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Abstract. In a preceding paper (Bruyére and Carton, automata on lin-
ear orderings, MFCS’01), automata have been introduced for words in-
dexed by linear orderings. These automata are a generalization of au-
tomata for finite, infinite, bi-infinite and even transfinite words studied
by Biichi. Kleene's theorem has been generalized to these words. We
prove that rational sets of words on countable scattered linear ordering
are closed under complementation using an algebraic approach.

1 Introduction

In his seminal paper [12], Kleene showed that automata on finite words and
regular expressions have the same expressive power. Since then, this result has
been extended to many classes of structures like infinite words [6, 15], bi-infinite
words [10, 16], transfinite words [8, 1], traces, trees, pictures...

In [4], automata accepting linear-ordered structures have been introduced
with corresponding rational expressions. These linear structures include finite
words, infinite, transfinite words and their mirrors. These automata are usual
automata on finite words, extended with limit transitions. A Kleene-like theorem
was proved for words on countable scattered linear orderings. Recall that an
ordering is scattered if it does not contain a dense subordering isomorphic to Q.

For many structures, the class of rational sets is closed under many operations
like substitutions, inverse substitutions and boolean operations. As for boolean
operations, the closure under union and intersection are almost always easy to
get. The closure under complementation is often much more difficult to prove.
This property is important both from the practical and the theoretical point of
view. It means that the class of rational sets forms an effective boolean algebra.
It is used whenever some logic is translated into automata. For instance, in both
proofs of the decidability of the monadic second-order theory of the integers by
Biichi [7] and the decidability of the monadic second-order theory of the infinite
binary tree by Rabin [19], the closure under complementation of automata is the
key property.



In [4], the closure under complementation was left as an open problem. In this
paper, we solve that problem in a positive way. We show that the complement
of a rational set of words on countable scattered linear orderings is also rational.

The classical method to get an automaton for the complement of a set of fi-
nite words accepted by an automaton A4 is through determinization. It is already
non-trivial that the complement of a rational set of infinite words is also rational.
The determinization method cannot be easily extended to infinite words. In his
seminal paper [7], Biichi used another approach based on a congruence on finite
words and Ramsey’s theorem. This method is somehow related to our algebraic
approach. McNaughton extended the determinization method to infinite words
[13] proving that any Biichi automaton is equivalent to a deterministic Muller au-
tomaton. Biichi pushed further this method and extended it to transfinite words
[8]. It is then very complex. In [3], the algebraic approach was used to give an-
other proof of the closure under complementation for transfinite words. In [9],
we have already proved the result for words on countable scattered linear order-
ings of finite ranks. The determinization method cannot be applied because any
automaton is not equivalent to a deterministic one. In that paper, we extended
the method used by Biichi in [7] using an additional induction on the rank. Since
ranks of countable scattered linear orderings range over all countable ordinals,
this approach is not suitable for words on all these orderings. In this paper, we
prove the whole result for all countable scattered linear orderings using an alge-
braic approach. We define a generalization of semigroups, called ¢-semigroups.
We show that, when finite, these ¢-semigroups are equivalent to automata. We
also show that, by analogy with the case of finite words, a canonical ¢-semigroup,
called the syntactic o-semigroup, can be associated with any rational set X. It
has the property of being the smallest o-semigroup recognizing X. A continu-
ation of this paper would be to extend the equivalence between star-free sets,
first order logic and aperiodic semigroups [22,14,2] and also between rational
sets and the monadic second order theory.

Both hypotheses that the orderings are scattered and countable are really
necessary. Biichi already pointed out that rational sets of transfinite words of
length greater that w; (the least non-countable ordinal) are not closed under
complement. It can be proved that the set of words on scattered linear order-
ings is not rational as a subset of words on all linear orderings although its
complement is rational.

Our proof of the complementation closure is effective. Given an automaton A,
it gives another automaton B that accepts words that are not accepted by A. It
gives another proof of the decidability of the equivalence of these automata [5].

This paper is organized as follows. Definitions concerning linear orderings and
rational sets are first recalled in Sections 2 and 3. Then, Section 4 introduces
the algebraic structure of o-semigroup. The proof of equivalence between finite
o-semigroups and automata is sketched in both directions in Sections 5 and 6.
Finally, the syntactic ¢-semigroup corresponding to a rational set is defined in
Section 7.



2 Words on linear orderings

This section recalls basic definitions on linear orderings but the reader is referred
to [21] for a complete introduction. Hausdorft’s characterization of countable
scattered linear orderings is given and words indexed by linear orderings are
introduced.

Let J be a set equipped with an order <. The ordering J is linear if for any j
and k in J, either j < k or k < j. Let A be a finite alphabet. A word = = (a;) e
indexed by a linear ordering J is a function from J to A. J is called the length of
x. For instance w is the length of right-infinite words aga; ... and ( is the length
of bi-infinite words ...a_iagpas... .

2.1 Product of words indexed by linear orderings

For any linear ordering J, we denote by —J the backward linear ordering that
is the set J equipped with the reverse ordering. For instance, —w is the linear
ordering of negative integers.

The sum J + K of two linear orderings is the set J U K equipped with the
ordering < extending the orderings of J and K by setting j < k for any j € J
and k € K. Formally, the sum ) K; is the set of all pairs (k,j) such that

=
k € K, equipped with the ordering defined by (k1,j1) < (k2,j2) if and only if
J1 < j2 oOr (]1 = jo and k1 < ko in Kj1)'

The sum of linear orderings helps to define the products of words. Let J be
a linear ordering and let (z;);cs be words of respective length K for any j € J.
The word ¢ = [] z; obtained by concatenation of the words z; with respect

jed
to the ordering on J is of length L = )~ K. For instance, if for any j € w, we
jeJ
denote by z; = a*’, then z = [] z; is the word z = a*” of length 3 w’ = w®.
JEw JEW
The sequence (z;)jcs of words is called a J-factorization of the word z = [] z;.
jeJ

2.2 Scattered linear orderings

A linear ordering J is dense if for any j and k in J such that j < k, there
exists an element ¢ of J such that j < i < k. It is scattered if it contains no
dense subordering. The ordering w of natural integers and the ordering ¢ of
relative integers are scattered. More generally, ordinals are scattered orderings.
We denote by N the subclass of finite linear orderings, O the class of countable
ordinals and of S the class of countable scattered linear orderings. The following
characterization of scattered orderings is due to Hausdorff.

Theorem 1. [Hausdorff [11]] A countable linear ordering J is scattered if and

only if J belongs to |J V, where the classes V,, are inductively defined by:
acO

1. Vy ={0,1}



2.Vo={Y K; | JeENU{w,—w,(} and K; € |J V3}.

= B<a
where 0 and 1 are respectively the orderings with zero and one element.

In order to simplify the proofs, we use slightly different inductive classes: For
any a € O, the class W, is defined by : W ={>_ K; | J € N and K; € V,}.
j€J

J
The inclusions V, C W, C V,41 hold for any ordinal a thus, using Theorem 1,

scattered linear orderings can be defined from the classes W, by: S = | W,.
acO
The rank of a linear ordering J is the smallest ordinal « such that J € W,. We

denote by A° the set of all words over A indexed by countable scattered linear
orderings.

3 Rational sets of words on linear orderings

Bruyere and Carton have introduced rational expressions and automata for
words indexed by countable scattered linear orderings. They have proved that
a set of words is rational if and only if it is accepted by a finite automaton
extending Kleene’s theorem. This section shortly recalls definitions of rational
operations and automata but the reader is referred to [4] for more details.

3.1 Rational expressions

Let A be a finite alphabet. The set Rat(A°) of rational sets of words over A
indexed by countable scattered linear orderings is the smallest set containing
{a} for any a € A and closed under the following rational operations defined for
any subsets X and Y of A° by :

X+Y={2]2€ XUY}
XY ={z-ylzeX,yeY} X ={ﬁla:,-|neN,xjeX}
J:

X¥ :{‘H leill'j EX} Xv :{'H £Uj|.’ll'j EX}
JEW JjE—w

X#* ={Hzjla€0,z;€e X} X #*={1 z;/a€0,z; € X}
JEa JjE—«

XoY={ II z|JeS\0zeXifjeJandz €Y ifje J*} where
jeJuJ*
J*=J\{(®,7),(J,0)}

The notation J is defined in the next section.

3.2 Automata on linear orderings

An automaton on linear orderings is a classical finite automaton with additional
limit transitions of the form P—sq or g— P where P is a set of states.



Definition 1. An automaton A4 = (Q, A, E, I, F) on linear orderings is defined
by a finite set of states Q, a finite alphabet A, a set of transitions E C (Q x A x
Q)U(P(Q) x Q)U (Q x P(Q)) and initial and final sets of states I C @ and
FCQqQ.

The definition of paths is based on the notion of cut that we explain now: Let
z be a word indexed by an ordering J € §. To any two-factorization = yz of
x, one can associate a partition of J into two intervals (K, L) such that |y| = K
and |z| = L. Such a partition is called a cut of J. The set J = {(K,L)| K UL =
JAVk € K,Vl € L,k <1} is the set of cuts of the ordering J. Then, a path
labelled z is a functlon from the set J into the set of states. As the set J is
naturally equipped with the ordering (K7, L;) < (Ka, Lo) if and only if K; C Ko,
a path labelled by a word of length J is a word over @ of length J.

Let v = (g¢).cj be a word of length J over @, the limit sets of states of ~ at

a given cut ¢ of J are defined by:

limy = {q € Q| Ve < ¢, 3¢’ ¢ <c¢ <cand qg=q.»}
ps

lig_n'y ={q e Q| Ve > c, 3" ec<c <c and g=qr}
C

Definition 2. Let A= (Q, A, E, I, F) be an automaton on linear orderings and
let x = (a;)jes be a word of length J on A. A path v of label x in A is a word

v =(4c).cj of length J over Q such that for any (K,L) € J:

— If there exists | € L such that (K U {l},L\{I}) e J
then d(k,L) i"](KU{l},L\{l}) € E else (Ilh[%— Y= qk,L) € E.

— If there exists k € K such that (K \ {k},LU{k}) € J then
QN Lute) ) € B else quen) = lim v € B.

Thus, if a cut has a predecessor or a successor, usual transitions are used,
otherwise the path uses limit transitions.

As J has the least element (0, J) and the greatest element (.J, §) for any linear
ordering J, a path has always a first and a last state. A word is accepted by an
automata if it is the label of a path leading from an initial state to a final state.
We denote by p == ¢ the existence of a path leading from the state p to the

state ¢ of label x.
It has been proved in [4] that automata and rational expressions have the
same expressive power.

Theorem 2. [}] A set of words indexed by countable scattered linear orderings
is rational if and only if it is accepted by a finite automata.

4 Algebraic characterization of rational sets

A semigroup is a set S equipped with an associative binary product. The semi-
group S in which had been added a neutral element is denoted by S'. An element



' 0— {1}
Q - e 0,1} > 0

Fig. 1. Automaton on linear orderings accepting the set (a~“b)%.

e € S is an idempotent if e = e and the set of idempotents of S is denoted by
E(S). A pair (s,e) € S x S is right linked (respectively left linked) if e € E(S)
and se = s (respectively es = s). Two right linked pairs (s1,e1) and (s2,e3) are
conjugated if there exists a, b € S' such that e; = ab, ex = ba, s1a = s2 and
s2b = s1. The conjugacy relation is an equivalence relation on right linked pairs
[17].

4.1 <¢-semigroups

The product of semigroups is generalized to recognize sets of words indexed
by countable scattered linear orderings. A o-semigroup is a generalization of a
usual semigroup. The product of a sequence indexed by any scattered ordering
is defined.

Definition 3. A o-semigroup is a set S equipped with product 7 : S°—S which
maps any word of countable scattered linear length over S to an element of S.

— for any element s of S, ©(s) = s.

— for any word x over S of countable scattered linear length and for any fac-

torization x = [[ z; where J € S,
Jj€J

n(z) = n(]] (25))

JjEJ
The latter condition is a generalization of associativity.
For instance, the set A° equipped with the concatenation is a ¢-semigroup.

Ezample 1. The set S = {0,1} equipped with the product 7 defined for any
u € S° by m(u) = 0 if u has at least one occurence of the letter 0 and 7(u) =1
otherwise is a ¢-semigroup.

For any two elements s and ¢ of a o-semigroup (5, ), the finite product 7 (st)
is merely denoted by st.

A sub-o-semigroup T of a o-semigroup S is a subset of S closed under product.
A morphism of o-semigroup is an application which preserves the product. A
congruence of ¢o-semigroup is an equivalence relation ~ stable under product: If



sj ~tjforany j € J,then (] s;) ~ (][] t;). The set S/~ is a o-semigroup. A
jed jed

o-semigroup 7T is a quotient of a o-semigroup S if there exists an onto morphism

from S to T'. A o-semigroup T divides S if T' is the quotient of a sub-o-semigroup

of S.

4.2 Finite ¢-semigroups

A o-semigroup (S, 7) is said to be finite if S is finite. Even when S is finite, the
function 7 is not easy to describe because the product of any sequence has to
be given. It turns out that the function 7 can be described using a semigroup
structure on S with two additional functions (called 7 and —7) from S to S.
This gives a finite description of the function . The functions 7 and —7 are the
counterpart of limit transitions of automata. This finite description is based on
the next Lemma which follows directly from Ramsey’s Theorem [20].

Let z = [] x; an w-factorization. Another factorization z = [] y; is called
iCw =
a superfactorization if there is a sequence (k;);c,, of integers such that yo =
To...Thy a0A Y3 = Th;_,41.-- Tk, for all 4 > 1.

Lemma 1. Let ¢ : A°>—S be a morphism into a finite o-semigroup. For any

factorization x = [] z;, there exists a superfactorization x = T y; and a right
€W iCw

linked pair (s,e) € S x E(S) such that ¢(yo) = s and p(y;) = e for any i > 0.
Such a factorization is called a ramseyan factorization, see Theorem 3.2 in [18].

Definition 4. Let S be a semigroup. A function T : S—S (respectively — :
S—S) is compatible to the right with S (respectively to the left) if and only
if for any s, t in S and any integer n the following properties hold: s(ts)™ =
(st)” and (s™)" = s (respectively (st)""s = (ts)™" and (s")"7 =s77).

The product of a finite o-semigroup S can be finitely described by functions
compatible to the right and to the left with S.

Theorem 3. Let (S,m) be a finite o-semigroup. The binary product defined for
any s, t in S by s -t = w(st) naturally endows a structure of semigroup and the
functions T and —7 respectively defined by s™ = w(s¥) and s77 = w(s™¥) are
respectively compatible to the right and to the left with S.

Conversely, let S be a finite semigroup and let T and —1 be functions respectively
compatible to the right and to the left with S. Then S can be uniquely endowed
with a structure of o-semigroup (S, ) such that s™ = w(s¥) and s~ = w(s™%).

The first part of the theorem follows directly from the associativity of the prod-
uct 7. Conversely, let S be a finite semigroup and let 7 and —7 be functions
respectively compatible to the right and to the left with S. The product of a
word = (s;)jes over S of length J € S is defined by induction on a € O for
any J € W, by the following way:

Let J € W and let = € S7. There exists an integer m and sq, ..., sy, in S
such that x = 81 ...8,,. We set 7(x) =81 - S2... 8.



Let J € W, where o > 1 and let € S7. The linear ordering .J can be
decomposed as a sum J = Y K; where I € N U {w,—w} and for all i € I,
i€l
K; € |U Wps. There exists a factorization = [] «; such that for all i € I,
B<Lla i€l
|$i| = Ki-

—J={1,...,m} e N: we set m(z) =7(x1)...7(Tm).
— J = w: There exists a superfactorization x = JT y; and a right linked pair

i€w
(s,e) € S x E(S) such that ¢(yo) = s and ¢(y;) = e for any 1 > 0. We set
m(x) = se”.
— J = —w : Symmetrically to the previous case, we set w(z) = e~ 7s.

Since two linked pairs associated with two factorizations of a word are conjugated
[18], it can be proved by induction on « that 7 is uniquely defined and associative
on S°.

Ezample 2. The o-semigroupe S = {0,1} of Example 1 is defined by the finite
product 00 = 01 = 10 = 0 and 11 = 1 and by the compatible functions 7 and
—7 defined by 07" =0""=0and 1" =17 = 1.

4.3 Recognizability

It is well known that rational sets of finite words are exactly those recognized
by finite semigroups. This result is generalized for words indexed by countable
scattered linear orderings.

Definition 5. Let S and T be two o-semigroups. The o-semigroup T recognizes
a subset X of S if and only if there exists a morphism ¢ : S—T and a subset
P C T such that X = ¢~ 1(P). A set X C A° is recognizable if and only if there
ezists a finite o-semigroup recognizing it.

Ezample 3. The set S = {0,1} equipped with the product 7 defined for any
u € S° by w(u) = 1if u € 1# and 7(u) = 0 otherwise is a o-semigroup. It is also
defined by the finite product 00 = 01 = 10 =0 et 11 = 1 and by the compatible
functions 7 and —7 defined by 0" = 077 = 177 = 0 and 17 = 1. Define the
morphism of o-semigroup ¢ : A°>~—S by ¢(a) = 1 for any a € A. The set A# is
recognizable since A% = ¢~1({1}).

For any finite alphabet A, Rec(A°) denotes the set of subsets of A° recognizable
by a finite ¢-semigroup.

Theorem 4. A set of words indexed by countable scattered linear orderings is
rational iff it is recognizable.

Ezample 4. The set X = (ab)® is recognized by the o-semigroup S = {s, t, €, f,0}
whose product is defined by st = e, ts = f,ee=¢, ff = f,es = s, ft = t,
sf=s,te=t,e" =e,e " =¢, fT =t, f77 = s where any other product is
equal to 0. Defining the morphism ¢ : A° = S by p(a) = s and ¢(b) = t, we get
X =7 e).



If X is recognized by a morphism ¢ : S—T, the set A°\ X is also recognized
by ¢ since A°\ X = ¢~ 1(S\ P). Therefore, we obtain following theorem.

Theorem 5. Rational sets of words on countable scattered linear orderings are
closed under complementation.

Ezample 5. The set X = A* is recognized by the o-semigroup S = {0, 1} whose
product is defined by 11 = 1, 01 = 10 = 00 = 0 and by the compatible functions
0" =077 =17 = 177 = 0. Define the morphism ¢ : A° — S by ¢(a) = 1 for
any a € A. One gets X = ¢~ !(1) and the complement A°\ X = (A°)¥A° +
A°(A°)7% = p7H(0).

The next section is devoted to sketches of proof of Theorem 4.

5 From ¢-semigroups to automata

Let (S,7) be a finite o-semigroup. By Theorem 3, the product = is defined by
compatible functions 7 and —7. Let X be a subset of A°® recognized by S. There
exists a morphism of o-semigroup ¢ : A°—S and a subset P of S such that
X = ¢~ !(P). Since rational sets are closed under finite union, one may suppose
that P is a single element {p}. Let h be the finite substitution which associates to
each element s of S the set ¢~!(s) N A. Since X = h(m~!(p) Np(A4)°), it suffices
to prove that the set m—1(p) of words over S whose product is p, is rational.
Recall that the Green’s relations are defined from the following preorders:

s<pt < Ja€eS,s=ta

s<yt < 3JaeS',s=at

s<gst < Ja,be S, s=ath
For any K € {R, L, T}, sKt if and only if s <x t and ¢t <x s. We also denote
by s <x t iff s <x t and not ¢t <x s. Recall that the equivalence relation
D =RL = LR is equal to J when S is finite.

The proof is by induction on the D-class structure of S. For any D-class D

of S, denote by:

Sp={s€eS|VpeD,s>sp} and Tp={s€ S |Vpe D,s>7p}

We define an automaton on linear orderings accepting words over Sp and
computing the product 7 of its path’s labels in both directions.
Let Ap = (@b, Sp, Ep) be the automaton defined by:

Qp = SH x S}, x B is the set of states where B = {0,1}
Ep = {(s,rt,b)s(sr,t,b') | b€ B,b' = (r € D)}

U {{(Si;ti;bi)}lgiSm—)(sytyb) | be B,Hl < 7 <m, bi =1 ,
N <k<m,Je€ E(D), spe=s,et, =t ,s=sge” and ty = e"t}

U {(S,t, b)—){(si,ti,bi)}lsism | be IB,El]. <i:<m, b; =1 ,
N1 <k<m,Je€ED), spe=s,ety, =ty ,t =€ "t and sp =se "}



The boolean component of Jp allows limit transitions only if the label of the
path admits a ramseyan factorization associated to an idempotent of D. Since
two right linked pairs (s1,e1) and (s2,e2) of a same D-class are conjugated iff
s1Rsy , it can be shown by induction on the rank that Ap computes properly
the product m. The words of S7, admitting ramseyan factorizations associated
to idempotents of J-above D-classes are taken care by a substitution which
is rational by induction. Let D be a D-class of S and let f be the rational
substitution defined by:

f :Sp — Rat(SDO)

7 1(s) if seTp
5 —
{s}UF,UGs ifseD

where for any s € D,

t,e> 75, t,e> 75,

-~ —
teT =s e~ Tt=s

If L, denotes the set of words recognized by the automaton Ap with the initial
state {(1,s,0)} and the final set of states {(s,1,b)| b € B} for any s € Sp, it can
be proved that for any p € D, f(L,) = 7 '(p) using another induction on the
rank.

6 From automata to ¢-semigroups

This proof of the converse is adapted from [3]. Let A = (Q, A, E,I,F) be an

automaton on linear orderings accepting a set X C A°. The content of a path is

the set of states occurring in the path and p == q denotes a path leading from
P

p to g of label z and of content P. Let T = P(Q) be the set of all subsets of
Q@ and K = P(T) be the set of subsets of T. The set K is equipped with the
following product and union:

kk' ={tut' |tek,t'ek'}and k+ Kk =kUK

Let S be the set of all Q x () matrices whose entries are in K with product
defined by:

(m-m')gqy = U Mq,p - m;,q' ={tut' |IpeQ,t €my,, t' € m;,q’}
PEQ

The semigroup S is finite and by Theorem 3, it suffices to define compatible
functions to endow a structure of o-semigroup. Define the function 7 by :

my o ={tU{q'} |3t' Ct,IpeQ,tem] ,t'em]  and t'—q € E}



where 7 is the smallest integer such that m™ is an idempotent matrix. The
function —7 is defined symmetrically and it can be proved that 7 and —7 are
functions respectively compatible on the right and left with S. It remains to
define a morphism ¢ : A°— S recognizing X . For each letter a of A, we define
the matrix m, = ¢(a) corresponding to the edges of A labelled by a: The entry
(g,¢") of m, is equal to {{gq,q'}} if —>>¢' € E or () otherwise. An induction on
the rank would show that for all word x € A°, ¢(x) = m where the matrix m
memorizes the contents of paths labelled by z:

me,qy =1{l] ¢ _—f_> q'}

A word z € A° belongs to X iff ¢(z) has a (i, f)non-empty entry where ¢ and f
are respectively initial and final states. Thus X is recognized by S.

7 Syntactic ¢-semigroup

Let X be a recognizable subset of A°. Among all o-semigroups recognizing X,
there exists one which is minimal in the sense of division. It is called the syntactic
o-semigroup of X and is the first canonical object associated to rational sets on
linear orderings. For any o-semigroup (S, 7) and any set P C S, the equivalence
relation ~p is defined for any s,t in S by s ~p t iff for any integer m:

Vs1,82,...,8m,t1,t2, ..., tm € St ,V01,05,...,0,_1 € {UJ,—UJ}UN,

T(8m (... (sa(s15t1)%t2)%2 .. )0m-1¢, ) € P
<~ 7T(Sm(. .. (SQ(Slttl)altz)oz .. .)om_ltm) eP

The equivalence relation ~p is a congruence of ¢-semigroup. If S finite, then
and the quotient S/~p is an effective o-semigroup.

If X is a recognizable subset of A°, then the quotient A°/~x is finite and
recognizes X.

Proposition 1. Let X be a subset of A°. The set X is recognizable if and only
if the relation ~x s a congruence of o-semigroup of finite index.

For any recognizable subset X of A°, the o-semigroup A°/~x is called the
syntactic semigroup of X and is denoted by S(X). It is the smallest o-semigroup
recognizing X in the sense of division.

Proposition 2. Let X be a recognizable set of A° and let T be a ©-semigroup.
Then T recognizes X if and only if S(X) divides T'.

In particular, for any recognizable set X, the relation ~x is the coarsest con-
gruence such that the quotient A°/~x recognizes X. From Theorem 4 and
Proposition 2, it follows that the syntatic o-semigroup of a rational set is finite.

Theorem 6. A set of words indexed by countable scattered linear orderings is
rational iff its syntactic o-semigroup is finite.
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