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Abstract. Deterministic graph grammars are finite devices which gen-
erate the transition graphs of pushdown automata. We define the notion
of synchronization by grammars, generalizing previous sub-classes such
as visibly and height-deterministic pushdown automata. The languages
recognized by grammars synchronized by a given grammar form an effec-
tive boolean algebra lying between regular languages and deterministic
context-free languages. We also provide a sufficient condition to obtain
the closure under concatenation and its iteration.

1 Introduction

In recent literature, several restrictions of pushdown automata have been stud-
ied in order to define classes of languages which generalize regular languages
while retaining good closure properties (namely closure under boolean opera-
tions, concatenation and its iteration). All these approaches consist in defining
a notion of synchronization between pushdown automata.
The first such approach is to partition the input alphabet between pushing,
popping and internal symbols, and to impose that stack movement only depend
on the type of symbol read, yielding the so-called visibly pushdown automata
[AM 04]. This enforces that the stack height variation be entirely characterized
by the input word.
A first generalization is to replace the partition of the input alphabet by a fi-
nite transducer assigning a weight to every input word. A pushdown automaton
is synchronized by a transducer if two initial computations ending in the same
configuration are labelled by words of the same weight, and we can only reach a
finite number of configurations by initial computations of a given weight [Ca 06].
A last generalization, defining the height-deterministic pushdown automata, is
to synchronize a pushdown automaton by another pushdown automaton. The
notion of synchronization is simply that two initial computations with the same
input word end in configurations with the same height [NS 07].
The classes of languages accepted by pushdown automata synchronized by a
given partition of the input alphabet [AM 04], a finite transducer [Ca 06] or
a pushdown automaton [NS 07] are boolean algebras but, for the last two ap-
proaches, are not in general closed under concatenation and its iteration.
Instead of using the stack height of pushdown automata and doing a special
treatment of the ε-moves, a general approach is to define the synchronization at
a graph level. The transition graphs of the pushdown automata are generated



by infinite parallel rewritings by (deterministic graph) grammars [MS 85,Ca 07].
The weight of a vertex in the generated graph is defined as the minimal number
of steps of parallel rewritings necessary to produce it. The notion of synchro-
nization is defined for grammars generating deterministic graphs which can have
vertices of infinite in-degree. This allows a uniform treatment of real-time and
non-real-time deterministic pushdown automata.
A grammar G is synchronized by a grammar H if for any initial path of (the
graph generated by) G, there exists an initial path of H with the same label and
these paths end in vertices of same weight. By extending usual constructions
from finite automata to grammars, we show that the languages recognized by
all grammars synchronized with a given grammar form a boolean algebra con-
taining the regular languages, and we provide a simple sufficient condition for
the closure under concatenation and its iteration.
It appears that the boolean algebras yielded by the previous notions of syn-
chronization can all be captured using synchronization by grammars. We also
show that the family of balanced languages [BB 02], which is not synchronized
according to the previous notions, fit our formalism.

2 Deterministic graph grammars

In this section, we recall the notion of deterministic graph grammar together
with the family of graphs they generate: the regular graphs. For these graphs,
we introduce the level of a vertex and for deterministic regular graphs, we define
the weight of the label of an initial path. We end with a classical result on their
recognized languages: the labels of their accepting paths are the context-free lan-
guages, and are the deterministic (resp. and real-time) context-free languages by
restricting to deterministic regular graphs (resp. and of finite degree).

Let IN be the set of natural numbers. For a set E, we write |E| its cardinality,
2E its powerset and for any n ≥ 0, En = { (e1, . . ., en) | e1, . . ., en ∈ E } is the set
of n-tuples of elements of E. Thus E∗ =

⋃

n≥0 En is the free monoid generated
by E for the concatenation : (e1, . . ., em)·(e′1, . . ., e

′
n) = (e1, . . ., em, e′1, . . ., e

′
n),

and whose neutral element is the 0-tuple (). A finite set E of symbols is an
alphabet of letters, and E∗ is the set of words over E. Any word u ∈ En is of
length |u| = n and is also represented by a mapping from [n] := {1, . . ., n} into
E, or by the juxtaposition of its letters: u = u(1). . .u(|u|). The neutral element
is the word of length 0 called the empty word and denoted by ε.
Let F be a set of symbols called labels, ranked by a mapping ̺ : F −→ IN
associating to each label f its arity ̺(f) ≥ 0, and such that

Fn := { f ∈ F | ̺(f) = n } is countable for every n ≥ 0.
We consider simple, oriented and labelled hypergraphs: a hypergraph G is a sub-
set of

⋃

n≥0 FnV n , where V is an arbitrary set, such that

its vertex set VG := { v ∈ V | FV ∗vV ∗ ∩ G 6= ∅ } is finite or countable,
its label set FG := { f ∈ F | fV ∗ ∩ G 6= ∅ } is finite.

Any fv1. . .v̺(f) ∈ G is a hyperarc labelled by f and of successive vertices



v1, . . ., v̺(f) ; it is depicted for

̺(f) ≥ 2 as an arrow labelled f and successively linking v1, . . ., v̺(f) ;
̺(f) = 1 as a label f on vertex v1 and f is called a colour of v1 ;
̺(f) = 0 as an isolated label f called a constant.

This is illustrated in the figures throughout the paper. Note that a vertex v

is depicted by a dot named (v) where parentheses are used to differentiate a
vertex name from a vertex label (a colour).
For a subset E ⊆ F of labels, we write

VG,E := { v ∈ V | EV ∗vV ∗ ∩ G 6= ∅ } = VG ∩ EV ∗

G

the set of vertices of G linked by a hyperarc labelled in E.
A graph G is a hypergraph whose labels are only of arity 1 or 2 : FG ⊂ F1∪F2 .
Hence a graph G is a set of arcs av1v2 identified with the labelled transition
v1

a
−→

G

v2 or directly v1
a

−→ v2 if G is understood, plus a set of coloured vertices

f v. A tuple (v0, a1, v1, . . ., an, vn) for n ≥ 0 and v0
a1
−→

G

v1 . . . vn−1
an
−→

G

vn is

a path from v0 to vn labelled by u = a1. . .an ; we write v0
u

=⇒
G

vn or directly

v0
u

=⇒ vn if G is understood. For P, Q ⊆ VG and u ∈ F ∗
2 , we write

P
u

=⇒
G

Q if p
u

=⇒
G

q for some p ∈ P and q ∈ Q

and L(G, P, Q) := { u | P
u

=⇒
G

Q }

is the language recognized by G from P to Q. In these notations, we can re-
place P (and/or Q) by a colour i to designate the subset V

G,i
. In particular

i
u

=⇒
G

Q means that there is a path labelled by u from a vertex coloured by i to

a vertex in Q, and L(G, i, f) is the label set of the paths from a vertex coloured
by i to a vertex coloured by f .
In this paper, we only use two colours i, f ∈ F1 to mark respectively the initial
vertices and the final vertices. For any graph G, we denote

L(G) := L(G, i, f) the language recognized by G

L(G, i) := L(G, i, VG) the complete language recognized by G.

Recall that the regular languages over an alphabet T ⊂ F2 form the set:
Rat(T ∗) := { L(G) | G finite ∧ FG ⊆ T ∪ {i, f} }.

A graph grammar R is a finite set of rules of the form fx1. . .x̺(f) −→ H where
fx1. . .x̺(f) is a hyperarc joining pairwise distinct vertices x1 6= . . . 6= x̺(f) and
H is a finite hypergraph with {x1, . . ., x̺(f)} ⊆ VH ; we denote by

NR := { f ∈ F | ∃ x1, . . ., x̺(f) fx1. . .x̺(f) ∈ Dom(R) } the non-terminals of R,
the labels of the left hand sides,

TR := { f ∈ F − NR | ∃ P ∈ Im(R), VP,f 6= ∅ } the terminals of R,
the labels of R which are not non-terminals,

FR := NR ∪ TR the labels of R.

We use grammars to generate graphs. Hence in the following, we may assume
that any terminal is of arity 1 or 2 : TR ⊂ F1 ∪ F2 .
As for context-free grammars (on words), a graph grammar has an axiom: an
initial finite hypergraph. To indicate this axiom, we assume that any grammar



R has a unique constant non-terminal Z ∈ NR ∩ F0 ; the axiom of R is the
right hand side H of the rule of Z : Z −→ H .
To simplify, we add the condition that i only colours vertices of the axiom.
Starting from the axiom, we want that R generates a unique graph up to iso-
morphism. So we finally assume that any grammar R is deterministic meaning
that there is only one rule per non-terminal:

(X, H) , (Y, K) ∈ R ∧ X(1) = Y (1) =⇒ (X, H) = (Y, K).
For any rule X −→ H , we say that

VX ∩ VH are the inputs of H

and
⋃

{ VY | Y ∈ H ∧ Y (1) ∈ NR } are the outputs of H .

To work with these grammars, it is simpler to assume that any grammar R is
terminal-outside [Ca 07] : any terminal arc or colour in a right hand side links a
non input vertex:

H ∩ (TRVXVX ∪ TRVX) = ∅ for any rule (X, H) ∈ R.
We will use upper-case letters A, B, C, . . . for non-terminals and lower-case let-
ters a, b, c . . . for terminals. Here is an example of a (deterministic graph) gram-
mar R :

; ;

a

c

d

(x)

(y)

(z)

B

(x)

(y)

(z)

AAZ

b

b

i

f

(x)

(y)

(z)

B

(x)

(y)

(z)

A

A

b

b

c

b

b

For this grammar R, we have NR = {Z, A, B} , TR = {a, b, c, d} and x, y, z

are the inputs of the last two rules (the axiom rule having no input).
Given a grammar R, the rewriting −→

R

is the binary relation between hyper-

graphs defined as follows: M rewrites into N , written M −→
R

N , if we can

choose a non-terminal hyperarc X = As1. . .sp in M and a rule Ax1. . .xp −→ H

in R such that N can be obtained by replacing X by H in M :
N = (M − X) ∪ h(H)

for some function h mapping each xi to si, and the other vertices of H

injectively to vertices outside of M ; this rewriting is denoted by M −→
R, X

N .

The rewriting −→
R, X

of a hyperarc X is extended in an obvious way to the rewrit-

ing −→
R, E

of any set E of non-terminal hyperarcs. The complete parallel rewriting

=⇒
R

is the rewriting according to the set of all non-terminal hyperarcs: M =⇒
R

N

if M −→
R, E

N where E is the set of all non-terminal hyperarcs of M .

Taking the previous grammar, we depict in the next figure the first four steps of
the parallel derivation from its constant non-terminal Z :

=⇒=⇒ =⇒ =⇒AZ
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d
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c
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f
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b

b A

A

b

b

b

a
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d
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f

B

B

b

b
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Given a deterministic grammar R and a hypergraph H , we denote
[H ] := H ∩ TRV ∗

H = H ∩ (TRVHVH ∪ TRVH)
the set of terminal arcs and of terminal coloured vertices of H .
A graph G is generated by R (from its axiom) if G belongs to the following
set Rω of isomorphic graphs:

Rω := {
⋃

n≥0[Hn] | Z −→
R

H0 =⇒
R

. . . Hn =⇒
R

Hn+1 . . . } .

For instance by iterating indefinitely the previous derivation, we get the infinite
graph depicted below.

a

c

d

c

a

c

d

c

d

b

b

b

b

b

b

a

i

f

Grammars R and S are equivalent if they generate the same graph(s): Rω =
Sω. A regular graph is a graph generated by a (deterministic graph) grammar.
Given a (regular) graph G generated by a grammar R :

G =
⋃

n≥0[Hn] with Z −→
R

H0 =⇒
R

. . . Hn =⇒
R

Hn+1 . . .

we define the level ℓ(s) of a vertex s ∈ VG , denoted also ℓR
G(s) to precise G

and R, as being
ℓ(s) := min{ n | s ∈ VHn

}
the minimal number of rewritings applied from the axiom to get s.
For any grammar R and for G ∈ Rω, we denote

L(R) := L(G) the language recognized by R

L(R, i) := L(G, i) the complete language recognized by R.

These languages are well-defined since generated graphs by a grammar are iso-
morphic. For instance, the previous grammar R recognizes the language L(R)
generated from A by the following context-free grammar:

A = bb + aAAd + aAccb

As the generated graph(s) by R is co-accessible from f (from any vertex, there
is a path to a final vertex), L(R, i) is the set of prefixes of the words in L(R).
A graph G is (label) complete if for any arc label a ∈ FG ∩ F2 , any vertex
s ∈ VG is source of an a-arc: ∃ t, s

a
−→

G

t. For a grammar R generating a com-

plete graph Rω, we have L(R, i) = (TR − {i, f})∗.
A graph G is deterministic if i colours a unique vertex, and two arcs with the
same source have distinct labels: r

a
−→

G

s ∧ r
a

−→
G

t =⇒ s = t.

For a deterministic graph G generated by R, we can define the weight ‖ u ‖
R



of any word u ∈ L(R, i) by the level of the ending vertex of the initial path
labelled by u :

‖ u ‖
R

:= ℓ(s) for i
u

=⇒
G

s.

For the previous grammar R, we have ‖ ε ‖
R

= ‖ b ‖
R

= ‖ bb ‖
R

= 0 and
‖ a ‖

R
= ‖ abbc ‖

R
= ‖ abbbb‖

R
= 1 ; ‖ aa ‖

R
= 3.

The regular graphs of finite degree (any vertex is linked by a finite number of
edges) are the transition graphs of pushdown automata restricted to a regular
set of configurations. So the regular graphs of finite degree recognize the context-
free languages. By adding ε-transitions, any regular graph (allowing vertices of
infinite degree) recognizes a context-free language. Furthermore by identifying
vertices linked by ε-edges on the transition graphs of deterministic pushdown
automata, we get the deterministic regular graphs [Ca 07].

Proposition 2.1 The grammars (resp. generating deterministic graphs, de-
terministic graphs of finite degree) recognize the (resp. deterministic, deter-
ministic and real-time) context-free languages.

3 Synchronization of grammars

We introduce the synchronization as a binary relation between grammars gener-
ating deterministic graphs. To each grammar R, we associate the family Sync(R)
of the languages recognized by its synchronized grammars. By applying stan-
dard constructions on finite automata to synchronized grammars, we show that
Sync(R) is an extension of the regular languages which remains a boolean al-
gebra (cf. Theorem 3.5).

In this section, we restrict to any grammar R generating a deterministic graph.
Note that the determinism of Rω is a first order sentence which is decidable.
A grammar R synchronizes a grammar S and we write R � S or S � R if

∀ u ∈ L(S, i) (u ∈ L(R, i) ∧ ‖u ‖
R

= ‖u ‖
S
)

meaning that the label u of any initial path of the graph(s) generated by S is
the label of an initial path of the graph generated by R, and these paths end
in vertices of the same level. For instance the grammar of the previous section
synchronizes the following one:

; ;Z b A

i

f

(x)(x)

(y) (y)

A

a

c

B

(x) (x)

(y)

B

(y)
c

b

b

A

whose generated graph(s) is represented below by vertices of increasing level (the
vertices of a same level are the vertices in a same vertical line).
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b
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c
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c
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i

f

Note that � is a reflexive and transitive relation which is not antisymmetric;
we denote �� the bi-synchronization relation:

R �� S if R � S and S � R.
So R �� S ⇐⇒ R � S ∧ L(R, i) = L(S, i). Let us give a basic property of �.

Lemma 3.1 R � S and Rω of finite degree =⇒ Sω of finite degree.

The grammar synchronization does not depend on colour f i.e. on final vertices.
For instance the language recognized by the previous graph is { anb(bcc)n | n ≥
0 } which has no common word with the language recognized by the graph of
the previous section. For each grammar R, we associate the following family:

Sync(R) := { L(R) ∩ L(S) | R � S } of synchronized languages by R.

In particular L(R) ∈ Sync(R)

Sync(R) = { L(S) | R � S } if any vertex of Rω is final.

Taking the following grammar R :

;Z

b

a

A

A

b

c c

(1) (1)

A

ff

i

generating the following (label) complete graph:

b

c

b

a
c

b

a
c

b

a
c

ff f f

i

its set Sync(R) is the family of visibly pushdown languages for a a pushing
letter, b a popping letter and c an internal letter [AM 04]. This family is a
boolean algebra containing all the regular languages and closed under concate-
nation · and under its Kleene iteration ∗ . Except for the last two operations,
we extend these closure properties to Sync(R) for any grammar R, and we will
give a general condition on R such that Sync(R) is also closed under · and ∗ .
Due to Proposition 2.1 and Lemma 3.1, we have more families of synchronized
languages by allowing grammars generating graphs of infinite in-degree. For in-
stance the following grammar R :

; ;

B

Z A

f
i

A

B

(1)(1)
A

b

a

B

B

(1)

(2)

(1)

(2)

c

d

e



has a family Sync(R) 6= Sync(S) for any grammar S such that Sω is of finite
degree.
The closure properties of Sync(R) are just obtained by translating usual con-
structions on finite automata to synchronized grammars.
Recall that the synchronization product G×H of two graphs G and H is the
graph

G×H := { (s, p)
a

−→ (t, q) | s
a

−→
G

t ∧ p
a

−→
H

q }

∪ { i(s, p) | is ∈ G ∧ ip ∈ H } ∪ { f(s, p) | fs ∈ G ∧ fp ∈ H } .

So L(G×H, i) = L(G, i) ∩ L(H, i) and L(G×H) = L(G) ∩ L(H).
By synchronization product of a grammar R by a finite deterministic automa-
ton, we get that any regular language included in L(R) is a synchronized lan-
guage of R.

Lemma 3.2 For any grammar R and any regular language L,
L(R) ∩ L ∈ Sync(R).

Proof.

We want to define a grammar synchronized by R and recognizing L(R) ∩ L.
Let K be a finite deterministic graph (automaton) recognizing L : L(K) = L.
We order the vertices (states) of K : VK = {q1, . . ., qn} with n = |VK | .
To each non-terminal A ∈ NR of R, we associate a new symbol A′ of arity
̺(A)×n except that Z ′ = Z.
To each non-terminal hyperarc As1. . .sm (with A ∈ NR and m = ̺(A)), we
associate the following hyperarc:

(As1. . .sm)′ := A′(s1, q1). . .(s1, qn) . . . (sm, q1). . .(sm, qn) .
The synchronization product of R by K is the following grammar:

R×K := {
(

X ′ , [H ]×K ∪ { Y ′ | Y ∈ H ∧ Y (1) ∈ NR }
)

| (X, H) ∈ R }.
This grammar is synchronized by R.
As G×K ∈ (R×K)ω for any G ∈ Rω, the grammar R×K recognizes

L(R×K) = L(R) ∩ L(K) = L(R) ∩ L .
2

The synchronization product of a grammar by a deterministic finite automaton
can be extended for two grammars synchronized by a given one.
Let S and S′ be grammars synchronized by R : R � S and R � S′.
To each non-terminal couple (A, B) ∈ NS×NS′ , we associate a new symbol
(A, B)′ of arity ̺(A)×̺(B) except that (Z, Z)′ = Z.
To each non-terminal hyperarc As1. . .sm of S (A ∈ NS and m = ̺(A)) and
each non-terminal hyperarc Bt1. . .tn of S′ (B ∈ NS′ and n = ̺(B)), we
associate the hyperarc:

(As1. . .sm , Bt1. . .tn)′ := (A, B)′(s1, t1). . .(s1, tn) . . . (sm, t1). . .(sm, tn) .
The synchronization product S×S′ of S by S′ is the grammar of the rules
(X, Y )′ −→ [H ]×[K] ∪ { (fU, gV )′ | fU ∈ H ∧ f ∈ NS ∧ gV ∈ K ∧ g ∈ NS′ }

for each (X, H) ∈ S and (Y, K) ∈ S′.
The synchronization product of grammars synchronized by a grammar R is used



to deduce the closure by intersection of Sync(R).

Lemma 3.3 For any grammars R, S, S′, we have
S � R ∧ S′

� R =⇒ S×S′
��S′

×S � S and (S×S′)ω = Sω
×S′ω

S � R =⇒ R×S �� S

Sync(R) is closed under intersection.

Proof.

The grammar S×S′ is synchronized by S and S′ hence by R and
(S×S′)ω = Sω

×S′ω := { G×G′ | G ∈ Sω ∧ G′ ∈ S′ω } .
Thus L(S×S′) = L(S) ∩ L(S′) and L(S×S′, i) = L(S, i) ∩ L(S′, i).
The closure under intersection of Sync(R) results from the equality:

(

L(R) ∩ L(S)
)

∩
(

L(R) ∩ L(S′)
)

= L(R) ∩ L(S×S′).
Finally R×S � S and L(R×S, i) = L(S, i) thus R×S �� S.
2

The closure under intersection of Sync(R) implies that

Sync(R) = { L(S) | R � S ∧ L(S) ⊆ L(R) }.

Using Lemma 3.3, we show that we have the same families of synchronized
languages by restricting to grammars R generating (deterministic) graphs Rω

which are accessible from i and co-accessible from f ; in that case, L(R, i) is
the set of prefixes of L(R).
For the closure under union, we define a generalized synchronization product
G⊗H of graphs G and H such that L(G⊗H, i) = L(G, i) ∪ L(H, i) and
L(G⊗H) = L(G) ∪ L(H).
As for the synchronization product S×S′ of grammars S and S′ synchronized
by a grammar R, we define the product S⊗S′ generating (S⊗S′)ω = Sω

⊗S′ω.
It follows the closure of Sync(R) under union and complement with respect to
L(R). This also permits to decide whether R synchronizes S.

Lemma 3.4 The synchronization relation � is recursive.

We summarize previous results.

Theorem 3.5 For any grammar R, the family Sync(R) of synchronized
languages is an effective boolean algebra with respect to L(R), of deterministic
context-free languages, containing all the regular languages included in L(R).

Let us give another family of synchronized languages than the visibly pushdown
languages. Taking an internal letter c, two pushing letters a, b and their corre-
sponding popping letters a, b, the following grammar R :



;;

(1)

(2)

A

(1)

(2)

b

c

b

a

a
BB

c

B

(1)

(1)
b

c
a b

BB

a

cZ A

i

f

defines by synchronization the family Sync(R) of balanced languages [BB 02].
This family Sync(R) is not closed under · and ∗ . By extending standard con-
structions on finite automata for the closure under · and ∗ , we will get families
of synchronized languages closed under · and ∗ . However the constructions
need to extend the synchronization to grammars generating non deterministic
graphs.

4 Synchronization of weighted grammars

We generalize the notion of synchronization to grammars, called weighted gram-
mars, generating non-deterministic graphs. A grammar is weighted if in the
generated graph two initial paths with the same label end in vertices of same
weight. We show that weighted grammars can be in a certain sense determinized
(cf. Proposition 4.2) and hence do not allow to capture new boolean algebras.
However they allow to use on grammars the standard constructions for concate-
nation and its iteration (which introduce non-determinism). As a consequence,
we provide a simple sufficient condition for the boolean algebras, defined by syn-
chronization of grammars, to be closed under concatenation and iteration (cf.
Theorem 4.3).

In this section, a deterministic graph grammar R can generate a non determin-
istic graph G ∈ Rω. We say that R is a weighted grammar if two initial paths
with the same label end in vertices of the same level:

i
u

=⇒
G

s ∧ i
u

=⇒
G

t =⇒ ℓ(s) = ℓ(t)

which allows to define the weight of any u ∈ L(R, i) as above:
‖ u ‖

R
:= ℓ(s) for i

u
=⇒

G

s.

Here is an example of a weighted grammar generating a non deterministic graph:

; ;

(x)

(y)

(z)

(x)

(y)

(z)

A

a

c

d

BAZ

b

b

i

f

(x)

(y)

(z)

B

(x)

(y)

(z)

c
A

b

b

b

b

b

Any grammar generating a deterministic graph is weighted. Any weighted gram-
mar generates a finite out-degree graph which can be of infinite in-degree. The
decidability that a grammar generates a deterministic graph can be extended to
the weighted property.

Lemma 4.1 We can decide whether a grammar is weighted.



The synchronization is generalized to weighted grammars R and S :
R � S if ∀ u ∈ L(S, i), u ∈ L(R, i) ∧ ‖u ‖

R
= ‖ u ‖

S

and Syncw(R) := { L(R) ∩ L(S) | R � S ∧ S weighted } .
For instance the above grammar is synchronized by the grammar of the previous
section. A key property is that any weighted grammar can be determinized.

Proposition 4.2 Any weighted grammar can be transformed into an equiv-
alent bi-synchronized grammar generating a deterministic graph.

This implies that for any weighted grammar R, we can construct a grammar S

generating a deterministic graph such that Syncw(R) = Sync(S).
Weighted grammars have been introduced for the closure under · and ∗ of
Sync(R) for grammars R generating deterministic graphs.
We say that R is a cyclic grammar if Rω is deterministic and its initial vertex
is the unique final vertex. In that case L(R) is closed under concatenation.

Theorem 4.3 For any cyclic grammar R, the family Sync(R) is closed
under · and under ∗ .

For instance taking the following cyclic grammar R :

;
b

c
a b

a

c

(1)

A

A A

(1)

Z

A

fi

the family Sync(R) is the closure under concatenation and under iteration of
the concatenation of the balanced languages [BB 02].

5 Synchronization of pushdown automata

The synchronization of height-deterministic pushdown automata [NS 07] and the
synchronization with a transducer [Ca 06] define language families synchronized
by grammars.

We begin with the last approach of [NS 07]. A (real-time) pushdown automaton
in a weak form S over an alphabet T of terminals is a finite set of rules of the
form:

Ap
a

−→ q ; Ap
a

−→ Aq ; Ap
a

−→ ABq

with A, B ∈ P , p, q ∈ Q, a ∈ T , where P, Q are disjoint alphabets of respec-
tively stack letters and states. We associate to S a subset F ⊆ Q of final states,
and an initial configuration c = ⊥r for r ∈ Q and ⊥ ∈ P which cannot be
popped (⊥p

a
−→ q is not a rule of S). The transition graph Tr(S) of S is the

set of its transitions
{ wu

a
−→ wv | u

a
−→

S

v ∧ w ∈ P ∗ } ∪ {i c} ∪ { fu | u ∈ P ∗F }



restricted to the vertices accessible from c. We denote L(S) := L(Tr(S)) the
language recognized by S, and we say that S is complete if L(Tr(S), i) = T ∗.
A complete pushdown automaton S is height-deterministic [NS 07] if

c
u

=⇒
T r(S)

xp ∧ c
u

=⇒
Tr(S)

yq =⇒ |x| = |y|

meaning that two initial paths with the same label end in vertices of same
length. Finally two height-deterministic pushdown automata S and S′ are syn-
chronized if

c
u

=⇒
T r(S)

xp ∧ c′
u

=⇒
T r(S′)

yq =⇒ |x| = |y|

and the family of languages synchronized by S is
Sync(S) := { L(S′) | S′ synchronized by S }.

As S is complete and Sync(S) does not depend on the final states of S,
T ∗ ∈ Sync(S).
Any family Sync(S) can be obtained by synchronization with a grammar.

Proposition 5.1 We can transform any height-deterministic pushdown au-
tomaton S into a grammar R with Rω deterministic of finite degree and
Sync(R) = Sync(S).

Any family Sync(S) contains T ∗, hence cannot be the set of balanced languages.
However and redefining Sync(S) := { L(S) ∩ L(S′) | S′

� S }, Proposition 5.1
remains true and its converse must be studied.
The synchronization of pushdown automata, and more generally grammars, by a
transducer [Ca 06] can also be captured using synchronization by a linear gram-
mar : each right hand side has at most one non-terminal hyperarc. Taking the
visibly pushdown languages, the converse is false.
In conclusion, the synchronization by grammars strictly generalizes the known
synchronization notions of pushdown automata.

Many thanks to Arnaud Carayol and Antoine Meyer for their remarks and com-
ments on this paper.
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