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MSO on the Infinite Binary Tree: Choice and

Order

Arnaud Carayol and Christof Löding

RWTH Aachen, Informatik 7, 52056 Aachen, Germany
{carayol,loeding}@i7.informatik.rwth-aachen.de

Abstract. We give a new proof showing that it is not possible to define
in monadic second-order logic (MSO) a choice function on the infinite
binary tree. This result was first obtained by Gurevich and Shelah us-
ing set theoretical arguments. Our proof is much simpler and only uses
basic tools from automata theory. We discuss some applications of the
result concerning unambiguous tree automata and definability of winning
strategies in infinite games. In a second part we strengthen the result of
the non-existence of an MSO-definable well-founded order on the infinite
binary tree by showing that every infinite binary tree with a well-founded
order has an undecidable MSO-theory.

1 Introduction

Our main purpose is to present a simple proof for the fact (first shown by Gure-
vich and Shelah in [GS83]) that on the infinite binary tree there is no choice
function that can be defined in monadic second-order logic (MSO), i.e., in the
extension of first-order logic by quantification over sets of elements. A choice
function on the infinite binary tree is a mapping assigning to each nonempty set
of nodes one element from this set, i.e., the function chooses for each set one
of its elements. Such a function is MSO-definable if there is an MSO-formula
with one free set variable X and one free element variable x such that for each
nonempty set U of nodes there is exactly one element u ∈ U such that the
formula is satisfied if X is interpreted as U and x is interpreted as u.

The question of the existence of an MSO-definable choice function over the
infinite binary tree can be seen as a special instance of the more general uni-
formization problem, which asks, given a relation that is defined by a formula
with free variables, whether it is possible to define by another formula a function
that is compatible with this relation. More precisely, given a formula φ(X̄, Ȳ )
with vectors Ȳ , X̄ of free variables, such that ∀X̄∃Ȳ φ(X̄, Ȳ ) is satisfiable, uni-
formization asks for a formula φ∗(X̄, Ȳ ) such that

1. φ∗ implies φ (each interpretation of Ȳ , X̄ making φ∗ true also makes φ true),

2. and φ∗ defines a function in the sense that for each interpretation of X̄ there
is exactly one interpretation of Ȳ making φ∗ true.



The question of the existence of a choice function is the uniformization problem
for the formula φ(X, y) = X 6= ∅ → y ∈ X.

The infinite line, i.e., the structure (ω, succ) of the naturals with the successor
function is known to have the uniformization property for MSO [Sie75]. On the
infinite binary tree MSO is known to be decidable [Rab69] but it does not have
the uniformization property. This was conjectured in [Sie75] and proved in [GS83]
where it is shown that there is no MSO-definable choice function on the infinite
binary tree.

The reason for the present paper is that the proof in [GS83] uses complex
set theoretical arguments, whereas it appears that the result can be obtained
by much more basic techniques. We show that this is indeed true and present
a proof that only relies on the equivalence of MSO and automata over infinite
trees and otherwise only uses basic techniques from automata theory. Besides its
simplicity, another advantage of the proof is that we provide a concrete family
of sets (parameterized by natural numbers) such that each formula will fail to
make a choice for those sets with the parameters chosen big enough. We use this
fact when we discuss two applications of the result concerning unambiguous tree
automata (as presented in [NW]) and the definability of strategies in infinite
games.

The subject of MSO-definability of choice functions on trees has been studied
in more depth in [LS96], where the authors consider more general trees not only
the infinite binary tree. They show the following dichotomy: for a tree it is
either not possible to define a choice function in MSO, or it is possible to define
a well-ordering on the domain of the tree.

We strengthen this result by showing that extending the infinite binary tree
by any well-ordering leads to a structure with undecidable MSO-theory. As a
consequence we obtain that each structure in which we can MSO-define a well-
ordering and MSO-interpret the infinite binary tree must have an undecidable
MSO-theory.

The article is structured as follows. In the next section we introduce some
notations and basic terminology. In Section 3 we give the proof that there is
no MSO-definable choice function on the infinite binary tree and discuss appli-
cations of the result. In Section 4 the undecidability of the MSO-theory of the
infinite binary tree augmented by any well-ordering is shown.

2 Preliminaries

Words. For a finite alphabet Σ, we write Σ∗ for the set of all words over Σ.
The length of a word u ∈ Σ∗ is denoted by |u| and ε is the empty word. For
all words u, v ∈ Σ∗, u is a prefix of v (written u ⊑ v) if there exists w ∈ Σ∗

such that v = uw. If w ∈ Σ+ then u is a strict prefix of v (written u ⊏ v). The
greatest common prefix of two words u and v (written u∧ v) is the longest word
which is a prefix of u and v.

Relational structures. A signature is a ranked set of symbol S, where for all
R ∈ S, |R| denotes the arity (which is ≥ 1) of the symbol R. A relational
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structure R over the signature S is given by a tuple (U, (RR)R∈S) where U

is the universe of R and where for all R ∈ S, RR (which is also called the
interpretation of R in R) is a subset of U |R|. When R is clear from the context,
we will simply write R instead of RR.

Monadic second-order logic. We adopt the definition of monadic second-order
logic (MSO) over relational structures with the standard syntax and semantics
(see e.g. [EF95] for a detailed presentation). We write ϕ(X1, . . . , Xn, y1, . . . , ym)
to denote that the free variables of the formula ϕ are among X1, . . . , Xn (monadic
second-order) and y1, . . . , ym (first-order) respectively. A formula without free
variables is called a sentence.

For a relational structure R and a sentence ϕ, we write R |= ϕ if R sat-
isfies the formula ϕ. The MSO-theory of R is the set of sentences satisfied
by R. For every formula ϕ(X1, . . . , Xn, y1, . . . , ym), all subsets U1, . . . , Un of
the universe of R and all elements v1, . . . , vm of the universe of R, we write
R |= ϕ[U1, . . . , Un, v1, . . . , vm] to express that ϕ holds in R when Xi is inter-
preted as Ui for all i ∈ [1, n] and yj is interpreted as vj for all j ∈ [1,m].

Infinite binary labelled trees. An (infinite binary) tree labeled by a finite alphabet
Σ is a mapping t : {0, 1}∗ → Σ. We denote by TΣ the set of all trees labeled
by Σ. For a set U ⊆ {0, 1}∗, we write t(U) ∈ T{0,1} for the characteristic tree
of U , i.e., the tree which labels all nodes in U with 1 and all the other nodes
with 0. This notation is extended to the case of several sets. The characteristic
tree of U1, . . . , Un ⊆ {0, 1}∗ is the tree labeled by {0, 1}n written t(U1, . . . , Un)
and defined for all u ∈ {0, 1}∗ by t(U1, . . . , Un)(u) := (b1, . . . , bn) where for all
i ∈ [1, n], bi = 1 if u ∈ Ui and bi = 0 otherwise.

To every tree t labeled by Σ = {a1, . . . , an}, we associate a canonical struc-
ture over the signature {E0, E1, Pa1

, . . . , Pan
} where E0 and E1 are binary sym-

bols and the Pai
are predicates. The universe of this structure is {0, 1}∗. The

symbols E0 and E1 are respectively interpreted as {(w,w0) | w ∈ {0, 1}∗}
and {(w,w1) | w ∈ {0, 1}∗}. Finally for all i ∈ [1, n], Pai

is interpreted as
{u ∈ Σ∗ | t(u) = ai}. In the following, we will not distinguish between a tree
and its canonical relational structure.

In particular, for a formula ϕ(X1, . . . , Xn) and sets U1, . . . , Un ⊆ {0, 1}∗, we
write t(U1, . . . , Un) |= ϕ to indicate that the infinite binary tree satisfies ϕ when
Xi is interpreted by Ui.

3 Choice

As described in the introduction, an MSO-definable choice function is given by
an MSO-formula φ(X,x) such that

∀X∃x. X 6= ∅ → (x ∈ X ∧ φ(X,x) ∧ ∀y. φ(X, y) → x = y)

is true over the infinite binary tree. This section is mainly devoted to the proof
of the following theorem of Gurevich and Shelah.
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Theorem 1 ([GS83]). There is no MSO-definable choice function on the infi-
nite binary tree.

The technical formulation of the result we prove is given in Theorem 3, where
we concretely provide counter examples for which a given formula cannot choose
a unique element. As a machinery for the proof we use tree automata, which are
easier to manipulate (at least for our purpose) than formulas. In the following
we give some basic definitions. More details on automata for infinite trees can
be found in [Tho97].

In this section we take the view of labeled trees as mappings from {0, 1}∗ to
the label alphabet (which usually is {0, 1}n for some number n).

A parity automaton on Σ-labeled trees is a tuple A = (Q,Σ, q0,∆,Ω) with a
finite set Q of states, initial state q0 ∈ Q, transition relation ∆ ⊆ Q×Σ×Q×Q,
and a priority function Ω : Q → N. A run of A on a tree t ∈ TΣ from a state
q ∈ Q is a tree ρ ∈ TQ such that ρ(ε) = q, and for each u ∈ {0, 1}∗ we have
(ρ(u), t(u), ρ(u0), ρ(u1)) ∈ ∆. We say that ρ is accepting if on each path the
minimal priority appearing infinitely often is even. If we only speak of a run of
A without specifying the state at the root, we implicitly refer to a run from q0.

We extend this model to automata that do not only accept or reject trees
but also mark some of the nodes with special marking states. A marking parity
automaton (MPA) is a tuple A = (Q,Σ, q0,∆,Ω, P ) with an additional set of
marking states P ⊆ Q. A run ρ of such an automaton defines a set Uρ ⊆ {0, 1}∗

as the set of those nodes that are labeled by a marking state, i.e., Uρ = ρ−1(P ).
Given a set U ⊆ {0, 1}∗ and an MPA A on {0, 1}-labeled trees, we define

T (A, U) = {Uρ | ρ is an accepting run of A on t(U)}.

That is, the set of all sets that are marked by A in an accepting run on t(U).

Theorem 2 ([Rab69]). For each MSO-formula φ(X,Y ) there is an MPA Aφ

such that T (Aφ, U) = {U ′ ⊆ {0, 1}∗ | t(U,U ′) |= φ} for each U ⊆ {0, 1}∗.

For a set U ⊆ {0, 1}∗ we say that A marks an element u of U if u ∈ U and there
is an accepting run ρ of A on t(U) such that Uρ = {u}. Note that with other
runs A might mark other elements or sets of elements.

For two trees t, t′ we say that they are A-equivalent, written as t≡A t′, if for
each state q of A there is an accepting run from q on t iff there is an accepting
run from q on t′. Intuitively, this means that A cannot distinguish the two trees.

3.1 Undefinability of choice functions

We now define a family (UM,N )M,N of sets such that for each MPA we can find
M and N such that this MPA cannot mark a unique element of UM,N . To achieve
this, we “hide” the elements from the set very deep in the tree such that MPAs
up to a certain size are not able to uniquely choose an element that they can
mark.

For M,N ∈ N the set UM,N ⊆ {0, 1}∗ is defined by the following regular
expression UM,N = {0, 1}∗(0N0∗1)M{0, 1}∗. Let tM,N = t(UM,N ). This tree can
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be obtained by unfolding the finite graph GM,N depicted in Figure 1 from xM .
In this picture, the dashed arrows represent 1-labeled edges leading back to the
node xM . The chains of 0-edges between xk+1 and xk have length N . All nodes
in this graph are labeled 0 except x0, which is labeled by 1.

xM 1

•
0

•
0

· · ·

•

•
0

0

xM−1

1

• 0

· · ·

•

•
0

0

xM−2

1

...

•
0

x1

1

•
0

•
0

· · ·

•

•
0

0

x0

1

0,1

Fig. 1. A representation of the regular tree tM,N by the graph GM,N

It is easy to verify that x0 is reachable from xM by exactly those paths
whose sequence of edge labels is in the set UM,N . So GM,N can be viewed as the
minimal DFA accepting the language UM,N where x0 is the only final state. Let
tk,M,N denote the tree that we obtain by unfolding the graph GM,N from the
node xk.

We now fix an MPA A = (Q, {0, 1}, q0,∆,Ω, P ) on {0, 1}-labeled trees and
take M = 2|Q| + 1 and N = |Q| + 1. For these fixed parameters we simplify the
notation by letting tk = tk,M,N . In particular, tM = tM,M,N = tM,N .

We say that a subtree (of some tree t) that is isomorphic to tk for some k is
of type tk.

Our aim is to trick the automaton A to show that it cannot choose a unique
element from the set UM,N . This is done by modifying a run that marks an
element u of UM,N such that we obtain another run marking something different.
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To understand the general idea, consider the path between xk+1 and xk for
some k. If we take a 1-edge before having reached the end of the 0-chain, i.e., if
we take a dashed edge in the picture, then we reach a subtree of type tM . But
if we walk to the end of the 0-chain and then move to the right using a 1-edge,
then we arrive at a subtree of type tk. If we show that there is ℓ < M such that
tM and tℓ are A-equivalent, then this means that A has no means to identify
when it enters the part where taking a 1-edge leads to subtree of type tℓ. We
then exploit this fact by pumping the run on this part of the tree such that we
obtain another run marking something different.

Lemma 1. There exists ℓ < M such that tM ≡A tℓ.

Proof. We consider for each tree t ∈ T{0,1} the function ft : Q → {a, r} with
ft(q) = a if there is an accepting run from q on t, and ft(q) = r otherwise.
By definition, two trees t, t′ are A-equivalent if ft = ft′ . There are at most 2|Q|

different such functions. By the choice of M there are 1 ≤ k1 < k2 ≤ M such
that tk1

≡A tk2
. Let k = k2 − k1 and ℓ = M − k.

We show that we can obtain tℓ from tM by substituting some of the subtrees
of type tk2

in tM by subtrees of type tk1
. As we have seen that tk1

and tk2
are

A-equivalent, this suffices to show that tM and tℓ are also A-equivalent.
We know that tM is obtained by unraveling the graph GM,N (Figure 1) from

xM . One way to obtain tℓ is the following. We take a second copy of GM,N and
denote in this copy the vertices corresponding to x0, . . . , xM by x′

0, . . . , x
′
M . Now

we redirect the edge leading to xk2
in the first copy to point to x′

k1
in the second

copy. It is easy to verify that unravelling this new graph from xM (in the first
copy) yields the tree tℓ. And furthermore, this shows that tℓ can be obtained
by replacing some subtrees of type tk2

in tM by subtrees of type tk1
. Hence,

tM ≡A tℓ. ⊓⊔

The following lemma states that it is impossible for A to distinguish a unique
element of UM,N , i.e., it is not possible that T (A, UM,N ) = {{u}} for some
u ∈ UM,N .

Lemma 2. If A marks an element of UM,N , then |T (A, UM,N )| > 1

Proof. Assume that that there is an accepting run ρ of A on tM = tM,N such
that Uρ = {u} with u ∈ UM,N . From ρ we construct another accepting run
marking a different set of nodes.

For 0 ≤ k ≤ M let uk denote the maximal prefix of u such that the subtree
at uk is of type tk. Let ℓ be as in Lemma 1. For i ≥ 0 we let vi = uℓ+10

i and
v′

i = vi1. Note that v0 = uℓ+1 and that for 0 ≤ i < N the subtrees at v′
i are of

type tM , and for i ≥ N the subtrees at v′
i are of type tℓ.

From Lemma 1 we know that tℓ ≡A tM . Hence, for each accepting run ρq of
A from q on tM we can pick an accepting run ρ′q of A from q on tℓ.

By the choice of N there are 0 ≤ j < j′ < N such that ρ(vj) = ρ(vj′). For
the moment, consider only the transitions taken in ρ on the sequence v0, v1, . . .,
i.e., on the infinite branch to the left starting from v0. We now simply repeat
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the part of the run between vj and vj′ once. The effect is that some of the states
that were at a node v′

i for i < N are pushed to nodes v′
i for i ≥ N , i.e., the states

are moved from subtrees of type tM to subtrees of type tℓ. But for those states
q we can simply plug the runs ρ′q that we have chosen above.

More formally, we define the new run ρ′ of A on tM as follows. On the part
that is not in the subtree below v0 the run ρ′ corresponds to ρ. In the subtree
at v0 we make the following definitions, where h = j′ − j.

– For i < j′ let ρ′(vi) = ρ(vi) and ρ′(v′
i) = ρ(v′

i).
– For i ≥ j′ let ρ′(vi) = ρ(vi−h) and ρ′(v′

i) = ρ(v′
i−h).

– For the subtrees at v′
i for i < j′ we take the subrun of ρ at v′

i.
– For the subtrees at v′

i for j′ ≤ i < N or i ≥ N + h we take the subrun of
ρ at v′

i−h. This is justified because in these cases ρ′(v′
i) = ρ(v′

i−h) and the
subtrees at v′

i and v′
i−h are of the same type (both of type tM or both of

type tℓ).
– For the subtrees at v′

i for N ≤ i < N +h we take the runs ρ′qi
for qi = ρ′(v′

i).
This is justified as follows. From qi = ρ′(v′

i) and the definition of ρ′ we know
that ρ(v′

i−h) = qi. Hence, there is an accepting run of A from qi on tM .
Thus, ρ′qi

as chosen above is an accepting run of A from qi on tℓ.

This run ρ′ is accepting. Furthermore, the state marking u in the run ρ has
been moved to another subtree: There are n ≥ N and w ∈ {0, 1}∗ such that
u = uℓ+10

nw. In ρ′ the state marking u is at u′ = uℓ+10
n+hw. Hence, we have

constructed an accepting run marking a set different from {u}. ⊓⊔

Of course, the statement is also true if we increase the value of M or N , e.g., if
we let N = M = 2|Q|+1. Thus, combining Theorem 2 and Lemma 2 we obtain
the following.

Theorem 3. Let φ∗(X,x) by an MSO-formula. There exists n ∈ N such that
for each u ∈ Un,n with t(Un,n, u) |= φ∗ there is u′ 6= u with t(Un,n, u′) |= φ∗.

A direct consequence is the theorem of Gurevich and Shelah. The advantage of
our proof is that we obtain a rather simple family of counter examples (the sets
UM,N ).

An easy reduction allows us to extend the non-existence of an MSO-definable
choice function to the case where we allow a finite number of fixed predicates
as parameters. This result has already been shown in [LS98] in an even more
general context, but again relying on the methods employed in [GS83].

Corollary 1. Let P1, . . . , Pn ⊆ {0, 1}∗ be arbitrary predicates. There is no MSO-
formula φ∗(X1, . . . , Xn, X, x) such that for each nonempty set U there is exactly
one u ∈ U with t(P1, . . . , Pn, U, u) |= φ∗.

Proof. Assume that there are P1, . . . , Pn ⊆ {0, 1}∗ and φ∗(X1, . . . , Xn, X, x)
such that for each set U there is exactly one u ∈ U with t(P1, . . . , Pn, U, u) |= φ∗.
Then the formula

∃X1, . . . , Xn∀X∃x φ∗(X1, . . . , Xn, X, x) ∧ ∀y φ∗(X1, . . . , Xn, X, y) → x = y
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is satisfiable. Hence, by the Rabin Basis Theorem (cf. [Tho97]), there are regular
predicates P1, . . . , Pn such that

t(P1, . . . , Pn) |= ∀X∃x φ∗(X1, . . . , Xn, X, x)∧ ∀y φ∗(X1, . . . , Xn, X, y) → x = y.

Regular predicates are MSO-definable, so let ψ1(X1), . . . , ψn(Xn) be formulas
defining P1, . . . , Pn, respectively. Then the formula φ′(X,x) defined as

∃X1, . . . , Xn φ∗(X1, . . . , Xn, X, y) ∧
n∧

i=1

ψi(Xi)

describes a choice function, contradicting Theorem 3. ⊓⊔

We point out here that this method only relies on the fact that the property of
being a choice function is MSO-definable. So this way of reducing the case with
parameters to the parameter free case can be applied whenever the properties of
the object under consideration are MSO-definable (at the end of the last section
we briefly mention another application of this technique).

3.2 Applications of the result and its proof

We now discuss a few applications of the results presented so far in this section.
One immediate application concerns the non-definability of well-founded orders
over the infinite binary tree. We skip this subject here because it is treated in
detail in the next section.

The first application is about unambiguous tree automata. It is well known
that parity automata on infinite trees cannot be determinized. A weaker require-
ment than determinism is unambiguity. An automaton is called unambiguous if
for each object that it accepts there is exactly one accepting run. For example,
it is known that all regular languages of infinite words can be accepted by an
unambiguous Büchi automaton [CM03] (and deterministic Büchi automata do
not suffice to accept all regular ω-languages).

In an unpublished note [NW] Niwiński and Walukiewicz have shown that not
every parity tree automaton is equivalent to an unambiguous one.

Theorem 4 ([NW]). There is no unambiguous parity automaton accepting ex-
actly those {0, 1}-labeled trees in which at least one node is labeled 1.

The underlying idea is that the set of 1-labeled nodes represents the set from
which an element has to be chosen. Now we assume that A is a parity automaton
accepting the language used in Theorem 4. Using a game that is similar to the
emptiness game for tree automata (cf. [Tho97]) one can show that each accepting
run on a tree allows us to pick a unique 1-labeled node from the accepted tree
in an MSO-definable way. If A is unambiguous, then this means that for each
accepted tree there is a unique run and hence we can build an MSO-formula
picking exactly one 1-labeled node for each accepted tree. This yields an MSO-
definable choice function.
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In fact, the proof in [NW] yields a more general result: Assume that A is
a parity tree automaton (over the alphabet {0, 1}) that does not accept the
tree that is completely labeled by 0, i.e., the tree t(∅). Then there is a formula
φA(X,x) such that for each U ⊆ {0, 1}∗ for which there is a unique accepting
run of A on t(U), there is a unique element u ∈ U such that t(U, u) |= φA.

We can use this fact to show the following result.

Theorem 5. There is a regular language T ⊆ T{0,1} and a tree t ∈ T such that
there is no parity automaton accepting T that has a unique accepting run for t.

Proof. Consider the language T of trees with the property that each subtree
rooted at a node of the form 1∗0 contains a node labeled 1. The tree t is defined
to have all nodes of the form 1∗ labeled 0, and as the subtree rooted at the nodes
1n0 we plug the trees tn,n. As each tn,n contains a node labeled 1, we have t ∈ T .

Assume that there is parity automaton A accepting T that has a unique run
on t. Let q be a state of A that occurs at infinitely many nodes of the form 1∗0
in this run. Let A′ be the automaton A with initial state q. As A accepts T it
is clear that A′ does not accept the tree t(∅). Furthermore, as the run of A on
t is unique, there are infinitely many n such that A′ has a unique run on tn,n.
In combination with the result from [NW] that we discussed above, this gives a
contradiction to Theorem 3. ⊓⊔

Another application of Theorem 1 concerns the definability of winning strate-
gies in infinite games. In the following we show that there exist game trees that
do not admit the definition of winning strategies in MSO.

A game tree is a tuple Γ = (U1, U2, Ω,W ) where U1, U2 ⊆ {0, 1}∗ form a
partition of {0, 1}∗, Ω : {0, 1}∗ → {0, . . . , n} maps the nodes to a finite set of
natural numbers, and W ⊆ {0, . . . , n}ω is the winning condition. A play of Γ

starts in ε. If the play is currently in u ∈ {0, 1}∗, then Player 1 or Player 2,
depending on whether u ∈ U1 or u ∈ U2, chooses b ∈ {0, 1} and the next game
position is ub. In the limit, such a play forms an infinite word in {0, 1}ω. This
infinite word corresponds to an infinite sequence over {0, . . . , n} by applying Ω to
each prefix. If this sequence is in W , then Player 1 wins, and otherwise Player 2
wins. We identify a play with the corresponding infinite word in {0, 1}ω.

A strategy for Player i is a function fi : Ui → {0, 1} and a play γ is played
according to fi if for each prefix u ∈ Ui of γ, Player 1 uses the strategy to
determine the next move, i.e., if ufi(u) is a prefix of γ. A strategy fi is winning
for Player i if each play γ that is played according to fi is winning for Player i.

If W ⊆ {0, . . . , n}ω is a regular ω-language (i.e. MSO-definable), then for each
game tree Γ = (U1, U2, Ω,W ) one of the players has a winning strategy ([BL69]).
If we represent the mapping Ω by sets Ω0, . . . , Ωn ⊆ {0, 1}∗, each Ωi correspond-
ing to the set of nodes mapped to i by Ω, the set of all trees t(U1, U2, Ω0, . . . , Ωn)
such that Player 1 has a winning strategy in Γ = (U1, U2, Ω,W ) is MSO-
definable.

This raises the question whether it is also possible to define winning strategies
in MSO. Note that we can represent a strategy for Player 1 by a subset of nodes
that contains ε, for each u ∈ U1 one successor u0 or u1, and for each u ∈ U2 both
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successors u0 and u1. The plays according to this strategy are exactly the infinite
paths contained in this set. If the winning condition is MSO-definable, then the
set of all winning strategies for Player 1 is also MSO-definable, i.e., there is a
formula φ(X1, X2, Y0, . . . , Yn, X) such that t(U1, U2, Ω0, . . . , Ωn, U) |= φ iff U is
a winning strategy for Player 1 (for the fixed winning condition W ).

We now look at the case where we want to select a single strategy, i.e., we
are interested in a formula that defines exactly one strategy. We show in the
following that there is even a fixed game tree on which no formula can define
a single winning strategy (this tree is similar to the one used in the proof of
Theorem 5).

Theorem 6. There is a game tree Γ = (U1, U2, Ω,W ) with an MSO-definable
winning condition W such that Player 1 has a winning strategy for Γ but there
is no MSO-definable winning strategy for Player 1.

Proof. Consider the following {0, 1, 2}-labeled tree t such that for each n ∈ N

the subtree at the node 1n0 is isomorphic to tn,n, and all nodes of the form 1n

are labeled by 2. The labeling of t defines the mapping Ω, i.e., Ω(u) = t(u). We
let U2 = {1n | n ∈ N} and U1 = {0, 1}∗ \U2. The winning condition W contains
all infinite words over {0, 1, 2} that do not contain 0 or that contain a 1.

Intuitively, Player 2 can move along the right branch of the game tree. If he
continues like this forever, then he loses because only nodes labeled 2 are visited
during the play. Otherwise, he moves to the left at some position, that is, to the
root of a subtree tn,n. Now Player 1 chooses all the following moves and wins
if a node labeled 1 is reached eventually. As each subtree tn,n contains a node
labeled 1 it is obvious that Player 1 has a winning strategy.

Assume that there is a winning strategy on t that is MSO-definable by a
formula φ(X) (as the game tree is fixed we omit the other free variables). This
formula is equivalent to a parity automaton A that accepts exactly one strategy
labeling of t, corresponding to the winning strategy defined by φ.

Using A we can construct a formula φ∗(X,x) that chooses exactly one u ∈
Un,n for each n ∈ N, contradicting Theorem 3. For this we fix an arbitrary
order on the states of A. For each n there is at least one state q of A such that
A accepts exactly one winning strategy on the subtree tn,n of t (namely the
state assumed at the root of the subtree tn,n in an accepting run for the unique
winning strategy on Γ that is accepted by A). The formula φ∗ picks the smallest
state q with this property and then chooses the element of Un,n that is described
by the unique winning strategy accepted by A from q on tn,n. It is not difficult
to verify that this is indeed possible in MSO. ⊓⊔

One should note here that the tree constructed in the proof of Theorem 6
(and also the one from Theorem 5) is not too complicated: it belongs to the
Caucal hierarchy1 ([Cau02]). This means that it can be obtained from a regular
tree by a finite number of applications of MSO-interpretations and unfoldings,

1 In particular, as all graphs in the Caucal hierarchy have a decidable MSO-theory,
the tree constructed in the proof of Theorem 6 also has a decidable MSO-theory.
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or equivalently, it is the transition graph of a higher-order pushdown automaton
([CW03]).

4 Order

A direct consequence of Theorem 1 is that there exists no MSO-definable well-
founded order on the nodes of the infinite binary tree. In fact from an MSO-
formula ϕ≤(x, y) defining a well-founded order on the nodes of the infinite binary
tree, a choice function ϕchoice(x,X) := x ∈ X ∧ ∀y, y ∈ X → x ≤ y is easily
defined by taking the smallest element of the set. In this section, we prove the
following stronger result.

Theorem 7. The MSO-theory of the full-binary tree together with any well-
founded order is undecidable.

As the infinite binary tree has a decidable MSO-theory [Rab69], the existence
of an MSO-definable well-order would contradict Theorem 7. In the particular
case of tllex, the infinite binary tree with length-lexicographic order (formally
defined below), this result is well-known [BG00]. We show that tllex can be
MSO-interpreted in the infinite binary tree with any well-founded order.

Theorem 8. There exists an MSO-interpretation I such that for every well-
ordered infinite binary tree t, I(t) is isomorphic to tllex

As MSO-interpretations preserve the decidability of MSO, Theorem 7 follows
from the undecidability of the MSO-theory of tllex. The rest of this section is
dedicated to the proof of Theorem 8.

4.1 Well-ordered trees

We consider structures over the binary signature S = {E0, E1,≤}. We say that
an S-structure t is a well-ordered (infinite binary) tree if it is isomorphic to a well-
ordered tree with universe {0, 1}∗ where E0 and E1 are respectively interpreted
as {(u, u0) | u ∈ {0, 1}∗} and {(u, u1) | u ∈ {0, 1}∗}, and ≤ is interpreted as
a well-founded order on {0, 1}∗. Such an S-structure will be referred to as a
canonical well-ordered tree. Up to isomorphism, a well-ordered tree is entirely
characterized by the well-founded order on the set of words over {0, 1}.

For example, consider the length-lexicographic order ≤llex defined by: u ≤llex

v ⇔ |u| < |v| or (|u| = |v| and u ≤lex v) where ≤lex refers to the standard
lexicographic order. This order is well-founded and we write tllex the canonical
well-ordered tree associated to ≤llex. The key property of tllex is that it is MSO-
definable (up to isomorphism) in the class of well-ordered trees2.

Proposition 1. There exists an MSO-formula ϕllex such that for every well-
ordered tree t, t |= ϕllex ⇔ t ∼= tllex.

2 The class of well-ordered trees is itself MSO-definable in the class of S-structures.
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Proof. Consider the MSO-formula ϕllex over S expressing that: the root ε is
the smallest element for ≤, for all nodes u ∈ {0, 1}∗ and v ∈ 1∗, the successor
of the node u0v is the smallest element for the prefix order of the set u10∗ \
{Succ(u0v′) | v′

⊏ v} where Succ(u) the successor of u for the order ≤ and for
all nodes u ∈ 1∗, the successor of u is the smallest element for the prefix order
of the set 0+ \ {Succ(u′) | u′

⊏ u}.
It is easy to see that tllex satisfies the formula ϕllex. It remains to show that

for every well-ordered tree t, if t satisfies ϕllex then t is isomorphic to tllex.
Let t be a well-founded tree satisfying ϕllex. We can assume w.l.o.g that t is

a canonical well-ordered tree. It is therefore enough to show that t = tllex.
For all nodes u ∈ {0, 1}, we write Succllex(u) for the successor of u for the

order ≤llex. As by condition 1 the root ε of t is the minimal element of ≤, it is
enough to establish that for all u ∈ {0, 1}∗, Succ(u) = Succllex(u).

Assume by contradiction that this property is not satisfied. Let u0 be the
smallest node u for the order ≤llex such that Succ(u) 6= Succllex(u) We distin-
guish two cases depending whether u0 contains an occurrence of 0 or not.

If u0 contains an occurrence of 0 then u0 can be uniquely written as u0v with
u ∈ {0, 1}∗ and v ∈ 1∗. The successor of u0 in the order ≤llex is Succllex(u0) =
u10|v|. By condition 2 of the definition of ϕllex, Succ(u0) is the smallest element
for the prefix order of the set u10∗ \ {Succ(u0v′) | v′

⊏ v}.
By minimality (for the order ≤llex) of u0, we have for all v′

⊏ v that
Succ(u0v′) = Succllex(u0v′) = u10|v

′|. Therefore, Succ(u0) is the minimal el-
ement for the prefix order of the set u10∗ \ {u10|v

′| | v′
⊏ v}. This implies that

Succ(u0) = u10|v| = Succllex(u0) which contradicts the definition of u0.
If u0 does not contain an occurrence of 0 then u0 ∈ 1∗. The successor of u0

for the order ≤llex is 0|u0|+1. By condition 3 of the definition of ϕllex, Succ(u0)
is the smallest element for the prefix order of the set 0+ \ {Succ(u) | u ⊏ u0}.

By minimality (for the order ≤llex) of u0, we have for all u ⊏ u0 that
Succ(u) = Succllex(u) = 0|u|+1. Therefore, Succ(u0) is the minimal element for
the prefix order of the set 0+ \ {0|u|+1 | u ⊏ u0}. This implies that Succ(u0) =
0|u0|+1 = Succllex(u0) which contradicts the choice of u0. ⊓⊔

4.2 Interpreting tllex

We now define the notion of induced well-ordered tree. Consider a canonical
well-ordered tree t and a set U ⊆ {0, 1}∗ of nodes which is closed under greatest
common prefix (i.e. u ∈ U ∧ v ∈ V → u ∧ v ∈ U) and such that for all u ∈ U ,
u0{0, 1}∗ ∩ U 6= ∅ and u1{0, 1}∗ ∩ U 6= ∅. The well-ordered tree t|U induced

by U in t has universe U and its signature is interpreted as E
t|U
i = {(u, v) ∈

U2 | v is the smallest element for ⊑ of ui{0, 1}∗ ∩ U} for i ∈ {0, 1} and ≤t|U =
{(u, v) ∈ U2 | u ≤t v}. It is easy to check that t|U is a well-ordered tree.

Lemma 3. For every MSO-formula ϕ over S, there exists a formula ϕ∗(X)
such that for every canonical well-ordered tree t and set U , t |= ϕ∗[U ] if and
only if the set U induces a well-ordered tree t|U on t and t|U |= ϕ.
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Proof. Consider an MSO-formula ϕ over S. Let ϕind(X) be an S-formula ex-
pressing that X satisfies the conditions to induce a full binary tree and let
ϕ′(X) be the formula obtained from ϕ by relativizing the quantifications to X

and by replacing Ei(x, y) with y ∈ xi{0, 1}∗∩X∧∀z, z ∈ xi{0, 1}∗∩X → y ⊑ z

for i ∈ {0, 1}. It is easy to check that the formula ϕ∗(X) := ϕind(X) ∧ ϕ′(X)
satisfies the property stated in the lemma. ⊓⊔

We first show that for every canonical well-ordered tree t, there exists a subset
U ⊆ {0, 1}∗ such that t|U is isomorphic to tllex. To construct such a set we need
the following technical definition. A node u ∈ {0, 1}∗ of a canonical well-ordered
tree t is mixed if for all v ⊒ u, v′ ⊒ u ∈ {0, 1}∗ there exists a w ∈ {0, 1}∗ such
that v < v′w.

Lemma 4. For every canonical well-ordered tree t, there exists a mixed node.

Proof. Let t be a canonical well-ordered tree. Assume by contradiction that t

does not have any mixed nodes. We construct by induction two sequences of
nodes (ui)i∈N and (vi)i∈N such that for all i ≥ 0, ui > ui+1 and ui ≥ viw for all
w ∈ {0, 1}∗.

As ε is not mixed there exist two nodes u and v such that u ≥ vw for all
w ∈ {0, 1}∗. We take u0 = u and to ensure that u0 > v0w for all w ∈ {0, 1}∗, we
pick as v0 an element of v{0, 1}∗ \ {u′ | u′ ⊑ u0}.

Assume that both sequences are constructed up to rank i ≥ 0, we define ui+1

and vi+1. As vi is not mixed, there exists two nodes u ⊒ vi and v ⊒ vi such
that u ≥ vw for all w ∈ {0, 1}∗. We take ui+1 equal to u and vi+1 an element of
v{0, 1}∗ \ {u′ | u′ ⊑ ui+1} thus ensuring that for all w ∈ {0, 1}∗, ui+1 > vi+1w.
By induction hypothesis, we have that ui > ui+1.

The sequence (ui)i∈N is an infinite strictly decreasing sequence which con-
tradicts the fact that ≤ is a well-founded order. ⊓⊔

Proposition 2. For every canonical well-ordered tree t, there exists a set of
nodes U inducing a well-ordered tree t|U isomorphic to tllex.

Proof. Let t be a canonical well-ordered tree. We construct a sequence of nodes
(uw)w∈{0,1}∗ indexed by the set of words over {0, 1}∗ such that: for all w,w′ ∈
{0, 1}∗, w ≤llex w′ implies uw ≤ uw′ , and for all w ∈ {0, 1}∗ and i ∈ {0, 1},
uwi ∈ uwi{0, 1}∗.

If we assume that this sequence has been constructed and we take U :=
{uw | w ∈ {0, 1}∗}, it is easy to check that U is closed by greatest common
prefix and hence U induces a full binary tree on t. Furthermore the mapping
from {0, 1}∗ to U associating w to uw is an isomorphism from tllex to t|U .

We now construct the sequence (uw)w∈{0,1}∗ by induction on the length-
lexicographic order ≤llex. By Lemma 4, the tree t has a mixed node. We take uε

to be a mixed node of t. Assume that the sequence has been constructed up to
w0 ∈ {0, 1}∗, we construct the element uw1

where w1 is the successor of w0 for
the length-lexicographic order. From the definition of ≤llex, it follows that the
element w1 is equal to w2i for some i ∈ {0, 1} and w2 ≤llex w0. As uε is mixed,
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there exists a v such that uw0
< uw2

iv. We take uw1
= uw2

iv. By induction
hypothesis, for all w ≤llex w1, we have uw ≤ uw1

. ⊓⊔

Note that Theorem 7 can already be derived from the above proposition.
For every formula ϕ over S, consider the formula ϕ∗(X) obtained from ϕ by
Lemma 3 and ϕ∗

llex(X) obtained from the formula ϕllex of Proposition 1. By
Proposition 2, for every well-ordered tree t, t |= ∃X, ϕ∗

llex(X) ∧ ϕ∗(X) if and
only if tllex |= ϕ. As the formula ϕ∗(X) can be effectively constructed from the
formula ϕ, it follows that the MSO-theory of tllex is recursive in the MSO-theory
of any well-ordered tree t.

We now strengthen the result of Proposition 2 by showing that in every well-
ordered tree t there exists an MSO-definable set of nodes inducing a well-ordered
tree isomorphic to tllex.

Proposition 3. For every canonical well-ordered tree, there exists an MSO-
definable set of nodes U0 inducing a well-ordered tree isomorphic tllex.

Proof. Consider the following MSO-formula ψ(X) defined by:

ϕ∗
llex(X) ∧ ∀x ∈ X,∀Z, (X<x < Z ∧ ϕ∗

llex(X<x ∪ Z)) → x ≤ min Z

where X<x = {x′ ∈ X | x′ < x}, X < Y stands for ∀x ∈ X,∀y ∈ Y, x < y and
min Z designates the smallest element of the set Z for the order ≤.

Let t be a well-ordered tree. We claim that t |= ∃=1X,ψ(X) (where ∃=1

stands for there exists a unique), which establishes the MSO-definability of a set
of nodes U0 inducing on t a well-ordered tree isomorphic to tllex.

The first step is to show that t |= ∃X,ψ(X). For this, we define a sequence
of nodes (uw)w∈{0,1}∗ of t by induction on the order ≤llex. The node uε is the
smallest element of {min Z | Z ⊆ {0, 1}∗∧t |= ϕ∗

llex[Z]}. Proposition 2 guarantees
that this set is not empty. Assume that the sequence has been constructed up
to the element uw0

. We define uw1
where w1 is the successor of w0 for the order

≤llex. We take uw1
as the smallest element for ≤ of the set {min Z | w0 <

Z ∧ ϕ∗
llex({uw | w ≤ w0} ∪ Z})}. This set is not empty by definition of uw0

.
Consider the set U0 := {uw | w ∈ {0, 1}∗}. It is straightforward to show that

U0 induces a well-ordered tree on t isomorphic to tllex. It follows that t |= ψ[U0].
Hence t |= ∃X,ψ(X).

We now show that t |= ∃=1X,ψ(X). It is enough to show that for all U1 ⊆
{0, 1}∗, t |= ψ[U1] implies U1 = U0. For all u ∈ U0 (resp. u ∈ U1), we write
Succ0(u) (resp. Succ1(u)) the smallest element of U0 (resp. of U1) strictly greater
than u.

By induction on w for the order ≤llex, it is easy to show that uw ∈ U1 for
all w ∈ {0, 1} and hence U0 ⊆ U1. Assume by contradiction that U0 ( U1. Let
u be the smallest element of U1 \ U0. It is easy to see that both sets have the
same minimal element and therefore u 6= minU1. As U1 induces a well-ordered
tree isomorphic to tllex and since u 6= minU1, there exists v ∈ U1 such that
u = Succ1(v). By minimality of u, v belongs to U0 and for all v′ ≤ v, v′ ∈ U1

implies v′ ∈ U0. Furthermore Succ0(v) which belongs to U0 is different from
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Succ1(v) which belongs to U1. Remarking that U1 is equal to (U1)<u ∪ (U1)≥u =
(U0)≤v ∪ (U1)≥uand using the fact that t |= ψ[U0], we obtain that Succ0(v) ≤ u.
Similarly U0 is equal to (U0)<Succ0(v) ∪ (U0)≥Succ0(v) = (U1)≤v ∪ (U0)≥Succ0(v)

and using the fact that t |= ψ[U1], we obtain that u = Succ1(v) ≤ Succ0(v). It
follows that u = Succ0(v) which brings the contradiction. ⊓⊔

Theorem 8 directly follows from Proposition 3. An immediate consequence of
this result is that the infinite binary tree cannot be MSO-interpreted in (ω, succ),
i.e., the natural numbers with successor. As a well-founded order can be de-
fined in MSO on (ω, succ), one could interpret the full binary tree with a well-
founded order. From Theorem 7, this structure has an undecidable MSO-theory
which would contradict the fact that the MSO-theory of (ω, succ) is decidable
[Büc62]. More generally, we obtain that the infinite binary tree cannot be MSO-
interpreted in any structure having both a decidable MSO-theory and an MSO-
definable well-founded order. Combining the result that the infinite binary tree
cannot be interpreted in (ω, succ) with the same technique as in the proof of
Corollary 1, we can also show that the infinite binary tree cannot be interpreted
in (ω, succ, P1, . . . , Pn) for arbitrary fixed predicates Pi.
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