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SYNCHRONIZATION OF

PUSHDOWN AUTOMATA

Didier Caucal

caucal@irisa.fr

IRISA–CNRS, Campus de Beaulieu, 35042 Rennes, France

Abstract. We introduce the synchronization of a pushdown automa-
ton by a sequential transducer associating an integer to each input word.
The visibly pushdown automata are the automata synchronized by an
one state transducer whose output labels are −1, 0, 1. For each trans-
ducer, we can decide whether a pushdown automaton is synchronized.
The pushdown automata synchronized by a given transducer accept lan-
guages which form an effective boolean algebra containing the regular
languages and included in the deterministic real-time context-free lan-
guages.

1 Introduction

It is well-known that the context-free languages are not closed under intersection
and complementation, and that the deterministic context-free languages are not
closed under intersection and union. Alur and Madhusudan have shown that the
languages accepted by the visibly pushdown automata form a boolean algebra
included in the deterministic real-time context-free languages [AM 04]. The no-
tion of visibly pushdown automaton is based on the synchronization between
the input symbols and the actions performed on the stack: this enforces that the
variation of the stack height is entirely characterized by the input word.
It appears that the closure results for the languages accepted by the visibly
pushdown automata are based on a geometrical property of their graphs with
regard to the stack height. This geometrical property which holds for every push-
down graph (not only visibly) was discovered by Muller and Schupp [MS 85].
A simple adaptation of their result shows that the graph of every pushdown
automaton is regularly generated by increasing stack height [Ca 95]. This reg-
ularity is described by a finite deterministic graph grammar which in n steps
of parallel rewritings, generates the graph restricted to the configurations with
stack height at most n.
In this article, we generalize the notion of synchronization to abstract from the



stack height. Towards this goal, we introduce a sequential transducer associating
an integer to each input word. Provided that this transducer defines a weight
for the vertices of the pushdown graph, we show that we can decide whether
the graph can be generated regularly with regard to that weight. This is the
notion of synchronization by a transducer. For any fixed transducer, the lan-
guages accepted by the pushdown automata synchronized by this transducer,
are deterministic real-time context-free languages and form an effective boolean
algebra containing the regular languages.

2 Graphs and finite automata

By allowing labels not only on arcs but also on vertices, we define graphs as a
simple extension of automata: the vertex labelling is not restricted to indicate
initial and final vertices but it also permits to add information on vertices (e.g.
the vertices accessible from a given colour, more generally the vertices defined
by a µ-formula, . . .). First we give some notations.
Let IN be the set of non-negative integers and ZZ be the set of integers. For any
set E, we denote |E| its cardinality. For every n ≥ 0, En is the set of n tuples
of elements of E, and E∗ =

⋃
n≥0 En is the free monoid generated by E for

the concatenation : (e1, . . ., en)·(e′1, . . ., e
′
n) = (e1, . . ., en, e′1, . . ., e

′
n). A finite set

E of symbols is an alphabet of letters, and E∗ is the set of words over E. Any
word u ∈ En is of length |u| = n and is represented by the juxtaposition of its
letters: u = u(1). . .u(|u|). The word of length 0 is the empty word ε. We denote
|u|P := |{ 1 ≤ i ≤ |u| | u(i) ∈ P }| the number of occurrences of P ⊆ E in
u ∈ E∗. For any binary relation R ⊆ E×F from E into a set F , we write also
e R f for (e, f) ∈ R, and we denote Dom(R) := { e | ∃ f, e R f } the domain of
R, and Im(R) := { f | ∃ e, e R f } the image (or the range) of R.

Now we present our notion of graph which generalizes the notion of automaton.
Let L and C be disjoint countable sets of symbols for respectively labelling arcs
and labelling vertices. Here a graph is simple, oriented, arc labelled in a finite
subset of L and vertex labelled in a finite subset of C. Precisely, a graph G is a
subset of V ×L×V ∪ C×V where V is an arbitrary set such that its vertex set

VG := { p | ∃ a, q, (p, a, q) ∈ G ∨ (q, a, p) ∈ G } ∪ { p | ∃ c, (c, p) ∈ G }
is finite or countable, with its vertex label set or colour set

CG := { c ∈ C | ∃ p, (c, p) ∈ G } is finite,
and its arc label set or label set

LG := { a ∈ L | ∃ p, q, (p, a, q) ∈ G } is finite.
Any (p, a, q) of G is a labelled arc of source p, of goal q, with label a, and is
identified with the labelled transition p

a
−→

G

q or directly p
a

−→ q if G is under-

stood. Any (c, p) of G is a vertex p labelled by c and is also written c p if G is
understood. We denote VG,i := { p | i p ∈ G } the set of vertices of G labelled
by the colour i ∈ C.
A graph is deterministic if distinct arcs with the same source have distinct labels:



r
a

−→ p ∧ r
a

−→ q =⇒ p = q .
Note that a graph G is finite if and only if it has a finite vertex set VG . For

instance {r
b

−→ p , p
a

−→ s , p
b

−→ q , q
a

−→ p , q
b

−→ s , i r , g p , h p , f s , f t} is
a finite graph of vertices p, q, r, s, t, of colours i, f, g, h, and of (arc) labels a, b.
It is represented below.

b

a

i

h

g f

f

b

a b

(r)

Note that a vertex r is depicted by a dot named by (r) where parentheses are
used to differentiate a vertex name with a vertex label (a colour).
For any p ∈ VG, d+(p) := |{ (a, q) | p

a
−→ q }| and d−(p) := |{ (q, a) | q

a
−→ p }|

are respectively the out-degree and the in-degree of p ; d(p) := d+(p) + d−(p) is
the degree of p and dG := sup{ d(p) | p ∈ VG } is the degree of G.
A graph is of finite degree (or locally finite) if d(p) < ω for any vertex p ; a graph
G is of bounded degree (or locally bounded) if dG < ω .
A graph G without vertex label i.e. CG = ∅ is called an uncoloured graph.
The restriction (or the induced subgraph) of a graph G to a vertex subset P is

G|P := { p
a

−→
G

q | p, q ∈ P } ∪ { c p ∈ G | p ∈ P }.

Any tuple (p0, a1, p1, . . ., an, pn) such that n ≥ 0 and p0
a1
−→ p1 . . . pn−1

an
−→ pn ,

denoted also by the word p0a1p1. . .anpn (which have a sense if VG ∩ L∗
G = ∅),

is a path from p0 to pn labelled by u = a1. . .an , and we write p0
u

=⇒
G

pn or

directly p0
u

=⇒ pn if G is understood; for n = 0, the path p0
ε

=⇒
G

p0 is reduced

to p0 ∈ VG . For any U ⊆ L∗, we write p
U

=⇒ q if p
u

=⇒ q for some u ∈ U . We

also write p =⇒
G

∗ q if p
L∗

=⇒
G

q.

We say that a vertex r is a root of G if every vertex p is accessible from r :
r =⇒∗ p. The accessible subgraph G/p := G|{ q | p =⇒∗

q } of a graph G from a

vertex p is the restriction of G to the vertices accessible from p.
Given a graph G and vertex sets P, Q ⊆ VG , we denote L(G, P, Q) the language
of path labels from vertices in P to vertices in Q :

L(G, P, Q) := { u | ∃ p ∈ P ∃ q ∈ Q p
u

=⇒
G

q } .

Given colours i, f ∈ C, we define L(G, i, f) := L(G, VG,i , VG,f ) the path labels
from the set VG,i of vertices labelled by i to the set VG,f of vertices labelled by f .

For instance taking the previous graph, its path labels from i to f is b(ba)∗(a+bb).
So a finite graph G with two colours i and f is a finite automaton recognizing
the language L(G, i, f). The family

Rat(T ∗) := { L(G, i, f) | |G| < ω ∧ i, f ∈ C }
of languages over T recognized by the finite automata coincides with the family
of rational languages (or regular languages). So the finite graphs describe the
structures of the rational languages and permit to derive properties on these
languages. For the context-free languages which are the languages recognized by



the pushdown automata, their graphs are generated by the deterministic graph
grammars which are also really powerful to get properties on these languages.
Our purpose is to use the deterministic graph grammars in order to describe
geometrically the notion of visibly pushdown automata and to get in this way a
natural generalization.

3 Graph grammars and pushdown automata

A pushdown automaton is a particular case of a word rewriting system where
the rules are only applied by prefix. By restriction to rational vertex sets, the
pushdown automata and the word rewriting systems define the same (prefix)
graphs which are the graphs of bounded degree and regular in the sense that
they can be generated by a deterministic grammar [Ca 90]. We extend this result
to the pushdown automata which are in a weak form used by the visibly push-
down automata (cf. Theorem 3.1). We recall that the graphs of the pushdown
automata are regular by increasing length (cf. Proposition 3.2).

We fix an alphabet T of terminals. Recall that a labelled word rewriting system

R is a finite subset of N∗
×T×N∗ for some alphabet N of non-terminals i.e. is

a finite uncoloured graph of (arc) labels in T and whose vertices are words over
N . The graph:

G·P := { uw
a

−→ vw | u
a

−→
G

v ∧ w ∈ P }

is the right concatenation of any graph G ⊆ N∗
×T×N∗ by any language P ⊆ N∗.

Rewritings of a system are generally defined as applications of rewriting rules
in every context. On the contrary, we are here concerned with prefix rewriting
[Bü 64]. The prefix transition graph of R is the uncoloured graph R·N∗ which
is of bounded degree and has a finite number of non isomorphic connected com-
ponents.
A subclass of labelled word rewriting systems is the standard model of real-time
pushdown automata. A pushdown automaton R (without ε-rule) is a finite set
of rules of the form:

pA
a

−→ qU with p, q ∈ Q, A ∈ P, U ∈ P ∗, a ∈ T

where P and Q are disjoint alphabets of respectively pushdown letters and states.
The transition graph of R is R·P ∗ = { pAV

a
−→ qUV | pA

a
−→

R

qU ∧ V ∈ P ∗ }

the restriction of the prefix transition graph R·(P ∪ Q)∗ of R to the rational
set QP ∗ of configurations.
A strong way to normalize the rules of pushdown automata is given by a weak

pushdown automaton R which is a finite set of rules of the following form:
p

a
−→ q or p

a
−→ qA or pA

a
−→ q with p, q ∈ Q, A ∈ P, a ∈ T .

Its transition graph R·P ∗ is isomorphic to S·P ∗⊥ where ⊥ is a new pushdown
letter (the bottom of the stack) and S is the following pushdown automaton:

S = { pA
a

−→ qA | p
a

−→
R

q ∧ A ∈ P ∪ {⊥} }

∪ { pB
a

−→ qAB | p
a

−→
R

qA ∧ B ∈ P ∪ {⊥} } ∪ { pA
a

−→ q | pA
a

−→
R

q }.



The labelled word rewriting systems and the weak pushdown automata define
the same prefix transition graphs, hence also for the pushdown automata which
are intermediate devices.

Theorem 3.1 The transition graphs of weak pushdown automata,

the transition graphs of pushdown automata,

the prefix transition graphs of labelled word rewriting systems,

have up to isomorphism the same

accessible subgraphs: the rooted regular graphs of bounded degree,

connected components: the connected regular graphs of bounded degree,

rational restrictions: the regular graphs of bounded degree.

This theorem has been first established in [Ca 90] and completed in [Ca 95] but
without considering the weak pushdown automata.
It remains to recall what is a regular graph and more exactly to reintroduce the
notion of a deterministic graph grammar to generate a graph. Such a generation
needs to use non-terminal arcs linking several vertices and called hyperarcs.

Let F be a set of symbols called functions, graded by a mapping ̺ : F −→ IN
associating to each function f its arity ̺(f), and such that

Fn := { f ∈ F | ̺(f) = n } is countable for every n ≥ 0,
with F1 = C and F2 = L.
A hypergraph G is a subset of

⋃
n≥0 FnV n where V is an arbitrary set such that

its vertex set VG := { p ∈ V | FV ∗pV ∗ ∩ G 6= ∅ } is finite or countable,
its label set FG := { f ∈ F | fV ∗ ∩ G 6= ∅ } is finite.

Any fv1. . .v̺(f) ∈ G is a hyperarc labelled by f and of successive vertices
v1, . . ., v̺(f) ; it is depicted for ̺(f) ≥ 2 as an arrow labelled f and successively
linking v1, . . ., v̺(f) :

f

(v1) (v2) (v̺(f))

The transformation of a hypergraph G by a function h from VG into any set
V is the graph h(G) := { fh(v1). . .h(v̺(f)) | fv1. . .v̺(f) ∈ G }. Note that the

graphs are the hypergraphs whose any label is of arity 1 or 2 : any arc p
a

−→ q

corresponds to the hyperarc apq.
A graph grammar R is a finite set of rules of the form fx1. . .x̺(f) −→ H where
fx1. . .x̺(f) is a hyperarc joining pairwise distinct vertices x1 6= . . . 6= x̺(f) and
H is a finite hypergraph. The labels of the left hand sides form the set NR of
non-terminals of R :

NR := { X(1) | X ∈ Dom(R) },
and the labels of R which are not non-terminals form the set TR of terminals :

TR := { X(1) 6∈ NR | ∃ P ∈ Im(R), X ∈ P }.
Any graph grammar R is used to generate graphs of arc labels in T hence we
assume that TR ⊂ T ∪ C. We will use capital letters for the non-terminals



and small letters for the terminals. Starting from any non-terminal hyperarc, we
want to generate by a graph grammar a unique graph up to isomorphism. So
we restrict any graph grammar to be deterministic : there is only one rule per
non-terminal. For instance taking A ∈ F0 , B ∈ F3 , a, b, c ∈ T and i, f ∈ C, the
following two rules:

A −→ {ip , fr , Bpqr} ; Bxyz −→ {axp , bxy , cqy , byz , crz , Bpqr}
constitute a deterministic graph grammar which is represented below:

;

a

c

c

i

f

A B B B

b

b

(x) (x)

(y) (y)

(z) (z)

For any (deterministic graph) grammar R, the rewriting −→
R

is the binary rela-

tion between hypergraphs defined by M −→
R

N if we can choose a non-terminal

hyperarc X = As1. . .sp in M and a rule Ax1. . .xp −→ H in R to replace X by
H in M :

N = (M − X) + h(H)

for some function h mapping xi to si, and the other vertices of H injectively to
vertices outside of M ; this rewriting is denoted by M −→

R, X

N . The rewriting −→
R, X

of a hyperarc X is extended in an obvious way to the rewriting −→
R, E

of any set

E of non-terminal hyperarcs. A complete parallel rewriting =⇒
R

is the rewriting

according to the set of all non-terminal hyperarcs: M =⇒
R

N if M −→
R, E

N where

E is the set of all non-terminal hyperarcs of M .
For instance, the first three steps of the parallel derivation from the hypergraph
{A} according to the above grammar are depicted in the figure below.

=⇒=⇒ =⇒

a

c

c

f

i
a

c

c

a

c

c
BA B B

i

f

i

f

b

b

b

b

b

b

Let [H ] := H ∩ (CVH ∪ TVHVH) be the set of terminal arcs and of coloured
vertices of any hypergraph H .
A regular graph, also called a hyperedge replacement equational graph [Co 90], is
a graph G generated by a hypergraph grammar R from a non-terminal hyperarc
X . More formally, G is isomorphic to a graph in the following set Rω(X) of
isomorphic graphs:

Rω(X) := {
⋃

n≥0[Hn] | H0 = X ∧ ∀ n ≥ 0, Hn =⇒
R

Hn+1 } .

For instance by continuing infinitely the previous derivation, we get the infinite
graph:

a

c

c

a

c

c

a

c

c

i

f

b

b

b

b

b

b

b

b



In particular any regular graph of finite degree is of bounded degree.
The regular graphs trace the context-free languages: for any regular graph G

(not necessarily bounded) and for any colours i, f ∈ C, L(G, i, f) is a context-
free language and by Theorem 3.1, the converse is true. Graph grammars are
suitable to deduce the pumping lemma, or to prove the Parikh lemma. Here we
will use graph grammars to describe geometrically the notion of visibly pushdown
automaton and to extend it.
A regular graph can be generated by several grammars. For instance instead of
generating the previous graph by ‘vertical slides’, we can generate it by ‘diagonal
slides’ using the following grammar:

; ;A C

b

a

b

c

f

Bb

i
a

B

a

c

c
C

b

b

C

(x)(x)

(x)(x)

(z)(z)

(y)(y)

(y)(y)

We specify the regularity of a graph G according to a mapping g from VG into
IN. Precisely for every n ≥ 0, we define the graph Gg,n of the first n levels of G

according to g by
Gg,n := { p

a
−→

G

q | g(p) < n ∨ g(q) < n } ∪ { c p ∈ G | g(p) < n } .

We say that a graph G is regular by g if there exists a grammar R and a non-
terminal hyperarc I such that for any parallel derivation I =⇒

R

n H , the set of

terminal arcs of H is [H ] = Gg,n and its vertex set of its non-terminal hyperarcs
is VH−[H] which is included in
{ p ∈ VG | g(p) = n } ∪ { p ∈ VG | g(p) > n ∧ ∃ q (p — q ∧ g(q) < n) }

with the notation p — q for ∃ a, p
a

−→ q ∨ q
a

−→ p.

So any graph regular by some mapping is of bounded degree.
We consider the regularity of the transition graph R·P ∗ of any pushdown au-
tomaton R according to the stack height |U | of any configuration pU where p ∈ Q

is a state and U ∈ P ∗ is a pushdown word. When R is weak then R·P ∗ is regular
by stack height with the grammar reduced to this unique rule:

Zq1. . .qn −→ R ∪ { Z(q1A). . .(qnA) | A ∈ P } for {q1, . . . , qn} = Q.
By synchronisation product of this rule with any finite automaton, we deduce
that any rational restriction of the transition graph of any weak pushdown au-
tomaton is regular by stack height (or by length). This result is extended to any
pushdown automaton.

Proposition 3.2 The rational restrictions of the prefix transition graphs of

labelled word rewriting systems are regular by length.

This proposition has been established for any morphism [Ca 95].
We can now present a geometrical description of the visibly pushdown automata,
and its extension by synchronization with a sequential transducer with integer
output.



4 Visibly pushdown automata

We present the visibly pushdown automata defined in [AM 04] with the main
result (cf. Theorem 4.1), and we consider the regularity of their transition graphs
by stack height.

The visibly pushdown automata are given according to a splitting of the alpha-
bet T of terminals into three disjoint alphabets T-1, T0, T1 to indicate respectively
the letters allowed to pop the topmost stack symbol, to unchange the stack, and
to push a symbol on the stack. A visibly pushdown automaton R is a finite set
of rules of the following form:

pA
a

−→ q or p
b

−→ q or p
c

−→ qA or p⊥
a

−→ q⊥
with p, q ∈ Q, A ∈ P, a ∈ T-1 , b ∈ T0 , c ∈ T1 , where P, Q, {⊥} are disjoint alpha-
bets of respectively pushdown letters, of states and of the bottom of the stack.
The transition graph of R is R·P ∗⊥ and the language L(R·P ∗⊥ , I⊥ , FP ∗⊥)
recognized from a set I ⊆ Q of initial states to a set F ⊆ Q of final states is a
visibly pushdown language.
For instance taking a ∈ T1 , c ∈ T0 , b ∈ T-1 , the language { ancbn | n ≥ 0 } is
a visibly pushdown language and the Lukasiewicz language i.e. the language
L(G, A) generated by the context-free grammar G = {A −→ aAA , A −→ b},
is also a visibly pushdown language. But the language { anban | n ≥ 0 } and
the language L(G, A) generated by the grammar G = {A −→ aAAA , A −→ b}
are not visibly pushdown languages for any partition of T in T-1 , T0 and T1 . So
the visibly pushdown languages are not preserved in general by morphism and
inverse morphism.
Any rational language over T is a visibly pushdown language according to any
partition T = T-1 ∪ T0 ∪ T1 : for any finite T -graph H and any I, F ⊆ VH , the
rational language L(H, I, F ) = L(R·P ∗⊥ , I⊥ , FP ∗⊥) for P = {A} reduced to
a unique pushdown letter A and for the following visibly pushdown automaton:

R = { p
a

−→ qA | p
a

−→
H

q ∧ a ∈ T1 } ∪ { p
a

−→ q | p
a

−→
H

q ∧ a ∈ T0 }

∪ { pA
a

−→ q | p
a

−→
H

q ∧ a ∈ T-1 } ∪ { p⊥
a

−→ q⊥ | p
a

−→
H

q ∧ a ∈ T-1 }.

The family of visibly pushdown languages is an extension of the regular lan-
guages with same basic closure properties.

Theorem 4.1 [AM 04] For any partition of the input letters, the class of

visibly pushdown languages is a subfamily of deterministic real-time context-

free languages, and is an effective boolean algebra closed by concatenation

and its transitive closure.

In particular the universality problem and the inclusion problem are decidable
for the visibly pushdown languages. For any visibly pushdown automaton R and
by discarding the rules p⊥

a
−→ q⊥ (for a ∈ T-1), note that

pU
u

=⇒
R·P∗

qV =⇒ |V | − |U | = |u|T1
− |u|T-1

which implies the following first key point:



|u|T1
− |u|T-1

= |v|T1
− |v|T-1

= |U | for any u, v ∈ L(R·P ∗, I, pU).
A second key point is given by Proposition 3.2 : any rational restriction of R·P ∗

can be generated by a graph grammar S by stack height. We will see that these
two key points are sufficient to establish Theorem 4.1 (without the closure by
concatenation and its transitive closure). These two key points indicate that the
weak form of a visibly pushdown automaton is inessential. We need that the
transition graph G restricted to the configurations accessible from a given set I,
satisfies the property that for every vertex s, any label u of a path from I to s

has the same value |u|T1
− |u|T-1

(first key point) called the weight of s, and that

G is regular by weight (second key point). Note that the weight of a vertex can
be negative which allows to discard the rules of the form p⊥

a
−→ q⊥ . Finally we

will generalize the visibility defined by the partition T = T-1 ∪ T0 ∪ T1 to any
sequential transducer from T ∗ into ZZ.

5 Synchronized pushdown automata

The synchronization of pushdown automata over T is done according to a se-
quential transducer A from T ∗ into ZZ. The synchronization by A is defined for
the regular graphs of bounded degree which are by Theorem 3.1 the rational re-
strictions of the transition graphs of pushdown automata. It is decidable whether
a regular graph is synchronized by A (cf. Proposition 5.4), and the traces of the
graphs synchronized by A form an effective boolean algebra of deterministic real-
time context-free languages containing the rational languages (cf. Theorem 5.8).

We fix a colour i ∈ C to indicate initial vertices.
A sequential transducer (or generalized sequential machine) from the free monoid
T ∗ into the additive monoid ZZ is a finite graph A of label set LA ⊂ T×ZZ and
of colour set CA = {i} such that A is input deterministic:

p
(a,x)
−→

A

q ∧ p
(a,y)
−→

A

r =⇒ x = y ∧ q = r

i p , i q ∈ A =⇒ p = q (a unique state is coloured by i).
A (sequential) transducer A realizes the transduction

L(A, i, VA) = { (u, m) | ∃ s, t, i s ∈ A ∧ s
(u,m)
=⇒

A

t }

of the label set of the paths from the vertex coloured by i to any vertex, for the
operation

(u, m).(v, n) := (uv, m + n) for every u, v ∈ T ∗ and m, n ∈ ZZ.

For instance taking a unique state r, the transducer {i r , r
(a,1)
−→ r , r

(b,−1)
−→ r}

represented in the next figure, realizes { (u , |u|a − |u|b) | u ∈ {a, b}∗ }.
For any (sequential) transducer A, we denote L(A):=Dom(L(A, i, VA)) its first
projection, and we say that A is complete if L(A) = T ∗. For any word u ∈ L(A),
there is a unique integer ‖u ‖

A
called the weight of u in A such that (u, ‖u ‖

A
) ∈

L(A, i, VA).
A transducer A is visible if it has a unique state, is complete and the value of
any arc can be only −1, 0, 1 : |VA| = 1 , LA ⊆ T×{−1, 0, 1} and Dom(LA) = T ;



in that case for any i ∈ {−1, 0, 1}, Ti = { a | (a, i) ∈ LA }.
We say that a graph G is compatible with a transducer A if for any vertex s of
G, there is a path from (a vertex coloured by) i to s and the labels of the paths
from i to s are in L(A) and have the same weight:

∅ 6= L(G, i, s) ⊆ L(A) ∧ u, v ∈ L(G, i, s) =⇒ ‖u ‖
A

= ‖ v ‖
A

;
in that case we denote ‖ s ‖

A
:= ‖u ‖

A
for any u ∈ L(G, i, s). In the next figure,

f

a

b

a

b

a

b

a

b

i i

compatible with (a, 1) (b, −1)

we have a graph G compatible with a visible transducer for T = {a, b} ; note
that L(G, i, f) = { u ∈ T ∗ | |u|a = |u|b } is not a visibly pushdown language.
For G compatible with A and H ⊆ G, H is compatible with A. Let us give
another fact.

Lemma 5.1 For any regular graph G and any transducer A,

GA := { s
(a,x)
−→ t | s

a
−→

G

t ∧ ∃ p, q, p
(a,x)
−→

A

q ∧ i
Dom(L(A,i,p))

=⇒
G

s } ∪
(
G ∩ CVG

)

is a regular graph, and we can decide whether G is compatible with A.

Here are represented by increasing weight two regular graphs of finite degree
which are compatible with the previous visible transducer.
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Their languages L(G, i, f) = { anbn | n ≥ 0 }a∗ and L(H, i, f) = a∗{ bnan | n ≥
0 } give by intersection the language { anbnan | n ≥ 0 } which is not context-free,
hence is not the language between colours of a regular graph. We now discard
the graph H because we cannot generate it by increasing weight: we would need
non-terminal hyperarcs having an infinite number of vertices.
We say that a graph is synchronized by a transducer A if it is compatible with
A and regular by the absolute value of the weight ‖ ‖

A
.

The graph above Lemma 5.1 is generated by increasing weight with the following
grammar:

; ; ;A
f

i
B

B a

b

C a

b

D C a

b

C D a

b

D

(x)(x) (x) (x) (x) (x)

Let us give a graph synchronized by A with the same path labels.



Lemma 5.2 For any transducer A, the following graph:
−→
A := { (p, n)

a
−→ (q, n + x) | p

(a,x)
−→

A

q ∧ n ∈ ZZ } ∪ { i (p, 0) | i p ∈ A }

is synchronized by A and L(G, i, VG) = L(A).

Let us give a simple characterization of the regular graphs which are synchro-
nized. We say that any graph G compatible with a transducer A is finitely com-

patible with A if for every integer n ∈ ZZ, the vertex set { s ∈ VG | ‖ s ‖
A

= n }
is finite. By definition, any synchronized graph by A is regular and finitely com-
patible with A ; the converse is true.

Proposition 5.3 For any transducer A,

G is synchronized by A ⇐⇒ G is regular and finitely compatible with A.

This permits to extend the decidability of Lemma 5.1 to the synchronization
problem.

Proposition 5.4 For any transducer A, we can decide whether a regular

graph G is synchronized by A, and in the affirmative, we can construct a

graph grammar generating G by increasing weight ‖ ‖
A
.

In particular we can decide whether a regular graph is visibly synchronized (we
have only a finite number of visible transducers). We fix another colour f ∈ C

to indicate final vertices. The visibly pushdown languages are extended to any
transducer A : a synchronized language by A is L(G, i, f) for some graph G

synchronized by A. Let us give basic examples of synchronized languages.

Example 5.5 The languages synchronized by a transducer A such that LA ⊆
T×{0} are all the rational languages included in L(A).

Example 5.6 Taking m ≥ 0, the language Lm := L(G, X) generated by the
context-free grammar G = {X −→ aXm , X −→ b} is synchronized by the trans-

ducer A = { i p , p
(a,m−1)
−→ p , p

(b,−1)
−→ p }. This transducer has a unique state, and

it is visible for m = 0 (L0 = {a, b}), for m = 1 (L1 = a∗b) and for m = 2 (L2 is
the Lukasiewicz language). For m > 2, Lm is not a visibly pushdown language.
The language { u ∈ {a, b}∗ | |u|b = (m − 1)|u|a } is also synchronized by A.
More generally for m, n ≥ 0, Lm,n := { u ∈ {a, b}∗ | m |u|a = n |u|b } is a

language synchronized by { i p , p
(a,m)
−→ p , p

(b,−n)
−→ p }.

For m, n > 0, Lm,n is not a visibly pushdown language in the sense of [AM 04].

Example 5.7 The linear language { ucũ | u ∈ {a, b}∗ } for ũ the mirror of u,

is synchronized by { i p , p
(a,1)
−→ p , p

(b,1)
−→ p , , p

(c,0)
−→ q , q

(a,−1)
−→ q , q

(b,−1)
−→ q }. Such

a language cannot be synchronized by an one state transducer: we need several
integers for the labels a and b (here 1 and −1).



We establish effective closure properties of the synchronized languages by A

as for the rational languages: we apply the classical constructions on finite au-
tomata to the graph grammars generating by ‖ ‖

A
. By synchronization product

of
−→
A by any finite automaton, we deduce that any rational language included

in L(A) is synchronized by A. By disjoint union of two graph grammars gener-
ating by ‖ ‖

A
, we deduce that the union of two synchronized languages by A

remains synchronized. By synchronization product of two graph grammars gen-
erating by ‖ ‖

A
, we obtain that the intersection of two synchronized languages

by A remains synchronized. Finally by a determinization of any graph grammar
generating by ‖ ‖

A
, we show that any synchronized language is deterministic

context-free, and its complement with respect to L(A) remains synchronized.

Theorem 5.8 For any transducer A, the class of synchronized languages

contains all the rational languages in L(A), is a subfamily of deterministic

real-time context-free languages, and is an effective boolean algebra with re-

spect to L(A).

This generalization of the visibly pushdown automata has permitted to work
with unrestricted pushdown automata (the synchronization is independent of
the length of the words in the rules), and by allowing any integer and several
states (instead of −1, 0, 1 and a unique state). This paper also indicates that the
deterministic graph grammars can be a powerful tool to investigate properties
of context-free languages.

Thanks to Christof Löding for a survey on the visibly pushdown automata which
has been at the origin of this paper. The first half part of this paper has been
done during a stay in Udine; many thanks to Angelo Montanari for his invitation.
The second half part of this paper has been done during a stay in Aachen; many
thanks to Wolfgang Thomas for his support. Thanks to Arnaud Carayol for his
help in the drafting of this paper.
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