMARK 5.3. Proposition 5.1 shows that the limit behaviour of wδ when δ → 0, is described by the triple

(WI ,W
⋆, ŵ), where WI describes the flexion of the rod, W ⋆ its shearing and torsion and ŵ the deformation

of the cross-section. In view of (5.4), to this triple correspond three scales in δ, namely δ−1, δ0 and δ1. This

means that for δ small enough,

wδ(s, s2, s3) ∼
1

δ
WI(s) +W ⋆

(
s,
s2
δ
,
s3
δ

)
+ δŵ

(
s,
s2
δ
,
s3
δ

)
, ∀(s, s2, s3) ∈ ωδ.

5.2. Limit of the strain tensor.
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We are now interested to describe the asymptotic behaviour of the strain tensor γ(wδ). To do so, we have

to write this tensor in the Frenet basis (1.1)–(1.2). Let us denote the transformed tensor by e = (eij)1≤i,j≤3.

Recalling formulae (3.6), we have

e11(w
δ) =

∂wδ

∂s
·
−→
T +

1

1 − s2c

[
s2c

∂wδ

∂s
+ s3τ

∂wδ

∂s2
− s2τ

∂wδ

∂s3

]
·
−→
T ,

e12(w
δ) =

1

2

[∂wδ

∂s2
·
−→
T +

∂wδ

∂s
·
−→
N
]

+
1

2(1 − s2c)

[
s2c

∂wδ

∂s
+ s3τ

∂wδ

∂s2
− s2τ

∂wδ

∂s3

]
·
−→
N,

e13(w
δ) =

1

2

[∂wδ

∂s3
·
−→
T +

∂wδ

∂s
·
−→
B
]

+
1

2(1 − s2c)

[
s2c

∂wδ

∂s
+ s3τ

∂wδ

∂s2
− s2τ

∂wδ

∂s3

]
·
−→
B,

e22(w
δ) =

∂wδ

∂s2
·
−→
N,

e33(w
δ) =

∂wδ

∂s3
·
−→
B,

e23(w
δ) =

1

2

[∂wδ

∂s3
·
−→
N +

∂wδ

∂s2
·
−→
B
]
.

PROPOSITION 5.2. Let (wδ) ⊂ H1
Γ0

(Pδ; R
3) be a sequence satisfying (5.3). Then one has the following

convergences, all weak in L2(ω),

(5.8)






Tδ(e11(w
δ)) ⇀ e11 =

dWE

ds
·
−→
T −

[
S2

(d2WI

ds2
·
−→
N
)

+ S3

(d2WI

ds2
·
−→
B
)]

+ c S3 Θ⋆
w,

Tδ(e12(w
δ)) ⇀ e12 =

1

2

[
−c S3

(dWI

ds
·
−→
B
)
− S3

dΘ⋆
w

ds
− τ S2 Θ⋆

w +
∂ŵ

∂S2
·
−→
T
]
,

Tδ(e13(w
δ)) ⇀ e13 =

1

2

[
c S2

(dWI

ds
·
−→
B
)

+ S2
dΘ⋆

w

ds
+ τ S3 Θ⋆

w +
∂ŵ

∂S3
·
−→
T
]
,

Tδ(e22(w
δ)) ⇀ e22 =

∂ŵ

∂S2
·
−→
N,

Tδ(e33(w
δ)) ⇀ e33 =

∂ŵ

∂S3
·
−→
B,

Tδ(e23(w
δ)) ⇀ e23 =

1

2

[ ∂ŵ
∂S2

·
−→
B +

∂ŵ

∂S3
·
−→
N
]
,

where WE , WI , Θ⋆
w and ŵ are defined in Proposition 5.1.

Proof. Estimates (5.3) and (5.6) imply that the sequence Tδ(eij(w
δ)) for any i, j ∈ {1, 2, 3}, is bounded in

L2(ω) which will allow us to pass to convergent subsequences. Let us show for instance the result concerning

e11(w
δ). From (1.2) and (3.6) we have

e11(w
δ) =

1

1 − c s2

[dW δ
E

ds
·
−→
T + c s2

(dW δ
E

ds
·
−→
T
)
− s2

(d2W δ
I

ds2
·
−→
N
)

− s3

(d2W δ
I

ds2
·
−→
B
)

+ c s3 Θδ
w

]
+

1

1 − c s2

[
δ
∂ŵδ

∂s

(
s,
s2
δ
,
s3
δ

)
·
−→
T

+ τ s3

(∂ûδ

∂S2

(
s,
s2
δ
,
s3
δ

)
·
−→
T
)
− τ s2

(∂ûδ

∂S3

(
s,
s2
δ
,
s3
δ

)
·
−→
T
)]
.

Due to estimates (5.6), we can pass to the limit and get the first convergence in (5.8). The others are

obtained analogously.

The results above concern the limit displacements and the limit of the deformation tensor for any

sequence (wδ) satisfying (5.3). Our aim is to study the linearized elasticity problem so, from now on, we will

be concerned by the asymptotic behaviour of its solution.
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6. Elasticity problem.

We suppose we are given a rod Pδ made from an isotropic and homogeneous material. The displacement

uδ = (uδ
1, u

δ
2, u

δ
3) of Pδ, is the solution of the linearized system of elasticity

(6.1)






−
∂

∂xj

(
aijkh

∂uδ
k

∂xh

)
= F δ

i in Pδ,

uδ = 0 on Γ0δ,

aijkh
∂uδ

k

∂xh
nj = Gδ

i on Γδ = ∂Pδ \ Γ0δ,

where i = 1, 2, 3, and the elasticity coefficients aijkh are defined by

aijkl = λδijδkh + µ(δikδjh + δihδjk).

The constants λ and µ are the material Lamé coefficients, F δ is the density of volumic forces and Gδ is the

density of surface forces. Obviously, the coefficients aijkh satisfy the hypothesis of coerciveness, i.e., there

exists a constant C0 > 0 such that

(6.2) aijkh βij βkh ≥ C0 βij βij , for any matrix β = (βij)i,j with βij = βji.

The variational formulation of problem (6.1) is, to find uδ ∈ H1
Γ0

(Pδ; R
3) such that

(6.3)

∫

Pδ

aijkhγij(u
δ)γkh(v) dx =

∫

Pδ

F δ · v dx+

∫

Γδ

Gδ · v dsx. ∀v ∈ H1
Γ0

(Pδ; R
3).

Denote by σδ = (σδ
ij)1≤i,j≤3 the stress tensor, defined by

(6.4) σδ
ij = aijkh γkh(uδ).

System (6.1) can be rewritten under the equivalent form






∂

∂xj
σδ

ij = F δ
i in Pδ,

uδ = 0 on Γ0δ,

σij nj = Gδ
i on Γδ = ∂Pδ \ Γ0δ,

for i = 1, 2, 3. Hence, (6.3) can also be rewritten in the form, that will be used in the sequel,

(6.5)

∫

Pδ

σδ
kh γkh(v) dx =

∫

Pδ

F δ · v dx+

∫

Γδ

Gδ · v dsx. ∀v ∈ H1
Γ0

(Pδ; R
3).

The rod Pδ is subjected to two different type of forces, volume and surface forces. We will distinguish

also the forces which concern all the displacements of the middle-line (mainly inextensional displacements)

and those which concern only the extensional displacements. This distinction is visible in the order of size

corresponding to these displacements. To do so, recalling (1.6), we suppose that F δ and Gδ satisfy the

following assumption:

(6.6)






F δ(s, s2, s3) = δf
(
s,
s2
δ
,
s3
δ

)
+ f∗

(
s,
s2
δ
,
s3
δ

)
, with f, f∗ ∈ L2(ω; R3),

Gδ(s, θ) = δ2g(s, θ) + δg∗(s, θ), with g, g∗ ∈ L2(∂ω; R3).
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Then, classical results, the Lax–Milgram theorem for instance, give the existence and uniqueness of the

solution uδ ∈ H1
Γ0

(Pδ; R
3) of problem (6.1) (and so, of (6.3) or (6.5)).

Let now introduce the notation

(6.7)






FI =
1

π

∫

D(O;1)

f(·, S2, S3) dS2dS3 +
1

π

∫ 2π

0

g(·, θ) dθ,

FE =
1

π

∫

D(O;1)

f∗(·, S2, S3) dS2dS3 +
1

π

∫ 2π

0

g∗(·, θ) dθ,

FT =
1

π

∫

D(O;1)

(
f∗B(·, S2, S3)S2 − f∗N (·, S2, S3)S3

)
dS2dS3

+
1

π

∫ 2π

0

(
g∗B(·, θ)cos(θ) − g∗N (·, θ) sin θ

)
dθ,

GN =
1

π

∫

D(O;1)

f∗T (·, S2, S3)S2 dS2dS3 +
1

π

∫ 2π

0

g∗T (·, θ) cos θ dθ

GB =
1

π

∫

D(O;1)

f∗T (·, S2, S3)S3 dS2dS3 +
1

π

∫ 2π

0

g∗T (·, θ) sin θ dθ,

G = GN
−→
N +GB

−→
B,

where f∗ and g∗ were decomposed in the Frenet basis:

f∗ = f∗T ·
−→
T + f∗B ·

−→
B + f∗N ·

−→
N,

g∗ = g∗T ·
−→
T + g∗B ·

−→
B + g∗N ·

−→
N.

The following result holds:

PROPOSITION 6.1. Let uδ be the solution of problem (6.1) with F δ and Gδ satisfying (6.6). Assume

furthemore, that

(6.8)

∫ L

0

FE · V ds = 0, ∀V ∈ DIn.

Then, uδ satisfies the a priori estimate

(6.9) |uδ|E ≤ Cδ.

REMARK 6.2. Hypothesis (6.8) means that FE does not have any contribution in the inextensional dis-

placements.

Proof of Proposition 6.1. From Section 4, we know that uδ can be written in the form (see (5.1)),

uδ(s, s2, s3) =Uδ
I (s) + Uδ

E(s) −

(
s2
dU δ

I

ds
(s) ·

−→
N (s) + s3

dU δ
I

ds
(s) ·

−→
B (s)

)
−→
T (s)

+
(
−s3

−→
N (s) + s2

−→
B (s)

)
Θδ

u(s) + δûδ
(
s,
s2
δ
,
s3
δ

)
, ∀(s, s2, s3) ∈ ωδ,

with Uδ
I ∈ DIn, Uδ

E ∈ DEx and ûδ is defined by (5.2). Let choose uδ as test function in (6.2). Recalling

notation (6.7), hypothesis (6.8) implies that for the right-hand side term we have

(6.10)






∫

ωδ

F δ · uδ dωδ +

∫

∂ωδ

Gδ · uδ dsωδ =

∫

ωδ

F δ · δûδ dωδ +

∫

∂ωδ

Gδ · δûδ dsωδ

+ πδ2
∫ L

0

[
FE · Uδ

E + δFI ·
(
Uδ

E + Uδ
I

)
− δG ·

dU δ
I

ds
+ δFT Θδ

]
ds.
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Making use in (6.10) of estimte (5.3), and recalling the ellipticity condition (6.2), we have

C0|u
δ|2E ≤

∫

Pδ

aijkhγij(u
δ)γkh(uδ) dx =

∫

Pδ

F δ · uδ dx+

∫

Γδ

Gδ · uδ dsx ≤ Cδ|uδ|E ,

whence the a priori estimate (6.9) is straightforward.

COROLLARY 6.3. For the sequence (uδ) one has convergences (5.4), (5.7) and (5.8) (where one has to

replace w by u and W by U). Moreover, for δ → 0,

uδ(s, s2, s3) ∼
1

δ
UI(s) + U⋆

(
s,
s2
δ
,
s3
δ

)
+ δû

(
s,
s2
δ
,
s3
δ

)
, ∀(s, s2, s3) ∈ ωδ,

with UI , U
⋆ and û given by Proposition 5.1.

Proof. The result is a simple consequence of the fact that a priori estimate (6.9) is precisely hypothesis

(5.3) from Propositions 5.1 and 5.2.

Proposition 5.1 gives, besides UI , U
⋆ and û, also the limit functions UE , R

⋆
u and Θ⋆

u = R⋆
u ·

−→
T . In the

next section, we will show that the pair (UI , Θ⋆
u) is the solution of a system of fourth order partial differential

equations , while UE is the solution of a system of second order ones. This will completely determine all the

limit functions mentioned above.

7. Asymptotic behaviour of curved rods.

We start this section by studying the behaviour of the limit residual displacement ûδ. To this end, let v be

such that

(7.1) v(s, s2, s3) = δψ
(
s,
s2
δ
,
s3
δ

)
, where ψ ∈ H1(ω; R3) ∩ Vm, with ψ = 0 on Γ0.

Then, an straightforward computation leads to the expressions

e11(v
δ) =

δ

1 − δ c S2

[∂ψ
∂s

·
−→
T + τ S3

( ∂ψ
∂S2

·
−→
T
)
− τ S2

( ∂ψ
∂S3

·
−→
T
)]
,

e12(v
δ) =

1

2

( ∂ψ
∂S2

·
−→
T
)

+
δ

2

(∂ψ
∂s

·
−→
N
)

+
δ

2(1 − δ c S2)

(
c S2

∂ψ

∂s
+ τ S3

∂ψ

∂S2
− τ S2

∂ψ

∂S3

)
·
−→
N,

e13(v
δ) =

1

2

( ∂ψ
∂S3

·
−→
T
)

+
δ

2

(∂ψ
∂s

·
−→
B
)

+
δ

2(1 − δ c S2)

(
c S2

∂ψ

∂s
+ τ S3

∂ψ

∂S2
− τ S2

∂ψ

∂S3

)
·
−→
B,

which immediately imply the following strong convergences in L2(ω):

(7.2) Tδ(e11(v
δ)) −→ 0, Tδ(e12(v

δ)) −→
1

2

∂ψ

∂S2
·
−→
T , Tδ(e13(v

δ)) −→
1

2

∂ψ

∂S3
·
−→
T .

Moreover, e22, e33 and e23 are independent of δ, since

(7.3) e22(v
δ) =

∂ψ

∂S2
·
−→
N, e33(v

δ) =
∂ψ

∂S3
·
−→
B, e23(v

δ) =
1

2

( ∂ψ
∂S3

·
−→
N +

∂ψ

∂S2
·
−→
B
)
.
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Let now take vδ defined by (7.1) as test displacement in (6.3) where we pass to the limit as δ → 0 by

using Corollary 6.3 and (7.2). Taking into account (7.3), we obtain

(7.4)






µ

∫

ω

[
−c S3

(dUI

ds
·
−→
B
)
−S3

dΘ⋆
u

ds
− τS2Θ

⋆
u +

∂û

∂S2
·
−→
T
]( ∂ψ
∂S2

·
−→
T
)
dω

+µ

∫

ω

[
cS2

(dUI

ds
·
−→
B
)
+S2

dΘ⋆
u

ds
+ τS3Θ

⋆
u +

∂û

∂S3
·
−→
T
]( ∂ψ
∂S3

·
−→
T
)
dω

+

∫

ω

λ
[dUE

ds
·
−→
T − S2

(d2UI

ds2
·
−→
N
)
−S3

(d2UI

ds2
·
−→
B
)

+ c S3Θ
⋆
u

]( ∂ψ
∂S2

·
−→
N
)
dω

+

∫

ω

[
(λ+ 2µ)

( ∂û
∂S2

·
−→
N
)
+λ
( ∂û
∂S3

·
−→
B
)]( ∂ψ

∂S2
·
−→
N
)
dω

+

∫

ω

λ
[dUE

ds
·
−→
T − S2

(d2UI

ds2
·
−→
N
)
−S3

(d2UI

ds2
·
−→
B
)

+ c S3Θ
⋆
u

]( ∂ψ
∂S3

·
−→
B
)
dω

+

∫

ω

[
λ
( ∂û
∂S2

·
−→
N
)
+(λ+ 2µ)

( ∂û
∂S3

·
−→
B
)] ( ∂ψ

∂S3
·
−→
B
)
dω

+µ

∫

ω

( ∂û
∂S3

·
−→
N +

∂û

∂S2
·
−→
B
)( ∂ψ

∂S3
·
−→
N +

∂ψ

∂S2
·
−→
B
)
dω = 0.

Since H1(ω; R3) is dense in H
R
3

(
{∂S2

, ∂S3
};ω

)
, (7.4) holds for any ψ ∈ H

R
3

(
{∂S2

, ∂S3
};ω

)
.

Now, observe that (7.4) decouples. On one hand, for any χ ∈ HR

(
{∂S2

, ∂S3
};ω

)
one has

(7.5)

∫

ω

(
−τ S2 Θ⋆

u +
∂û

∂S2
·
−→
T
) ∂χ
∂S2

dx+

∫

ω

(
τ S3 Θ⋆

u +
∂û

∂S3
·
−→
T
) ∂χ
∂S3

dx = 0.

On the other hand, if (ψ2, ψ3) ∈ H
R
2

(
{∂S2

, ∂S3
};ω

)
, then

∫

ω

[
(λ+ 2µ)

( ∂û
∂S2

·
−→
N
)

+ λ
( ∂û
∂S3

·
−→
B
)]∂ψ2

∂S2
dω

+

∫

ω

[
λ
( ∂û
∂S2

·
−→
N
)
+(λ+ 2µ)

( ∂û
∂S3

·
−→
B
)]∂ψ3

∂S3
dω

+ µ

∫

ω

( ∂û
∂S3

.
−→
N +

∂û

∂S2
·
−→
B
)(∂ψ2

∂S3
+
∂ψ3

∂S2

)
dω

= − λ

∫

ω

[dUE

ds
·
−→
T − S2

(d2UI

ds2
·
−→
N
)
−S3

(d2UI

ds2
·
−→
B
)

+ c S3 Θ⋆
u

](∂ψ2

∂S2
+
∂ψ3

∂S3

)
dω.

This problem, as well as (7.5) can be solved explicitly (see Griso [5]), to get the limit residual displacement

û expressed in terms of extensional and inextensional displacements, and of the torsion angle of the rod,

û ·
−→
T =

S2
2 − S2

3

2
τ Θ⋆

u,

û ·
−→
N = ν

[
−S2

dUE

ds
+
S2

2 − S2
3

2

(d2UI

ds2
·
−→
N
)
+S2S3

(
−cΘ⋆

u +
d2UI

ds2
·
−→
B
)]
,

û ·
−→
B = ν

[
−S3

dUE

ds
+ S2S3

(d2UI

ds2
·
−→
N
)
+
S2

3 − S2
2

2

(
−cΘ⋆

u +
d2UI

ds2
·
−→
B
)]
,

where ν is the Poisson coefficient

ν =
λ

2(λ+ ν)
.
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We are also able to give the limit in L2(ω; R9) of the stress tensor defined by (6.4). Indeed, by using

convergences (5.8) one easily has

Tδ(σij(u
δ)) ⇀ σij weakly in L2(ω),

where

σ12 = σ21 = −
µS3

2

[
c
(dUI

ds
·
−→
B
)
+
dΘ∗

u

ds

]
,

σ13 = σ31 =
µS2

2

[
c
(dUI

ds
·
−→
B
)
+
dΘ∗

u

ds

]
,

σ22 = σ33 = σ23 = σ32 = 0.

A simple computation gives

σ22 = λe11 + (λ+ 2µ)e22 + λe33 = 0,

σ33 = λe11 + λe22 + (λ+ 2µ)e33 = 0.

Consequently, e22 = −νe11 and e33 = −νe11. Hence, one can give the expression of σ11 in terms of e11,

σ11 = (λ+ 2µ)e11 + λe22 + λe33 = Ee11 = E
[dUE

ds
·
−→
T − S2

(d2UI

ds2
·
−→
N
)
− S3

(d2UI

ds2
·
−→
B − cΘ⋆

u

)]
,

where E is the Young modulus of the material from which the rod is made,

E =
µ(3λ+ 2µ)

λ+ µ
.

Collecting all the above information, we now can state the main theorems giving the asymptotic behaviour

of the curved rod Pδ.

THEOREM 7.1. (Asymptotic behaviour of the inextensional displacement and of the torsion angle). The

couple (UI ,Θ
∗
u) ∈ DIn × V1, is the solution of the variational problem

(7.6)






E

3

∫ L

0

[(d2UI

ds2
·
−→
N
)(d2V

ds2
·
−→
N
)

+
(
−cΘ∗

u +
d2UI

ds2
·
−→
B
)(

−cψ +
d2V

ds2
·
−→
B
)]
ds

+
µ

3

∫ L

0

(dΘ∗
u

ds
+ c

dUI

ds
·
−→
B
)(dψ

ds
+ c

dV

ds
·
−→
B
)
ds

=

∫ L

0

(
FI · V −G ·

dV

ds
+ FT ψ

)
ds, ∀(V, ψ) ∈ DIn × V1,

where V1 =
{
ψ ∈ H1(0, L) |ψ(0) = 0

}
.

THEOREM 7.2. (Asymptotic behaviour of the extensional displacement). The limit extensional displace-

ment UE ∈ DEx is the solution of the variational problem

(7.7) E

∫ L

0

dUE

ds
·
dV

ds
ds =

∫ L

0

FE · V ds, ∀V ∈ DEx

Proof of Theorems 7.1 and 7.2. Let V ∈ DIn and ψ ∈ V1 and take in (6.3) the test-displacement

vδ ∈ H1
Γ0

(Pδ; R
3), defined for any s ∈ ωδ by

vδ(s) =
1

δ
V (s) −

[s2
δ

(dV
ds

(s) ·
−→
N (s)

)
+
s3
δ

(dV
ds

(s) ·
−→
B (s)

)]
−→
T (s) +

[
−
s3
δ

−→
N (s) +

s2
δ

−→
B (s)

]
ψ(s).
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With this choice, the components of the deformation tensor eij(v
δ) converge strongly in L2(ω) as follows:

Tδ(e11(v
δ)) −→ −S2

(d2V

ds2
·
−→
N
)
−S3

(d2V

ds2
·
−→
B
)
+cS3ψ,

Tδ(e12(v
δ)) −→

1

2

[
−cS3

(dV
ds

·
−→
B
)
−S3

dψ

ds

]
,

Tδ(e13(v
δ)) −→

1

2

[
cS2

(dV
ds

·
−→
B
)
+S2

dψ

ds

]
,

Tδ(e22(v
δ)) = 0, Tδ(e33(v

δ)) = 0, Tδ(e23(v
δ)) = 0.

Making use of these convergences when passing to the limit in problem (6.3), yields (7.6).

Let now V ∈ DEx. Since V is an admissible displacement of the rod (see (3.11)), it can be taken as

test-displacement in (6.3.). Passing to the limit and using Corollary 6.3, (7.7) follows easily.

REMARK 7.3. The variational problems (7.6) and (7.7) are coercive. Hence the whole sequences in (5.4)

and (5.8) converge.

REMARK 7.4. Convergences in (5.4.) and (5.9.) are strong. Indeed, we have

1

π

∫

ω

aijkl eijekl dω ≤ lim
δ→0

1

πδ2

∫

ωδ

aijkl eij(u
δ)ekl(u

δ) dωδ

≤ lim
δ→0

1

πδ2

∫

ωδ

aijkl eij(u
δ)ekl(u

δ) dωδ

= lim
δ→0

1

πδ2

[∫

ω

F δ · uδ dω +

∫

∂ω

Gδ · uδ dsω
]

=

∫ L

0

[
FE · UE + FI · UI −G ·

dUI

ds
+ FT · Θ∗

u

]
ds

=
1

π

∫

ω

aijkl eijekl dω.

8. Final comments and remarks.

Theorem 3.3 has been proved in the particular case of a curved rod whose cross section is a disc. This

theorem still holds when the rod cross section is a connected bounded open set with a Lipschitz boundary.

It also holds when the rod cross section is not fixed but depends on the heights where it is taken.

The residual displacement introduced in Section 4 (Definition 4.2) takes into account the behaviour of the

cross sections of the rod. For the sake of simplicity, to explain the action of the limit residual displacements,

we restricted ourselves to the case of a rod whose cross section is a disc, the applied forces concerning only

the rod elementary displacements. There is no difficulty to extend this explanation to more general cases.

We have obtained, after passing to the limit, two uncoupled limit problems, the first one linking the

inextensional displacement and the rod torsion angle, the second one defining the extensional displacement.

Such an uncoupling is due to the smoothness of the rod on one hand, and on the other hand, to the symmetries

of the cross-section. In a more general case, where either the rod has a variable cross-section, or it is made

by a non homogeneous or an anisotropic material, we obtain only one limit problem linking together the

extensional displacement, the inextensional one and the torsion angle.

Obvious modifications of the functional spaces introduced above (see (4.1), (4.2)), will give the asymp-

totic behaviour of curved rods clamped at both ends or of closed curved rods. For example, in the case of a
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curved rod clamped at both ends, the set of inextensional displacements will be defined by

DIn =
{
U ∈ H1

0 (0, L; R3)
∣∣ dU
ds

·
−→
T = 0

}
.

The space H1
0 (0, L; R3) is equipped with inner product

〈U, V 〉 =

∫ L

0

dU

ds
·
dV

ds
ds.

The extensional displacements space is then, by definition, the orthogonal space of DIn in H1
0 (0, L; R3) for

the inner product 〈·, ·〉. Proceeding as we have done above, we obtain the same problems (7.6) and (7.7)

provided the functional spaces are changed in order to take into account the fact that the rod is clamped at

the both ends.

In the case of straight rods, the curvature c and torsion τ vanish. All the results are obviously true and

we obtain the asymptotic behaviour of straight rods.
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(Paris VI), 1995.

[5] G. Griso, Asymptotic behavior of structures made of plates. C. R. Acad. Sci. Paris, Ser. I 336 (2003),

101–106.
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