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A Basis of Tiling Motifs for GeneratingRepeated Patterns and its Complexity forHigher Quorum?N. Pisanti1, M. Crohemore2;3 ??, R. Grossi1, and M.-F. Sagot4;3 ? ? ?1 Dipartimento di Informatia, Universit�a di Pisa, Italyfpisanti,grossig�di.unipi.it2 Institut Gaspard-Monge, University of Marne-la-Vall�ee, FraneMaxime.Crohemore�univ-mlv.fr3 INRIA Rhône Alpes, Frane Marie-Frane.Sagot�inria.fr4 King's College London, UKAbstrat. We investigate the problem of determining the basis of motifs(a form of repeated patterns with don't ares) in an input string. We givenew upper and lower bounds on the problem, introduing a new notion ofbasis that is provably smaller than (and ontained in) previously de�nedones. Our basis an be omputed in less time and spae, and is still able togenerate the same set of motifs. We also prove that the number of motifsin all these bases grows exponentially with the quorum, the minimalnumber of times a motif must appear. We show that a polynomial-timealgorithm exists only for �xed quorum.1 IntrodutionIdentifying repeated patterns in strings is a omputationally-demanding taskon the large data sets available in omputational biology, data mining, textualdoument proessing, system seurity, and other areas; for instane, see [6℄. Weonsider patterns with don't ares in a given string s of n symbols drawn over analphabet �. The don't are is a speial symbol `Æ' mathing any symbol of �;for example, pattern TÆE mathes both TTE and TEE inside s = COMMITTEE (notethat a pattern annot have a don't are at the beginning or at the end, as thisis not onsidered informative). Contrarily to string mathing with don't ares,the pattern TÆE is not given in advane for searhing s. Instead, the patternswith don't ares appearing in s are unknown and, as suh, have to be disoveredand extrated by proessing s eÆiently. In our example, TÆE and MÆÆTÆE areamong the patterns appearing repeated in COMMITTEE. In this paper we fouson �nding the patterns alled motifs, whih appear at least q times in s for an? The full version of this paper is available in [11℄ as tehnial report TR-03-02.?? Supported by CNRS ation AlBio, NATO S. Prog. PST.CLG.977017, and WellomeTrust Foundation.? ? ? Supported by CNRS-INRIA-INRA-INSERM ation BioInformatique and Well-ome Trust Foundation. 1



input parameter q � 2 alled the quorum. Di�erent formulations in the knownliterature address the problem of deteting motifs in several ontexts, revealingits algorithmi relevane. Unfortunately, the omplexity of the algorithms formotif disovery may easily beome exponential due to the explosive growth ofthe motifs in strings, suh as in the arti�ial string A � � �ATA � � �A (same numberof As on both sides of T) generating many motifs with As intermixed with don'tares, and in other \real" strings over a small alphabet ourring in pratie,e.g., DNA sequenes. Some heuristis try to alleviate this drawbak by reduingthe number of interesting motifs to make feasible any further proessing of them,but they annot guarantee sub-exponential bounds in the worst ase [7℄.In this paper, we explore the algorithmi ideas behind motif disovery whilegetting some insight into their ombinatorial omplexity and their onnetionswith string algorithmis. Given a motif x for a string s of length n, we denote theset of positions on s at whih the ourrenes of x start by Lx� [0: :n�1℄, wherejLxj� q holds for the given quorum q�2. We single out the maximal motifs x,informally haraterized as satisfying jLxj 6= jLyj for any other motif y morespei� than x, i.e., obtained from x by adding don't ares and alphabet lettersor by replaing one or more don't ares with alphabet letters. In other words,x appears in y but x ours in s more times than y does, whih is onsideredinformative for disovering the repetitions in s. For example, MÆÆTÆE is maximalin COMMITTEE for q = 2 while MÆÆÆÆE and TÆE are not maximal sine MÆÆTÆEis more spei� with the same number of ourrenes. Maximality provides anintuitive notion of relevane as eah maximal motif x indiretly represents allnon-maximal motifs z that are less spei� than it. Unfortunately, this prop-erty does not bound signi�antly the number of maximal motifs. For example,A � � �ATA � � �A ontains an exponential number of them for q = 2 (see Setion 2).A further requirement on the maximal motifs is the notion of irredundant motifs([7℄). A maximal motif x is redundant if there exist maximal motifs y1; : : : ; yk 6= xsuh that the set of ourrenes of x satis�es Lx = Ly1 [ : : : [ Lyk ; it is irre-dundant otherwise. The set of ourrenes of a redundant motif an be overedby other sets of ourrenes while that of an irredundant motif is not the unionof the sets of ourrenes of other maximal motifs. The basis of the irredundantmotifs of string s with quorum q is the set of irredundant motifs in s. Informallyspeaking, a basis an generate all the motifs by simple rules and an be ex-pressed mathematially in the algebrai sense of the term. Aording to Paridaet al. [7℄, what makes interesting the irredundant motifs is that their number isalways upper bounded by 3n independently of any hosen q � 2; moreover, theyan be found in O(n3 logn) time by this bound, notwithstanding the possiblyexponential number of maximal motifs that are andidates for the basis.Our results: We study the omplexity of �nding the basis of motifs withnovel algorithms to represent all motifs suintly. We show that, in the worstase, there is an in�nite family of strings for whih the basis ontains 
(n2)irredundant motifs for q = 2 (see Setion 2). This ontradits the upper boundof 3n for any q � 2 given in [7℄ as shown (in the Appendix of [11℄ we give aounterexample to its harging sheme, whih ruially relies on a lemma that2



is not valid). As a result, the bound of O(n3 logn) time in [7℄ for any q doesnot hold sine it relies on the upper bound of 3n, thus leaving open the problemof disovering a basis in polynomial time for any q. We also introdue a newde�nition alled basis of the tiling motifs of string s with quorum q. The onditionfor tiling motifs is stronger than that of irredundany. A maximal motif x is tiledif there exist maximal motifs y1; : : : ; yk 6= x suh that the set of ourrenesof x satis�es Lx = (Ly1 + d1) [ : : : [ (Lyk + dk) for some integers d1; : : : ; dk; itis tiling otherwise. Note that the motifs y1; : : : ; yk are not neessarily distintand the union of their ourrenes is taken after displaing them by d1; : : : ; dk,respetively. Sine a redundant motif is also tiled with d1 = � � � = dk = 0, a tilingmotif is surely irredundant. Hene the basis for the tiling motifs is inluded inthe basis for irredundant motifs while both of them are able to generate the sameset of motifs with mehanial rules. Although the de�nition of tiling motifs isderived from that of irredundant ones, the di�erene is muh more substantialthan it may appear. The basis of tiling motifs is symmetri, namely, the tilingmotifs of es (the string s in reversed order) are the reversed tiling motifs of swhereas the irredundant motifs for strings s and es are apparently unrelated,unlike the entropy and other properties related to the repetitions in strings.Moreover, the number of tiling motifs an be provably upper bounded in theworst ase by n�1 for q = 2 and they our in s for a total of 2n times at most,whereas we demonstrate that there an be 
(n2) irredundant motifs. We givemore details in Setion 3, and we also disuss in the full paper [11℄ how to �ndthe longest motifs with a limited number of don't ares. Finally, in Setion 4,we reveal an exponential dependeny on the quorum q for the number of motifs,both for the basis of irredundant motifs and for the basis of tiling motifs, whihwas unnotied in previous work. We prove that there is an in�nite family ofstrings for whih the basis ontains at least �n�12 �1q�1 � = 
� 12q �n�1q�1�� tiling (hene,irredundant) motifs. Hene, no worst-ase polynomial-time algorithm an existfor �nding the basis with arbitrary values of q � 2. Nonetheless, we an provethat the tiling motifs in our basis are less than �n�1q�1� in number and ourin s a total of q�n�1q�1� times at most. For them there exists a pseudo-polynomialalgorithm taking O �q2�n�1q�1�2� time, whih shows that the tiling motifs an befound in polynomial time if and only if the quorum q satis�es either q = O(1) orq = n �O(1) (the latter is hardly meaningful in pratie). Experimenting withsmall strings exhibits a non-onstant growth of the basis for inreasing valuesof q up to O(log n) but larger values of q are possible in the worst ase. Moreexperimental analysis of the implementation an be found in [11℄. Proofs of allresults an also be found in [11℄.Related work: As previously mentioned, the seminal idea of basis was intro-dued by Parida et al. [7℄. The unpublished manusript [3℄ adopted an identialde�nition of irredundant motifs in the �rst part. Very reently, Apostolio [2℄observed that the O(n3)-time algorithm proposed in the seond part of [3℄ on-tains an impliit de�nition di�erent from that of the �rst part. Namely, in aredundant motif x, the list Lx an be \dedued" from the union of the oth-ers (see also [1℄). Note that no formal spei�ation of this alternative de�nition3



is however expliited. Appliations of the basis of repeated patterns (with justq = 2) to data ompression are desribed in [4℄. Tiling motifs an be employedin this ontext beause of their linear number of ourrenes in total.The idea of the basis was also explored by Pelfrêne et al. [8, 9℄, who introduedthe notion of primitive motifs. They gave two alternative de�nitions laimed tobe equivalent, one de�nition reported in the two-page abstrat aompanyingthe poster and the other in the poster itself. The basis de�ned in the posteris not symmetri and is a superset of the one presented in this paper. On theother hand, the de�nition of primitive motifs given in the two-page abstrat issomehow equivalent to that given in this paper and introdued independently inour tehnial report [10℄. Beause of the lower bounds proved in this paper, thealgorithm in [9℄ is exponential with respet to q.The problem of �nding a polynomial-size basis for higher values of q remainsunsolved.2 Irredundant Motifs: The Basis and its Size for q = 2We onsider strings that are �nite sequenes of letters drawn from an alphabet�, whose elements are also alled solid haraters. We introdue an additionalletter (denoted by Æ and alled don't are) that does not belong to � and mathesany letter. The length of a string t with don't ares, denoted by jtj, is the numberof letters in t, and t[i℄ indiates the letter at position i in t for 0 � i � jtj � 1(hene, t = t[0℄t[1℄ � � � t[jtj � 1℄ also noted t[0 : : jtj � 1℄). A pattern is a string in�[�(�[fÆg)��, that is, it starts and ends with a solid harater. The patternourrenes are related to the spei�ity relation �. For individual haraters�1; �2 2 � [ fÆg, we have �1 � �2 if �1 = Æ or �1 = �2. Relation � extendsto strings in (� [ fÆg)� under the onvention that eah string t is impliitlysurrounded by don't ares, namely, letter t[j℄ is Æ when j < 0 or j � jtj. In thisway, v is more spei� than u (shortly, u � v) if u[j℄ � v[j℄ for any integer j.We also say that u ours at position ` in v if u[j℄ � v[` + j℄, for 0 � j �juj � 1. Equivalently, we say that u mathes v[`℄ � � � v[`+ juj � 1℄. For the inputstring s 2 �� with n = jsj, we onsider the ourrenes of arbitrary patterns xin s. The loation list Lx � [0 : : n� 1℄ denotes the set of all the positions on sat whih x ours. For example, the loation list of x = TÆE in s = COMMITTEEis Lx = f5; 6g.De�nition 1 (motif). Given a parameter q � 2 alled quorum, we say thatpattern x is a motif aording to s and q if jLxj � q.Given any loation list Lx and any integer d, we adopt the notation Lx + d =f`+ d j ` 2 Lxg for indiating the ourrenes in Lx \displaed" by the o�set d.De�nition 2 (maximality). A motif x is maximal if any other motif y suhthat x ours in y satis�es Ly 6= Lx + d for some integer d.Making a maximal motif x more spei� (thus obtaining y) redues the numberof its ourrenes in s. De�nition 2 is equivalent to that in [7℄ stating that x is4



maximal if there exist no other motif y and no integer d � 0 verifying Lx = Ly+d,suh that y[j + d℄ � x[j℄ for 0 � j � jxj � 1.De�nition 3 (irredundant motif). A maximal motif x is irredundant if, forany maximal motifs y1, y2, . . . , yk suh that Lx = [ki=1Lyi , motif x must be oneof the yi's. Vie versa, if all the yi's are di�erent from x, pattern x is said to beovered by motifs yi, y2, . . . , yk.The basis of irredundant motifs for string s is the set of all irredundant motifsin s, useful as a generator for all maximal motifs in s (see [7℄). The size of thebasis is the number of irredundant motifs ontained in it. We now show theexistene of an in�nite family of strings sk (k � 5) for whih there are 
(n2)irredundant motifs in the basis already for quorum q = 2, where n = jskj. In thisway, we disprove the upper bound of 3n whih is based on an inorret lemma(see also [11℄). Eah string sk is the suitable extension of tk = AkTAk, where Akdenotes the letter A repeated k times (our argument works also for zkwzk, wherejzj = jwj and z is a string not sharing any ommon harater with w). String tkhas an exponential number of maximal motifs, inluding those having the formAfA; Ægk�2A with exatly two don't ares. To see why, eah suh motif x oursfour times in tk: spei�ally, two ourrenes of x math the �rst and the last kletters in tk while eah distint don't are in x mathing the letter T in tkontributes to one of the two remaining ourrenes. Extending x or replaing adon't are with a solid harater redues the number of these ourrenes, so x ismaximal. The idea of our proof is to obtain strings sk by pre�xing tk with O(jtk j)symbols to transform the above maximal motifs x into irredundant motifs for sk.Sine there are �(k2) of them, and n = jskj = O(jtk j) = O(k), this leads to theresult. In order to de�ne sk on the alphabet fA; T; u; v; w; x; y; z; a1; a2; : : : ; ak�2g,we introdue a few notations. Let eu be the reversal of u, and let evk; odk; uk; vkbeif k is even : evk = a2a4 � � �ak�2; if k is odd : evk = a2a4 � � �ak�3;odk = a1a3 � � �ak�3; odk = a1a3 � � �ak�2;uk = evk ugevk vw evk; uk = evk uvgevk wx evk;vk = odk xygodk z odk; vk = odk ygodk z odk:The strings sk are then de�ned by sk = ukvktk for k � 5.Lemma 1. The length of ukvk is 3k, and that of sk is n = 5k + 1.Proposition 1. For 1 � p � k� 2, any motif of the form Ap Æ Ak�p�1 with onedon't are annot be maximal in sk. Also motif Ak annot be maximal in sk.Proposition 2. Eah motif of the form AfA; Ægk�2A with exatly two don't aresis irredundant in sk.Theorem 1. The basis for string sk ontains 
(n2) irredundant motifs, wheren = jskj and k � 5. 5



3 Tiling Motifs: The Basis and its PropertiesIn this setion we introdue a natural notion of basis for generating all maximalmotifs ourring in a string s of length n. Analogously to what was done formaximal motifs in De�nition 2, we introdue displaements while de�ning tilingmotifs for this purpose.De�nition 4 (tiling motif). A maximal motif x is tiling if, for any maxi-mal motifs y1, y2, . . . , yk and for any integers d1, d2, . . . , dk suh that Lx =[ki=1(Lyi + di), motif x must be one of the yi's. Vie versa, if all the yi's aredi�erent from x, pattern x is said to be tiled by motifs y1, y2, . . . , yk.The notion of tiling is more seletive than that of irredundany in general. Forexample, in the string s = FABCXFADCYZEADCEADC, motif x1 = AÆC is irredundantbut it is tiled by x2 = FAÆC and x3 = ADC aording to De�nition 4 sine itsloation list, Lx1 = f1; 6; 12; 16g, an be obtained from the union of Lx2 = f0; 5gand Lx3 = f6; 12; 16g with respetive displaements d2 = 1 and d3 = 0. A fairlydiret onsequene of De�nition 4 is that if x is tiled by y1, y2, . . . , yk withassoiated displaements d1, d2, . . . , dk, then x ours at position di in eah yifor 1 � i � k (hene di � 0). Note that the yi's in De�nition 4 are not neessarilydistint and that k > 1 for tiled motifs (it follows from the fat that Lx = Ly1+d1with x 6= y1 would ontradit the maximality of both x and y1). As a result, amaximal motif x ourring exatly q times in s is tiling as it annot be tiled byany other motifs (we need at least two of them, whih is impossible). The basis oftiling motifs is the omplete set of all tiling motifs for s, and the size of the basis isthe number of these motifs. For example, the basis B for FABCXFADCYZEADCEADContains FAÆC, EADC, and ADC as tiling motifs. Although De�nition 4 is derivedfrom that of irredundant motifs given in De�nition 3, the di�erene is muhmore substantial than it may appear. The basis of tiling motifs relies on the fatthat tiling motifs are onsidered as invariant by displaement as for maximality.Consequently, our de�nition of basis is symmetri, that is, eah tiling motif in thebasis for the reverse string es is the reverse of a tiling motif in the basis of s. Thisfollows from the symmetry in De�nition 4 and from the fat that maximality isalso symmetri in De�nition 2. It is a sine qua non ondition for having a notionof basis invariant by the left-to-right or right-to-left order of the symbols in s(like the entropy of s), while this property does not hold for the irredundantmotifs. The basis of tiling motifs has further interesting properties. Later in thissetion, we show that our basis is linear for quorum q = 2 (i.e., its size is atmost n�1) and that the total size of the loation lists for the tiling motifs is lessthan 2n, desribing how to �nd the basis in O(n2 logn log j�j) time. In the fullpaper [11℄, we disuss some appliations suh as generating all maximal motifswith the basis and �nding motifs with a onstraint on the number of don't ares.Given a string s of length n, let B denote its basis of tiling motifs for quo-rum q = 2. Although the number of maximal motifs may be exponential andthe basis of irredundant motifs may be at least quadrati (see Setion 2), weshow that the size of B is always less than n. For this, we introdue an oper-ator � between the symbols of � to de�ne merges, whih are at the heart of6



the properties on B. Given two letters �1; �2 2 � with �1 6= �2, the operatorsatis�es �1 � �2 = Æ and �1 � �1 = �1. The operator applies to any pair ofstrings x; y 2 ��, so that u = x�y satis�es u[j℄ = x[j℄�y[j℄ for all integers j. Amerge is the motif resulting from applying the operator � to s and to its suÆxat position k.De�nition 5 (Merge). For 1 � k � n�1, let sk be the string whose haraterat position i is sk[i℄ = s[i℄ � s[i + k℄. If sk ontains at least one solid hara-ter, Mergek denotes the motif obtained by removing all the leading and trailingdon't ares in sk (i.e., those appearing before the leftmost solid harater andafter the rightmost solid harater).For example, FABCXFADCYZEADCEADChasMerge4 = EADC,Merge5 = FAÆC,Merge6 =Merge10 = ADC and Merge11 = Merge15 = AÆC. The latter is the only merge thatis not a tiling motif.Lemma 2. If Mergek exists, it must be a maximal motif.Lemma 3. For eah tiling motif x in the basis B, there is at least one k forwhih Mergek = x.Theorem 2. Given a string s of length n and the quorum q = 2, let M be theset of Mergek, for 1 � k � n� 1 suh that Mergek exists. The basis B of tilingmotifs for s satis�es B �M, and therefore the size of B is at most n� 1.A simple onsequene of Theorem 2 implies a tight bound on the number oftiling motifs for periodi strings. If s = we for a string w repeated e > 1 times,then s has at most jwj tiling motifs.Corollary 1. The number of tiling motifs for s is � p, the smallest period of s.The bound in Corollary 1 is not valid for irredundant motifs. String s = ATATATATAhas period p = 2 and only one tiling motif ATATATA, while its irredundant motifsare A, ATA, ATATA and ATATATA.We desribe how to ompute the basis B for string s when q = 2. A brute-fore algorithm generating �rst all maximal motifs of s takes exponential timein the worst ase. Theorem 2 plays a ruial role in that we �rst ompute themotifs in M and then disard those being tiled. Sine B �M, what remains isexatly B. To appreiate this approah, it is worth noting that we are left withthe problem of seleting B from n�1 maximal motifs inM at most, rather thanseleting B among all the maximal motifs in s, whih may be exponential innumber. Our simple algorithm takes O(n2 logn log j�j) time and is faster thanprevious (and more ompliated) methods.Step 1. Compute the multiset M0 of merges. Letting sk[i℄ be the leftmost solidharater of string sk in De�nition 5, we de�ne ox = fi; i + kg to be thepositions of the two ourrenes of x whose superposition generates x = Mergek.For k = 1; 2; : : : ; n�1, we ompute string sk in O(n�k) time. If sk ontains somesolid haraters, we ompute x = Mergek and ox in the same time omplexity.As a result, we ompute the multisetM0 of merges in O(n2) time. Eah merge xin M0 is identi�ed by a triplet hi; i+ k; jxji, from whih we an reover the jthsymbol of x in onstant time by simple arithmeti operations and omparisons.7



Step 2. Transform the multiset M0 into the set M of merges. Sine there an betwo or more merges in M0 that are idential and orrespond to the same mergeinM, we put together all idential merges inM0 by performing radix sorting onthe triplets representing them. The total ost of this step is dominated by radixsorting, giving O(n2 log j�j) time. As byprodut, we produe the temporaryloation list Tx = Sx0=x :x02M0 ox0 for eah distint x 2 M thus obtained.Lemma 4. Eah motif x 2 B satis�es Tx = Lx.Step 3. SeletM� �M, whereM� = fx 2M : Tx = Lxg. In order to buildM�,we employ the Fisher-Paterson algorithm based on onvolution [5℄ for stringmathing with don't ares to ompute the whole list of ourrenes Lx for eahmerge x 2 M. Its ost is O((jxj + n) logn log j�j) time for eah merge x. Sinejxj < n and there are at most n� 1 motifs x 2 M, we obtain O(n2 logn log j�j)time to onstrut all lists Lx. We an omputeM� by disarding the merges x 2M suh that Tx 6= Lx in additional O(n2) time.Lemma 5. The set M� satisfy the onditions B �M� and Px2M� jLxj < 2n:The property of M� in Lemma 5 is ruial in that Px2M jLxj = �(n2) whenmany lists ontain �(n) entries. For example, s = An has n� 1 distint merges,eah of the form x = Ai for 1 � i � n� 1, and so jLxj = n� i+ 1. This wouldbe a sharp drawbak in Step 4 when removing tiled motifs as it may turn intoan �(n3) algorithm. Using M� instead, we are guaranteed that Px2M� jLxj =O(n); we may still have some tiled motifs in M�, but their total number ofourrenes is O(n).Step 4. Disard the tiled motifs in M�. We an now hek for tiling motifsin O(n2) time. Given two distint motifs x; y 2 M�, we want to test whetherLx + d � Ly for some integer d and, in that ase, we want to mark the entriesin Ly that are also in Lx+ d. At the end of this task, the lists having all entriesmarked are tiled (see De�nition 4). By removing their orresponding motifs fromM�, we eventually obtain the basis B by Lemma 5. Sine the meaningful valuesof d are equal to the individual entries of Ly, we have only jLy j possible values tohek. For a given value of d, we avoid to merge Lx and Ly in O(jLxj+ jLyj) timeto perform the test, as it would ontribute to a total of �(n3) time. Instead, weexploit the fat that eah list has values ranging from 1 to n, and use a oupleof bit-vetors of size n to perform the above hek in O(jLxj � jLyj) time for allvalues of d. This gives O(PyPx jLxj � jLyj) = O(Py jLyj �Px jLxj) = O(n2)by Lemma 5. We therefore detail how to perform the above hek with Lx andLy in O(jLxj � jLy j) time. We use two bit-vetors V1 and V2 initially set to allzeros. Given y 2 M�, we set V1[i℄ = 1 if i 2 Ly. For eah x 2 M� � fyg andfor eah d 2 Ly, we then perform the following test. If all j 2 Lx + d satisfyV1[j℄ = 1, we set V2[j℄ = 1 for all suh j. Otherwise, we take the next value of d,or the next motif if there are no more values of d, and we repeat the test. Afterexamining all x 2M� �fyg, we hek whether V1[i℄ = V2[i℄ for all i 2 Ly. If so,8



y is tiled as its list is overed by possibly shifted loation lists of other motifs.We then reset the ones in both vetors in O(jLy j) time.Summing up Steps 1{4, the dominant ost is that of Step 3, leading to thefollowing result.Theorem 3. Given an input string s of length n over the alphabet �, the basisof tiling motifs with quorum q = 2 an be omputed in O(n2 logn log j�j) time.The total number of motifs in the basis is less than n, and the total number oftheir ourrenes in s is less than 2n.4 q > 2: Pseudo-Polynomial Bases for Higher QuorumWe now disuss the general ase of quorum q � 2 for �nding the basis of a stringof length n. Di�erently from previous work laiming a polynomial-time algorithmfor any arbitrary value of q, we show in Setion 4 that no suh polynomial-timealgorithm an exist in the worst ase, both for the basis of irredundant motifsand for the basis of tiling motifs. The size of these bases provably dependsexponentially on suitable values of q � 2, i.e., we give a lower bound of 
�n�12 �1q�1 �.In pratie, this size has an exponential growth for inreasing values of q upto O(log n), but larger values of q are theoretially possible in the worst ase.Fixing q = (n� 1)=4+1 in our lower bound, we get a size of 
(2(n�1)=4) motifsin the bases. On the average q = O(logj�j n) by extending the argument afterTheorem 3. We show a further property for the basis of tiling motifs in Setion 4,giving an upper bound of �n�1q�1� on its size with a simple proof. Sine we an�nd an algorithm taking time proportional to the square of that size, we anonlude that a polynomial-time algorithm for �nding the basis of tiling motifsexists in the worst ase if and only if the quorum q satis�es either q = O(1) orq = n�O(1) (the latter ondition is hardly meaningful in pratie).We now show the existene of a family of strings for whih there are at least�n�12 �1q�1 � tiling motifs for a quorum q. Sine a tiling motif is also irredundant,this gives a lower bound for the irredundant motifs to be ombined with that inSetion 2 (the latter lower bound still gives 
(n2) for q � 2). The strings are thistime tk = AkTAk (k � 5) themselves, without the left extension used in the boundof Setion 2. The proof proeeds by exhibiting �k�1q�1� motifs that are maximaland have eah exatly q ourrenes, from whene it follows immediately thatthey are tiling (indeed the remark made after De�nition 4 holds for any q � 2).Proposition 3. For 2 � q � k and 1 � p � k�q+1, any motif Ap Æ fA; Ægk�p�1 ÆApwith exatly q don't ares is tiling (and so irredundant) in tk.Theorem 4. String tk has �n�12 �1q�1 � = 
� 12q �n�1q�1�� tiling (and irredundant) mo-tifs, where n = jtkj and k � 2.We now prove that �n�1q�1� is, instead, an upper bound for the size of a basisof tiling motifs for a string s and quorum q � 2. Let us denote as before suha basis by B. To prove the upper bound, we use again the notion of a mergeexept that it involves q strings. The operator � between the elements of � is9



the same as before. Let k be an array of q � 1 positive values k1; : : : ; kq�1 with1 � ki < kj � n � 1 for all 1 � i < j � q � 1. A merge is the (non empty)pattern that results from applying the operator � to the string s and to s itselfq � 1 times, at eah time shifted by ki positions to the right for 1 � i � q � 1.Lemma 6. If Mergek exists for quorum q, it must be a maximal motif.Lemma 7. For eah tiling motif x in the basis B with quorum q, there is atleast one k for whih Mergek = x.Theorem 5. Given a string s of length n and a quorum q, let M be the set ofMergek, for any of the �n�1q�1� possible hoies of k for whih Mergek exists. Thebasis B of tiling motifs satis�es B �M, and therefore jBj � �n�1q�1�.The tiling motifs in our basis appear in s for a total of q�n�1q�1� times at most.A generalization of the algorithm given in Setion 3 gives a pseudo-polynomialtime omplexity of O �q2�n�1q�1�2�.Referenes1. A. Apostolio. Pattern disovery and the algorithmis of surprise. In NATO ASI onArti�ial Intelligene and Heuristi Methods for Bioinformatis. IOS press, 2003.2. A. Apostolio. Personal ommuniation, May 2003.3. A. Apostolio and L. Parida. Inremental paradigms of motif disovery. unpub-lished, 2002.4. A. Apostolio and L. Parida. Compression and the wheel of fortune. In IEEE DataCompression Conferene (DCC'2003), pages 143{152, 2003.5. M. Fisher and M. Paterson. String mathing and other produts. In R. Karp,editor, SIAM AMS Complexity of Computation, pages 113{125, 1974.6. H. Mannila. Loal and global methods in data mining: basi tehniques and openproblems. In P. et al., editor, International Colloquium on Automata, Languages,and Programming, volume 2380 of LNCS, pages 57{68. Springer-Verlag, 2002.7. L. Parida, I. Rigoutsos, A. Floratos, D. Platt, and Y. Gao. Pattern Disovery onCharater Sets and Real-valued Data: Linear Bound on Irredundant Motifs and Ef-�ient Polynomial Time Algorithm. In SIAM Symposium on Disrete Algorithms,2000.8. J. Pelfrêne, S. Abdedda}�m, and J. Alexandre. Un algorithme d'indexation de motifsapproh�es. In Journ�ee Ouvertes Biologie Informatique Math�ematiques (JOBIM),pages 263{264, 2002.9. J. Pelfrêne, S. Abdedda}�m, and J. Alexandre. Extrating approximare patterns.In Combinatorial Pattern Mathing, 2003. to appear.10. N. Pisanti, M. Crohemore, R. Grossi, and M.-F. Sagot. A basis for repeated motifsin pattern disovery and text mining. Tehnial Report IGM 2002-10, InstitutGaspard-Monge, University of Marne-la-Vall�ee, July 2002.11. N. Pisanti, M. Crohemore, R. Grossi, and M.-F. Sagot. Bases of motifs for generat-ing repeated patterns with don't ares. Tehnial Report TR-03-02, Dipartimentodi Informatia, University of Pisa, January 2003.10


