
HAL Id: hal-00620159
https://hal.science/hal-00620159

Submitted on 3 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the suffix automaton with mismatches
Maxime Crochemore, Chiara Epifanio, Alessandra Gabriele, Filippo Mignosi

To cite this version:
Maxime Crochemore, Chiara Epifanio, Alessandra Gabriele, Filippo Mignosi. On the suffix au-
tomaton with mismatches. 12th International Conference on Implementation and Application of
Automata (CIAA’07), 2007, Prague, Czech Republic. pp.144-156, �10.1007/978-3-540-76336-9_15�.
�hal-00620159�

https://hal.science/hal-00620159
https://hal.archives-ouvertes.fr

On the Suffix Automaton with mismatches ?

Maxime Crochemore1, Chiara Epifanio2,
Alessandra Gabriele2, Filippo Mignosi3

1 Institut Gaspard-Monge, Université de Marne-la-Vallée, France and King’s College
London, UK, mac@univ-mlv.fr

2 Dipartimento di Matematica e Applicazioni, Università di Palermo, Italy
(epifanio,sandra)@math.unipa.it

3 Dipartimento di Informatica, Università dell’Aquila, Italy mignosi@di.univaq.it

Abstract. In this paper we focus on the construction of the minimal
deterministic finite automaton Sk that recognizes the set of suffixes of a
word w up to k errors. We present an algorithm that makes use of the
automaton Sk in order to accept in an efficient way the language of all
suffixes of w up to k errors in every windows of size r, where r is the value
of the repetition index of w. Moreover, we give some experimental results
on some well-known words, like prefixes of Fibonacci and Thue-Morse
words, and we make a conjecture on the size of the suffix automaton
with mismatches.

Keywords: Combinatorics on words, suffix automata, languages with mismatches,
approximate string matching.

1 Introduction

One of the seminal results in string matching is that the size of the suffix au-
tomaton of a word, called also DAWG, is linear [4, 10]. In the particular case of
prefixes of the Fibonacci word, a result by Carpi and de Luca [6] implies that
the suffix automaton of any prefix v of the Fibonacci word f has |v|+ 1 states.

These results are surprising as the maximal number of subwords that may
occur in a word is quadratic according to the length of the word. Suffix trees
are linear too, but they represent strings by pointers to the text, while DAWGs
work without the need of accessing it.

In this work we are interested in an extension of suffix automata, more pre-
cisely we consider the DAWG recognizing the set of occurrences of a word w up to
k errors. Literature on data structures recognizing languages with mismatches
involves many results, among the most recent ones [2, 5, 7, 8, 12, 13, 15, 18, 22].
Several of these papers deal with approximate string matching. In particular,
in [12, 13, 15] authors have considered some data structures recognizing words
occurring in a text w up to k errors in each substring of length r of the text.
? Partially supported by MIUR National Project PRIN “Automi e Linguaggi Formali:

aspetti matematici e applicativi.”

The presence of a window in which allowing a fixed number of errors generalizes
the classical k-mismatch problem and, at the same time, it allows more errors in
all. Moreover, this approach has a specific interpretation in Molecular Biology,
such as, for instance, the modeling of some evolutionary events.

In this paper we focus on the minimal deterministic finite automaton that
recognizes the set of suffixes of a word w up to k errors, denoted by Sw,k, or
simply by Sk if there are no risks of misunderstanding on w.

As first main result we give a characterization of the Nerode’s right-invariant
congruence relative to Sk. This result generalizes a result described in [4] (see also
[9, 19]), where it was used in an efficient construction of the suffix automaton with
no mismatches, that, up to the set of final states, is also called DAWG (directed
acyclic word graph). We think that it is possible to define such an algorithm
even when dealing with mismatches. It would be probably more complex than
the classical one. It still remains an open problem how to define it.

As a second main result, we describe an algorithm that makes use of the
automaton Sk in order to accept, in an efficient way, the language of all suffixes
of w up to k errors in every windows of size r, for a specific integer r called
repetition index.

We have constructed the suffix automaton with mismatches of a great number
of words and we have considered overall its structure when the input word is
well-known, such as the prefixes of Fibonacci and Thue-Morse words, as well as
words of the form bban, a, b ∈ Σ,n ≥ 1 and some random words generated by
memoryless sources. We have studied how the number of states grows depending
on the length of the input word. By the results of our experiments on these classes
of words, we conjecture that the (compact) suffix automaton with k mismatches
of any text w has size O(|w| · logk(|w|)). Given a word v, Gad Landau wondered
if a data structure having a size “close” to |v| that allows approximate pattern
matching in time proportional to the query plus the number of occurrences exists.
This question is still open, even if recent results are getting closer to a positive
answer. If our conjecture turns out to be true, it would settle Landau’s question
as discussed at the end of this paper.

The remainder of this paper is organized as follows. In the second section we
give some basic definitions. In the third section we describe a characterization
of the Nerode’s right invariant congruence relative to Sk. The fourth section is
devoted to describe an algorithm that makes use of the automaton Sk in order
to accept in an efficient way the language of all suffixes of w up to k errors in
every window of size r, where r is the value of the repetition index of w. The
fifth section contains our conclusions and some conjectures on the size of the
suffix automaton with mismatches based on our experimental results. Finally,
appendix contains the proofs of some results.

2 Basic definitions

Let Σ be a finite set of symbols, usually called alphabet. A word or string w is
a finite sequence w = a1a2 . . . an of characters in the alphabet Σ, its length (i.e.

2

the number of characters of the string) is defined to be n and it is denoted by
|w|. The set of words built on Σ is denoted by Σ∗ and the empty word by ε. We
denote by Σ+ the set Σ∗ \ {ε}.

A word u ∈ Σ∗ is a factor (resp. a prefix, resp. a suffix) of a word w if and
only if there exist two words x, y ∈ Σ∗ such that w = xuy (resp. w = uy, resp.
w = xu). Notice that some authors call substring what we have defined as factor.
We denote by Fact(w) (resp. Pref(w), resp. Suff(w)) the set of all factors (resp.
prefixes, resp. suffixes) of a word w. We denote an occurrence of a factor in a
string w = a1a2 . . . an at position i ending at position j by w(i, j) = ai . . . aj ,
1 ≤ i ≤ j ≤ n. The length of a factor w(i, j) is the number of letters that
compose it, i.e. j − i + 1. We say that u occurs in w at position i if u = w(i, j),
with |u| = j − i + 1.

In order to handle languages with errors, we need a notion of distance between
words. In this work we consider the Hamming distance, that is defined between
two words x and y of the same length as the minimal number of character
substitutions that transform x into y.

In the field of approximate string matching, typical approaches for finding
a string in a text consist in considering a percentage D of errors, or fixing the
number k of them. Instead, we use an hybrid approach introduced in [15] that
considers a new parameter r and allow at most k errors for any factor of length
r of the text. We have the following definition.

Definition 1. Let w be a string over the alphabet Σ, and let k, r be non negative
integers such that k ≤ r. A string u occurs in w at position l up to k errors in a
window of size r or, simply, kr-occurs in w at position l, if one of the following
two conditions holds:

- |u| < r ⇒ d(u, w(l, l + |u| − 1)) ≤ k;
- |u| ≥ r ⇒ ∀i, 1 ≤ i ≤ |u|−r+1, d(u(i, i+r−1), w(l+i−1, l+i+r−2)) ≤ k.

A string u satisfying the above property is a kr-occurrence of w. A string u that
kr-occurs as a suffix of w is a kr-suffix of w.

We suppose that the text is non-empty, r ≥ 2 and 0 ≤ k ≤ r, otherwise
the above definition would have no meaning. We denote by L(w, k, r) (resp.
Suff (w, k, r)) the set of words (resp. suffixes) u that kr-occur in w at position l,
for some l, 1 ≤ l ≤ |w| − |u| + 1. Notice that L(w, k, r) is a factorial language,
i.e. if u ∈ L(w, k, r) then each factor (or substring) of u belongs to L(w, k, r).
Moreover, we denote by Suff (w, k) the set of kr-suffixes of w for r = |w|.

Remark 1. The condition r = |w| is equivalent to the fact that we do not want
to consider a window in which it is possible to allow errors. Indeed, when the size
r of the window is equal to the size of the text w, then the problem of finding all
kr-occurrences of a string u in the text is equivalent to the k-mismatch problem,
that consists in finding all occurrences of the string u in w with at most k errors
(cf. [17]).

3

Example 1. Let w = abaa be a string on the alphabet Σ = {a, b}. The set of
words that kr-occur in w, when k = 1 and r = 2, is L(w, 1, 2) = {a, b, aa, ab, ba, bb,
aaa, aab, aba, abb, baa, bab, bba, bbb, aaaa, aaab, abaa, abab, abba, bbaa, bbab, bbba}.
Notice that words aab, aaab, bbab, bbba occur with one error every r = 2 symbols,
but with two errors in the whole word. Hence, they belong to L(w, 1, 2), but not
to L(w, 1, 4).

Moreover, Suff (w, 1, 2) = {a, b, aa, ab, ba, aaa, aab, baa, bab, bba, aaaa, aaab,
abaa, abab, abba, bbaa, bbab, bbba} and Suff (w, 1) = {a, b, aa, ab, ba, aaa, baa, bab,
bba, aaaa, abaa, abab, abba, bbaa}.

Now we can recall the definition of the repetition index, denoted by R(w, k, r),
that plays an important role in the construction of an automaton recognizing
the language L(w, k, r) (cf.[15]).

Definition 2. The repetition index of a string w, denoted by R(w, k, r), is the
smallest integer h such that all strings of this length kr-occur at most once in
the text w.

The parameter R(w, k, r) is well defined because the integer h = |w| satisfies
the condition. Moreover, it is easy to prove that if k

r ≥ 1
2 then R(w, k, r) = |w|

(cf. [12]).
In [12] it is proved that R(w, k, r) is a non-increasing function of r and a

non-decreasing function of k and that the equation r = R(w, k, r) admits an
unique solution. Authors also give an evaluation of the repetition index. More
precisely, they prove that, under some hypothesis, R(w, k, r) has a logarithmic
upper bound in the size of the text w almost surely.

Remark 2. In [15] authors gave an algorithm for building a deterministic fi-
nite automaton (DFA) recognizing the language L(w, k, r) of all words that kr-
occur in the string w. They proved that the size of such automaton A(w, k, r)
is bounded by a function that depends on the length |w| of the text w, the
repetition index R(w, k, r) and the number k of errors allowed in a window of
size r = R(w, k, r), that is |A(w, k, r)| = O(|w| · (R(w, k, r))k+1). In the worst
case, when both R(w, k, r) and k are proportional to |w|, the size of the automa-
ton A(w, k, r) is exponential. But, under the hypothesis that w is a sequence
generated by a memoryless source with identical symbol probabilities and the
number k of errors is fixed for any window of size r = R(w, k, r), the size of this
automaton is O(|w| · logk+1(|w|)) almost surely.

Starting from the automaton A(w, k, r), an automaton recognizing the lan-
guage Suff(w, k, r) can be simply deduced from a procedure that first builds the
automaton A(w$, k, r), extending the alphabet Σ by letter $, then sets as termi-
nal states only those states from which an edge by letter $ outgoes, and finally
removes all edges labeled $ and the state they reach [9].

In this paper we focus on the minimal automaton recognizing Suff(w, k). It
is therefore natural to study the Nerode’s congruence corresponding to it.

4

3 On the Nerode’s congruence

In this section, we introduce a right-invariant congruence relation on Σ∗ used to
define the suffix automaton of a word up to mismatches and we prove some prop-
erties of it. In particular we give a characterization of the Nerode’s congruence
relative to Sk. This result generalizes a classical result described in [4] (see also
[9, 19]), where it was used in an efficient construction of the suffix automaton
with no mismatches, that is also called DAWG (directed acyclic word graph), up
to the set of final states. We think that it is possible to define such an algorithm
even when dealing with mismatches. It would be probably more complex than
the classical one. It still remains an open problem how to define it. Let us start
by introducing the following definition, that is a generalization of the one given
in [4].

Definition 3. Let w = a1 . . . an be a word in Σ∗. For any nonempty word y ∈
Σ∗, the end-set of y in w up to k mismatches, denoted by end-setw(y, k), is
the set of all final positions in which y k-occurs in w, i.e. end-setw(y, k) = {i |
y k-occurs in w with final position i}. Notice that end-setw(ε, k) = {0, 1, . . . , n}.

By using Definition 3 it is possible to define a equivalence relation between
words on Σ∗.

Definition 4. Two words x and y in Σ∗ are endk-equivalent, or ≡w,k, on w if
the following two conditions hold.

1. end-setw(x, k) = end-setw(y, k);
2. for any position i ∈ end-setw(x, k) = end-setw(y, k), the number of errors

available in the suffix of w having i+1 as first position is the same after the
reading of x and of y, i.e. min{|w|−i, k−erri(x)} = min{|w|−i, k−erri(y)},
where erri(u) is the number of mismatches of the word u that kr-occurs in
w with final position i.

We denote by [x]w,k the equivalence class of x with respect to ≡w,k. The degen-
erate class is the equivalence class of words that are not k-occurrences of w (i.e.,
words with empty end-set in w up to k mismatches).

In other words, two words x and y in Σ∗ are endk-equivalent if, besides
having the same end-set in w up to k mismatches as in the exact case [4], the
number of errors available in the suffix of w after the reading of x and of y is
the same. The definition includes two cases depending on the considered final
position i ∈ end-setw(x, k) = end-setw(y, k) of x and y in w:

2.a) if this position is sufficiently “far from” the end of the word, which means that
|w| − i ≥ max{k − erri(x), k − erri(y)}, then the number of errors available
after this position is the same in both cases, i.e. k − erri(x) = k − erri(y),
which implies that erri(x) = erri(y). In this case
min{|w|−i, k−erri(x)} = k−erri(x) = k−erri(y) = min{|w|−i, k−erri(y)}.

5

2.b) otherwise, if this position is sufficiently “near” the end of the word, which
means that |w|− i ≤ min{k−erri(x), k−erri(y)}, then it is possible to have
mismatches in any position of the suffix of w having length |w|− i. This does
not necessarily imply that erri(x) = erri(y). Therefore

min{|w| − i, k − erri(x)} = |w| − i = min{|w| − i, k − erri(y)}.

Example 2. Let us consider the prefix of length 10 of the Fibonacci word, w =
abaababaab, and let us suppose that the number k of errors allowed in any factor
is 2.

- If we consider words x = baba and y = babb, one has that they have the same
end-set, that is end-setw(baba, 2) = {5, 6, 8, 10} = end-setw(babb, 2), but the
two words are not endk-equivalent because it is not true that for any position
i ∈ end-setw(baba, 2) = end-setw(babb, 2), the number of errors available in
the suffix of w having i+1 as first position is the same after the reading of x
and of y. In fact, if we consider i = 5, err5(baba) = 2 and err5(babb) = 1 and
then min{|w| − 5, 2− err5(baba)} = 0 6= 1 = min{|w| − 5, 2− err5(babb)}.

- If we consider words x = abaababa and y = baababa, one has that they are
trivially endk-equivalent because they have the same end-set, that is end-
setw(abaababa, 2) = {8} = end-setw(baababa, 2), and for i = 8 the number of
errors available in the suffix of w having i+1 as first position is the same after
the reading of x and of y. In fact, if we consider i = 8, err8(abaababa) = 0
and err8(baababa) = 0 and then min{|w| − 8, 2 − err8(abaababa)} = 2 =
min{|w| − 8, 2− err8(baababa)}.

- If we consider words x = abaababaa and y = baababab, one has that they have
the same end set, that is end-setw(abaababaa, 2) = {9} = end-setw(baababab,
2), and for i = 9 the number of errors available in the suffix of w hav-
ing i + 1 as first position is the same after the reading of x and of y,
even if err9(abaababaa) = 0 and err9(baababab) = 1. In fact, one has that
min{|w| − 9, 2 − err9(abaababaa)} = 1 = min{|w| − 9, 2 − err9(baababab)},
and then x and y are endk-equivalent.

The following lemma and theorem summarize some properties of endk-equivalence.

Lemma 1. (i) ≡w,k is a right-invariant equivalence relation on Σ∗.
(ii) If x and y are endk-equivalent, then one is a suffix of the other up to 2k

errors.
(iii) Words xy and y are endk-equivalent if and only if for any i ∈ end-setw(xy, k)

= end-setw(y, k), the k-occurrence of y with final position i is immediately
preceded by a t-occurrence of x, where t = max{(k− erri(y))− (|w| − i), 0)}.

Theorem 1. Words x and y are endk-equivalent if and only if they have the
same future in w, i.e. for any z ∈ Σ∗, xz is a k-suffix of w if and only if yz is
a k-suffix of w.

In what follows we use the term partial DFA (with respect to the alphabet
Σ) for a deterministic finite automaton in which each state has not necessarily
a transition for every letter of Σ. The smallest partial DFA for a given language

6

is the partial DFA that recognizes the language and has the smallest number of
states. It is called the minimal DFA recognizing the language. Uniqueness follows
from Nerode’s Theorem [20] of the right invariant equivalence relation. As usual,
an equivalence relation ≡ on Σ∗ is right invariant if, for any x, y, z ∈ Σ∗, x ≡ y
implies that xz ≡ yz.

By using Nerode’s theorem and by Theorem 1 we have the following result.

Corollary 1. For any word w ∈ Σ∗, the (partial) deterministic finite automa-
ton having input alphabet Σ, state set {[x]w,k | x is a k occurrence of w}, initial
state [ε]w,k, accepting states those equivalence classes that include the k-suffixes
of w (i.e., whose end-sets include the position |w|) and transitions {[x]w,k −→a [xa]w,k |
x and xa are k-occurrences of w}, is the minimal deterministic finite automa-
ton, denoted by Sw,k (or simply by Sk if there are no risks of misunderstanding
on w), which recognizes the set Suff(w, k).

Remark 3. We note that Suff(w,k)=Suff(w,k,r) with r = |w| (which is equivalent
to saying that there are at most k errors in the entire word without window)
and that Suff(w,k,r) ⊆ L(w, k, r).

4 Allowing more mismatches

In this section we present the second main result of the paper. More precisely,
we describe an algorithm that makes use of the automaton Sk in order to accept,
in an efficient way, the language Suff (w, k, r) of all suffixes of w up to k errors
in every window of size r = R(w, k, r).

First of all we recall that if r = R(w, k, r) then for any value x ≥ r one has
that r = R(w, k, x), i.e. the repetition index gets constant. And this is also valid
when the parameter x is such that x = |w|, which implies that if r = R(w, k, r)
then r = R(w, k, |w|) = R(w, k) (cf. [12–14]). These two extremal cases are the
two cases we are considering. From now on we denote this value simply by r.
This fact implies that any word u of length |u| = r has the following property:
if u kr-occurs or k-occurs in w, then, in both cases, it occurs only once in the
text |w|.

Before describing our algorithm, we give a preliminary result that is impor-
tant both for the following and in itself.

Lemma 2. Given the automaton Sk, there exists a linear time algorithm that
returns the repetition index r such that r = R(w, k, r).

Remark 4. As a side effect of this construction, each state of the automaton Sk

is equipped with an integer that represents a distance from this state to the end.
For this purpose, it is sufficient to make a linear time visit of the automaton.

Now we can describe the algorithm that accepts the language Suff (w, k, r).
We can distinguish two cases.

7

i) If a word u has length less than or equal to r = R(w, k, r), then we check
if the word u is accepted by the automaton Sk. If u is accepted by this
automaton, then it is in the language Suff (w, k, r), otherwise it does not
belong to the language.

ii) If a word u has a length greater than or equal to r = R(w, k, r), then we
consider its prefix u′ of length r = R(w, k, r). Let q be the state that is
reached after reading u′ and let i be the integer associated to this state (cf.
Remark 4). We have that |w|− i−r+1 is the unique possible initial position
of u. Given a position, checking whether a word kr-occurs at that position
in the text w can be done in linear time.

5 Conclusions and experimental results

We have constructed the suffix automaton with mismatches of a great num-
ber of words and we have considered overall its structure when the input word
is well-known, such as the prefixes of Fibonacci and Thue-Morse words, as
well as words of the form bban, a, b ∈ Σ, n ≥ 1 and some random words.
We have studied how the number of states grows depending on the length
of the input word. In the case of the prefixes of length n of the Fibonacci
word, our experimental results have led us to the following sequence {an}n,
representing the number of states of the suffix automaton with one mismatch:
{an}n = 2, 4, 6, 11, 15, 18, 23, 28, 33, 36, 39, 45, 50, 56, 61, 64, 67, 70, 73, 79, 84, 90,
96, 102, 107, 110, 113, 116, 119, 122, 125, 128, 134, 139, 145, 151, 157, 163, 169, 175,
180, 183, 186, 189, 192, 195, 198, 201, 204, 207, 210, 213, 216, 222, 227, 233, 239, 245,
251, 257, 263, 269, . . . This means that the sequence of differences between two
consecutive terms is: {an+1−an}n = 2, 2, 5, 4, 3, 5, 5, 5, 3, 3, 6, 5, 6, 5, 3, 3, 3, 3, 6, 5,
6, 6, 6, 5, 3, 3, 3, 3, 3, 3, 3, 6, 5, 6, 6, 6, 6, 6, 6, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 6, 5, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 5, 3, 3, 3, 3, 3, 3, 3, 3, . . .
If we examine the last sequence, we note that after an initial part, there is one 6,
one 5, (fibi−1−2) consecutive 6s, one 5, (fibi−1) consecutive 3s, etc, where fibi

denotes the i-th Fibonacci number, i = 4, 5, 6 This leads to the following
recursive formula: afibn = afibn−1 + 3(afibn−3 − 1) + 10 + 6(afibn−4 − 1). From
this recursion an explicit formula is easy to find. We did not prove the rule that
describes the growth of the suffix automaton with one mismatch, but we checked
that this rule holds true up to prefixes of length 2000 of the Fibonacci word f .

Conjecture 1. The size of the suffix automaton with one mismatch of the prefixes
of the Fibonacci word grows according to the recursive formula afibn = afibn−1 +
3(afibn−3 − 1) + 10 + 6(afibn−4 − 1).

Given a word v, Gad Landau wondered if a data structure having a size
“close” to |v| and that allows approximate pattern matching in time proportional
to the query plus the number of occurrences exists. In the non approximate case,
suffix trees and compact suffix automata do the job (cf. [11, 19]). Let us see the
approximate case. In [12, 14, 15, 21, 22] it is proved that for a random text w,
the size of its compact suffix automaton with k mismatches is linear times a

8

polylog of the size of w, i.e. O(|w| · logk |w|). By using this data structure, the
time for finding the list occ(x) of all occurrences of any word x in the text w up
to k mismatches is proportional to |x|+ |occ(x)|. Therefore, for random texts the
open problem of Landau has a positive answer. For prefixes of Fibonacci word
our previous conjecture tells us that suffix automata do the same.

In the case of words of the form bban, a, b ∈ Σ,n ≥ 1, our experimental results
have led us to the following formula describing the behaviour of the sequence
of differences between two consecutive terms involving words having n greater
than or equal to 4:{an+1 − an} = 19 + 6 ∗ (n− 4).

We have experimented also on prefixes of Thue-Morse words and, even if
we have not obtained a well-formed formula, we have tested that the size of
the compact suffix automata with 1 mismatch obtained is less than or equal to
2 · |w| · log(|w|).

Moreover, the result is true even in the case of periodic words. So, we can
state the following conjecture.

Conjecture 2. The (compact) suffix automaton with k mismatches of any text
w has size O(|w| · logk(|w|)).

The minimal deterministic finite automaton Sk that recognizes the set of
suffixes of a word w up to k errors can be useful for solving the problem of
approximate indexing and some applications of it. Classically, an index (cf. [10])
over a fixed text w is an abstract data type based on the set Fact(w). Such data
type is equipped with some operations that allow it to answer to the following
queries. 1) Given a word x, say whether it belongs to Fact(w) or not. If not,
an index can optionally give the longest prefix of x that belongs to Fact(w).
2) Given x ∈ Fact(w), find the first (respectively the last) occurrence of x in
w. 3) Given x ∈ Fact(w), find the number of occurrences of x in w. 4) Given
x ∈ Fact(w), find the list of all occurrences of x in w. In the case of exact string
matching, there exist classical data structures for indexing such as suffix trees,
suffix arrays, DAWGs, factor automata or their compacted versions (cf. [10]).
The algorithms that use them run in a time usually independent from the size
of the text or at least substantially smaller than it. The last property is required
by some authors to be an essential part in the definition of an index (cf. [1]).

All the operations defined for an index can easily be extended to the ap-
proximate case. But in the case of approximate string matching the problem is
somehow different. We refer to [3, 16, 17, 23] and to the references therein for a
panorama on this subject and on approximate string matching in general. The
minimal deterministic finite automaton Sk introduced in this paper can be use-
ful for solving the problem of approximate indexing. More precisely, it is easy
to answer queries 1) and 2), but the other questions are more complex and they
can be solved by using techniques analogous to those in [15].

Moreover, if the Conjecture 2 is true and constants involved in O-notation
are small, our data structure is useful for some classical applications of approx-
imate indexing, such as recovering the original signals after their transmission
over noisy channels, finding DNA subsequences after possible mutations, text

9

searching where there are typing or spelling errors, retrieving musical passages,
A.I. techniques in feature vector, and so on. It is important even in other ap-
plications, like in the field of Web search tools when we deal with agglutinative
languages, i.e. languages that mainly resort to suffixes and declinations such as
many Uralic languages (like Hungarian, Finnish, and Estonian), or in the case
of real-time proposal of alternative internet URL in Domain Name Servers, or
for deeper analysis of biological sequences (such as for finding long repeated fac-
tor with errors and their applications in prediction, in detecting horizontal gene
transfer, in alignments, etc).

Finally, we think that it is possible to connect the suffix automaton Sk of
the language Suff (w, k, |w|) (without window) to the suffix automaton Sk,r of
the language Suff (w, k, r) with r = R(w, k, r). More precisely, our experimental
results lead us to conjecture that this last automaton could have at most the same
number of states and an additional number of edges that could be proportional
to the size of the alphabet Σ with respect to Sk .

Conjecture 3. Let Sk and Sk,r be the suffix automata of the languages Suff (w,
k) (without window) and Suff (w, k, r) with r = R(w, k, r), respectively. Then
|Sk,r| = O(|Sk|).

References

1. A. Amir, D. Keselman, G. M. Landau, M. Lewenstein, N. Lewenstein, and
M. Rodeh. Indexing and dictionary matching with one error. LNCS, 1663:181–190,
1999.

2. A. Amir, D. Keselman, G. M. Landau, M. Lewenstein, N. Lewenstein, and
M. Rodeh. Indexing and dictionary matching with one error. Journal of Algo-
rithms, 37:309–325, 2000.

3. R. Baeza-Yates, G. Navarro, E. Sutinen, and J. Tarhio. Indexing methods for
approximate string matching. IEEE Data Engineering Bulletin, 24(4):19–27, 2001.
Special issue on Managing Text Natively and in DBMSs. Invited paper.

4. A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M.T. Chen, and J. Seiferas.
The smallest automaton recognizing the subwords of a text. Theoretical Computer
Science, 40:31–55, 1985.

5. A. L. Buchsbaum, M. T. Goodrich, and J. Westbrook. Range searching over tree
cross products. In ESA 2000, volume 1879, pages 120–131, 2000.

6. A. Carpi and A. de Luca. Words and special factors. Theoretical Computer Science,
259:145–182, 2001.

7. E. Chávez and G. Navarro. A metric index for approximate string matching. In
LATIN 2002: Theoretical Informatics: 5th Latin American Symposium, Cancun,
Mexico, April 3-6, 2002. Proceedings, volume 2286 of LNCS, pages 181–195, 2002.

8. R. Cole, L. Gottlieb, and M. Lewenstein. Dictionary matching and indexing with
errors and don’t cares. In Proceedings of Annual ACM Symposium on Theory of
Computing (STOC 2004), 2004.

9. M. Crochemore and C. Hancart. Automata for Matching Patterns, volume 2 of G.
Rozenberg and A. Salomaa (Eds.), Handbook of Formal Languages, Linear Model-
ing: Background and Application, chapter 9, pages 399–462. Springer-Verlag.

10. M. Crochemore, C. Hancart, and T. Lecroq. Algorithmique du texte. Vuibert, 2001.

10

11. Maxime Crochemore. Reducing space for index implementation. Theoretical Com-
puter Science, 292(1):185–197, 2003.

12. C. Epifanio, A. Gabriele, and F. Mignosi. Languages with mismatches and an
application to approximate indexing. In Proceedings of the 9th International Con-
ference Developments in Language Theory (DLT05), LNCS 3572, pages 224–235,
2005.

13. C. Epifanio, A. Gabriele, F. Mignosi, A. Restivo, and M. Sciortino. Languages
with mismatches. Theoretical Computer Science. To appear.

14. A. Gabriele. Combinatorics on words with mismatches, algorithms and data
structures for approximate indexing with applications. PhD thesis, University of
Palermo, 2004.

15. A. Gabriele, F. Mignosi, A. Restivo, and M. Sciortino. Indexing structure for
approximate string matching. In Proc. of CIAC’03, volume 2653 of LNCS, pages
140–151, 2003.

16. Z. Galil and R. Giancarlo. Data structures and algorithms for approximate string
matching. Journal of Complexity, 24:33–72, 1988.

17. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, 1997.

18. T. N. D. Huynh, W. K. Hon, T. W. Lam, and W. K. Sung. Approximate string
matching using compressed suffix arrays. In Proc. of CPM 2004, volume 3109 of
LNCS, pages 434–444.

19. S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, S. Arikawa, G. Mauri, and
G. Pavesi. On-line construction of compact directed acyclic word graphs. Discrete
Applied Mathematics, 146(2):156–179, 2005.

20. M. Lothaire. Combinatorics on Words, volume 17 of Encyclopedia of Mathematics.
Cambridge University Press, 1983.

21. M. G. Maass and J. Nowak. A new method for approximate indexing and dictio-
nary lookup with one error. Information Processing Letters, 96(issue 5):185–191,
December 2005.

22. M. G. Maass and J. Nowak. Text indexing with errors. In Proceedings of the 16th
Annual Symposium on Combinatorial Pattern Matching (CPM 2005), LNCS 3537,
pages 21–32, 2005.

23. G. Navarro. A guided tour to approximate string matching. ACM Computing
Surveys, 33(1):31–88, 2001.

11

Appendix

Proof of Lemma 1

Proof. (i) ≡w,k is an equivalence relation. Indeed it is obviously reflexive, sym-
metric and transitive.
Moreover this relation is a right-invariant equivalence. For any x, y ∈ Σ∗,
if x ≡w,k y, then end-setw(x, k) = end-setw(y, k) and for any position i ∈
end-setw(x, k) = end-setw(y, k), min{|w| − i, k− erri(x)} = min{|w| − i, k−
erri(y)}. Since the number of errors available in the suffix of w having i as
first position is the same after the reading of x and of y, then for any z ∈ Σ∗

xz is a k-occurrence of w if and only if yz is a k-occurrence of w. Hence,
end-setw(xz, k) = end-setw(yz, k) and for any position j ∈ end-setw(xz, k) =
end-setw(yz, k) the number of errors available in the suffix of w having j as
first position is the same after the reading of xz and of yz.

(ii) By definition x and y are such that end-setw(x, k) = end-setw(y, k). There-
fore, for any i ∈ end-setw(x, k) = end-setw(y, k), both x and y k-occur in w
with final position i and d(x, y) ≤ d(x,w)+ d(w, y) ≤ 2k. Hence x and y are
one a 2k-suffix of the other.

(iii) Let us suppose, by hypothesis, that xy ≡w,k y. Therefore, end-setw(xy, k) =
end-setw(y, k) and for any position i ∈ end-setw(xy, k) = end-setw(y, k),
min{|w|−i, k−erri(xy)} = min{|w|−i, k−erri(y)}. Since erri(y) ≤ erri(xy),
then k−erri(xy) ≤ k−erri(y). For any i ∈ end-setw(xy, k) = end-setw(y, k),
we can distinguish the following cases.
1. Let min{|w| − i, k − erri(y)} = k − erri(y). Since k − erri(xy) ≤ k −

erri(y) ≤ |w| − i, then min{|w| − i, k − erri(xy)} = k − erri(xy). Since
min{|w|−i, k−erri(xy)} = min{|w|−i, k−erri(y)}, then k−erri(xy) =
k − erri(y) and all the erri(xy) errors are in y and x occurs exactly in
w.

2. Let min{|w|− i, k−erri(y)} = |w|− i. Since min{|w|− i, k−erri(xy)} =
min{|w|−i, k−erri(y)}, one has that the number of errors available in the
suffix of w having i + 1 as first position is min{|w| − i, k − erri(xy)} =
|w| − i. Therefore the maximal allowed number of errors in x is k −
[erri(y) + (|w| − i)] ≥ 0.

Hence, for any i ∈ end-setw(xy, k) = end-setw(y, k), the k-occurrence of y
with final position i is immediately preceded by a t-occurrence of x, where
t = max{(k − erri(y)− (|w| − i), 0)}.
Let us suppose, now, that for any i ∈ end-setw(xy, k) = end-setw(y, k),
the k-occurrence of y with final position i is immediately preceded by a t-
occurrence of x, where t = max{(k− erri(y))− (|w| − i), 0)}. By hypothesis,
end-setw(xy, k) = end-setw(y, k). Let us distinguish two cases.
1. Let us consider positions i ∈ end-setw(xy, k) = end-setw(y, k) such that

t = 0. In this case all the erri(xy) are in y and the number of errors
available in the suffix of w having i+1 as first position is the same after
the reading of xy and of y.

12

2. Let us, now, consider positions i ∈ end-setw(xy, k) = end-setw(y, k)
such that t = (k − erri(y))− (|w| − i). In this case k − erri(y) ≥ |w| − i
and then min{|w| − i, k − erri(y)} = |w| − i. By hypothesis, this k-
occurrence of y is immediately preceded by an occurrence of x up to
t = (k − erri(y)) − (|w| − i) errors. Therefore, k − erri(xy) ≥ k − [k −
(erri(y) + |w| − i) + erri(y)] = |w| − i and min{|w| − i, k − erri(xy)} =
|w| − i. ¤

Proof of Theorem 1

Proof. By Lemma 1(i), if x and y are endk-equivalent, then for any z ∈ Σ∗ xz
and yz are endk-equivalent and then xz is a k-suffix if and only if yz is a k-suffix.

Let us suppose, now, that for any z ∈ Σ∗, xz is a k-suffix if and only if yz is
a k-suffix. Therefore end-setw(x, k) = end-setw(y, k). Moreover, for any z such
that xz and yz are suffixes of w, the ending position i of x and y is such that
|w| − i = |z|. By hypothesis, we can have two cases depending on |z|.

- Let z ∈ Σ∗ be such that |z| ≤ min{k−erri(x), k−erri(y)}. For such z one has
that min{|w|− i, k−erri(x)} = |w|− i and min{|w|− i, k−erri(y)} = |w|− i
and the thesis is proved.

- Let z ∈ Σ∗ be such that |z| ≥ max{k − erri(x), k − erri(y)}. For such z
one has that min{|w| − i, k − erri(x)} = k − erri(x) and min{|w| − i, k −
erri(y)} = k− erri(y). By hypothesis, for any position i ∈ end-setw(x, k) =
end-setw(y, k), any word z ∈ Σ∗ having i+1 as first position is such that xz
is a k-suffix of w if and only if yz is a k-suffix of w and then k − erri(x) =
k − erri(v) and the thesis is proved. ¤

Proof of Corollary 1

Proof. Since the union of the equivalence classes that form the accepting states
of Sk is exactly the set of all k-suffixes of w, by Nerode’s Theorem one has that
Sk recognizes the language of all k-suffixes of w, i.e. the set Suff (w, k). The
minimality follows by Lemma 1. ¤

Proof of Lemma 2

Proof. In this proof we consider w to be fixed. Let q0 be the initial state of Sk

and let δ be its transition function. By abuse of notation, we keep calling δ its
extension to words.

If u k-occurs twice in w, then from state δ(q0, u) there are two paths having
different lengths to a final state. Therefore r−1 will be the greatest length of all
words that reach a state from which there are two paths having different lengths
to a final state.

We firstly find all such states. Since the graph G underlying Sk is a DAG
(its language is finite), the same happens to the inverse Ĝ of G that is the graph
where all arcs are inverted. We can perform a visit of Ĝ by adding to each node
a field distance d and a flag information that can be white, green or red. The flag
white means that the node has not yet been met during the visit, the green one

13

means that, up that moment during the visit, the node has been encountered
at last once during the visit and that all paths in G to a final state have same
length. The flag red means that there are at last two paths in G to a final state
having different lengths. In order to simplify the algorithm we add an initial
state to Ĝ that goes with one arc to each final state of Sk. This initial state is
set to be green and having distance −1 while all other nodes are set to be white
and distance equal to +∞. If a node with white flag is reached starting from a
green node, then its flag is set to green and its distance becomes the distance
from the initial state, i.e. the distance of previous node plus one. If a node with
green flag is reached starting from a green node and if its distance is equal to
be the distance of previous node plus one, then the node is not enqueued again,
while otherwise it is set to red. Red flags propagate. Details are left to the reader.
Nodes with red flags are the ones we were looking for.

At this point we perform a visit on G starting from the initial state (using a
topological order) in order to obtain the greatest length of all words that reach
a state with a red flag. The repetition index r is the greatest of such values plus
one. ¤

14

