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Abstract

Motif inference is at the heart of several time-demanding computational tasks,
such as in molecular biology, data mining and identification of structured motifs in
sequences, and in data compression, to name a few. In this scenario, a motif is a pattern
that appears repeated at least a certain number of times (the quorum), to be of interest.
The pattern can be approximated in that some of its characters can be left unspecified
(the don’t cares). Motif inference is not aimed at searching a given pattern but, rather,
at discovering all the possible patterns that appear as motifs in the given input string.
The combinatorial explosion of these patterns makes their discover an exponential-time
computation. For this, the notion of basis has been recently introduced to succinctly
represent all of them within reasonable time and space bounds. The goal of the paper is
to shed light on the state of the art for this emerging field and to add further properties
to what is currently known.

1 Introduction

Motivations and Applications

Pattern inference in the sense of finding regularities in various types of data is a very old
activity which has generated much research in the past. The literature has been vast on the
topic, the interested reader may consult for instance [5] for more details. Most approaches
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have been based on the use of statistics to infer the desired information. Combinatorial
methods have thus been rare. Pattern inference in textual data is a sub-topic that has been
also much explored already. Among the more theoretical work in this area, there has been a
large number of papers on identifying and characterizing periodicity and repeats in a string.
One may consult for instance [7] or [8]. Much of this theoretical work has been concerned
however with exact repeats, unlike the more applied work discussed in [5].

In this paper, we address the problem of pattern inference in strings, with some clear
applications in mind that require working with approximate regularities. We are therefore
interested in finding approximate repeats in a text. We are concerned also with the combi-
natorial type of approaches for detecting such repeats.

The applications we have in mind can be varied. The main one which initially motivated
the work is computational biology. In computational biology, approximate repeats may
correspond to biologically functional units. Such units may represent, for instance, protein-
DNA or protein-RNA binding sites, that is fragments of a molecule of DNA, RNA or protein
that will come into interaction with another macromolecule in order for a function to happen.
The molecular fragment may be seen as a word in a text (the whole molecule) that must be
enough conserved through evolutionary time for the recognition of the two molecules by each
other to take place. The conservation is in general not strict, hence the need to model it by
introducing approximate repeats. Other applications, different from biology, present roughly
the same characteristics. In document duplication and plagiarism for instance, common
contents are detected in a set of documents divided into semantic units such as paragraphs
or pages. It is possible to represent the distinct (stemmed or categorized) words in each
unit by bit vectors as in the vector model used for information retrieval described in [3].
Paragraphs with similar contents are filtered for further processing since they share many
common bits giving rise to approximate patterns in the concatenation of the bit vectors.
In data mining systems [6] also, researchers have realized that discovering repetitions called
“frequent itemsets” are at the heart of the problem of finding association rules. We can use
for this purpose the same approach with bit vectors as above, each bit vector representing
an itemset. The association rules can be based not only upon items appearing together
often enough, but also upon their relation with the items that frequently do not appear (the
latter corresponding to a sort of negative association rule). Motifs with don’t cares are also
useful in system security, where an intrusion is often indicated by a sequence of frequent
operations appearing intermixed with others. Also in this case, we can break the log file of
the operations into units and perform approximate pattern discovery. Finally, very recently,
data compression has also started to use repeated approximate patterns of a special type [2].
These are patterns with don’t cares where a don’t care is a symbol that matches anything.

All of the above examples are some of the best-known formulations that address the
common issue of detecting approximate repeated patterns in several different contexts, thus
revealing the algorithmic relevance of the problem.

Unfortunately, once approximate patterns are considered, the complexity of the algo-
rithms for their discovery may easily become exponential due to the potentially exponential
growth in the number of such patterns that may appear repeated in a string. Consider
for instance the string A · · · ATA · · · A (same number of As on both sides of the letter T). It
contains many repetitions of As intermixed with don’t cares. In general, strings over a small
alphabet, such as some “real-life” occurring ones like DNA sequences, will contain an ex-
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ponential number of repeats. A few heuristics try to alleviate this problem by reducing the
number of interesting repeated patterns they identify to make feasible any further processing
of them, but they often cannot guarantee sub-exponential bounds in the number of repeats
in the worst case [9].

About this paper

In this paper, we describe the algorithmic ideas behind pattern discovery while getting
some insight into their combinatorial complexity. Although more general (and computation-
ally demanding) notions of approximate patterns are possible [4, 16, 17], the discovery and
extraction of patterns with don’t cares is flexible enough for several applications. These are
therefore the types of patterns we shall consider in this paper.

Given a pattern x for a string s of length n, let us denote the set of starting positions of
occurrences of x on s by Lx⊆ [0 . . n−1], and by |Lx| is the number of occurrences of x. We
define a pattern to be a motif when |Lx| ≥ q, that is, the pattern appears at least q times in a
string, where q is called the quorum the pattern must satisfy to be of any interest. We focus
our attention on maximal motifs x, informally characterized as satisfying |Lx| 6= |Ly| for any
other motif y more specific than x, that is, obtained from x by extending x, to the left or
right, with don’t cares and at least one alphabet letter and/or by replacing one or more of the
don’t cares in x with alphabet letters. In other words, x appears in y but x occurs in s more
times than y does, which is considered informative for discovering the repetitions in s. For
example, x = M◦◦T◦E is maximal in COMMITTEE for q=2 (and Lx = {2, 3}) while z1 = M◦◦◦◦E
and z2 = T◦E are not maximal since x is more specific than both of them, and has the same
number of occurrences (Lz1

= Lx and Lz2
= {5, 6}). Maximality is intuitively relevant since

each maximal motif x indirectly represents all non-maximal motifs z that are less specific
than it, namely, such that Lz = Lx + d, where Lx + d denotes the set {i + d | i ∈ Lx} of
occurrences found exactly d positions apart from those in Lx. Unfortunately, this property is
not enough to significantly bound the number of maximal motifs. For example, A · · · ATA · · · A
contains an exponential number of maximal motifs for q = 2 (see Section 2.1).

A further requirement on the maximal motifs relies on eliminating those whose occur-
rences can be derived from the occurrences of other motifs. The motifs selected form a basis
for the maximal motifs, in that they can generate all the other maximal motifs by simple
mechanical rules. They can thus be expressed mathematically in the algebraic sense of the
term. This elegant introduction of a mathematical well-defined concept to the problem of
motif discovery was, to the best of our knowledge, first introduced in the literature by Parida
et al. [9] for applications to molecular biology. It remains unclear what is the upper bound
for the initial basis described in [9] for a quorum of 2. This initial work inspired a number
of others which introduced new definitions of bases of smaller sizes [13] [11] [14] [15] [12]
[2]. The main motivation for this later work was computational biology except for [2] where
the area of application was for data compression. Pisanti et al., started exploring in [14, 15]
the relation between Parida’s initial basis and their own. The main purpose of the current
paper is to explore further this comparison and extend it to the other related work in this
scenario. The paper therefore makes an in-depth comparative exploration of the combinato-
rial properties of the various variants of bases for motifs and of the accompanying algorithms
for identifying such bases. As a result, small differences in some basic definitions can defini-
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tively change the computational complexity of the corresponding bases, in terms of both
time and space bounds. The paper also investigates new directions for possible extensions
of the notion of a basis for some special situations (e.g. when the input is two strings).

The paper is organized as follows. Section 2 contains an overview of all definitions of
a basis of motifs that have appeared in the literature, along with some of their common
properties. Section 3 introduces the notions and other properties that are specific to some
of the definitions. Section 4 shows lower and upper bounds on the size of the various bases
for the special case of quorum q = 2. It also mentions a couple of results that have appeared
in the literature concerning algorithms for computing bases. Section 5 contains some results
that give for any quorum q a characterization of one of the defined bases, called the basis of
tiling motifs, in terms of that for smaller quorum. Section 5 shows also that for increasing
values of the quorum q, a lower bound on the size of all bases grows exponentially. Finally,
Section 6 introduces two possible extensions of the notion of tiling motifs to the case of
motifs common to two input strings, as well as efficient algorithms for computing them.

2 Bases of Motifs

This section contains some basic notions and terminology concerning motifs and lists all the
definitions of a basis of motifs that have appeared in the literature. We detail the differences
among the definitions that lead to different space and time bounds as we shall see in the rest
of the paper. Examples are included in order to make the presentation clear.

The length of a string t is denoted by |t| and the letter at position i of t by t[i]. Therefore,
t = t[0]t[1] · · · t[|t| − 1]. The input string is a word of length n over an alphabet Σ. The
letters of Σ are called solid characters to distinguish them from an additional letter not in Σ
called don’t care and denoted by ◦. A don’t care matches any other letter. The motifs in
the input string correspond to the repetitions with don’t cares that appear in the string.

Definition 1 (Pattern) A pattern is a string in Σ∪Σ(Σ∪{◦})∗Σ, that is, a string on the
alphabet Σ ∪ {◦} that starts and ends with a solid character.

We also define a notion of partial order among elements of the set Σ ∪ {◦} that we later
extend to words.

Definition 2 (Specifity) The specificity relation denoted by � is defined on Σ ∪ {◦} as
follows: σ1 � σ2 if and only if σ1 = σ2 or σ1 = ◦, for σ1, σ2 ∈ Σ ∪ {◦}.

Strings are implicitly padded to the left and to the right with an infinite number of don’t
cares. In other words, for a string t, we consider that t[j] = ◦ for any integer j such that
j < 0 or j ≥ |t|. In this way the relation � extends to strings as well: for any two strings
u, v ∈ (Σ ∪ {◦})∗, we have u � v if and only if u[j] � v[j] for any integer j. We refer to the
condition u � v saying that u is less specific than v.

Definition 3 (Occurrence) Given two strings u, v ∈ (Σ ∪ {◦})∗, we say that u occurs at
position ℓ in v if and only if u[j] � v[j + ℓ] for any integer j.

Given a string s ∈ Σ∗, with |s| = n, we define the motifs as special cases of patterns in s.
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Definition 4 (Motif) For a pattern x, the location list Lx contains the positions of all the
occurrences of x in s. Given a special parameter q ≥ 2, called quorum, we say that pattern x
is a motif (according to s and q) if and only if |Lx| ≥ q.

Example Let s = CACACATACATAC and q = 2. Pattern x1 = CA◦ACATAC is a motif with
occurrence list Lx1

= {0, 4}, and pattern ACA◦A is also a motif with occurrence list {1, 3}.
On the other hand, the pattern T◦CA is not a motif because it occurs only once.

Let us fix from now on the input string s ∈ Σn. We are interested in finding all the motifs
of s, that is, all patterns that appear at least q times in s. Unless differently specified, we
assume that the quorum is q = 2. The problem of finding all the motifs is computationally
difficult, since their number is possibly exponential in the worst case. We therefore define a
few concepts that allow to reduce this quantity, leading to the various notions of bases.

2.1 Maximal Motifs

The first concept we discuss is the maximality of a motif, which is shared by all basis
definitions. Intuitively, a motif x is maximal if no other motif y is more specific than it
(i.e., y has a solid character at a position where x has a don’t care, or it is longer) and
simultaneously has the same occurrences as x, possibly shifted by some positions.

Given a set L of occurrences, we denote by L + d the set {i + d | i ∈ L}, where d is any
given integer (it may be negative).

Definition 5 (Maximality) A motif x is maximal when, for any motif y and integer d
such that Ly = Lx + d, we have that y occurs in x at position d ≥ 0.

Example (continued) Motif x1 = CA◦ACATAC of the previous example is maximal because
if it is extended or if its don’t care symbol is replaced by a solid character, then it loses at
least one of its occurrences. On the contrary, motif CACA◦A with list {0, 2} is not maximal
since it occurs in x2 = CACA◦A◦A◦A which has the same occurrences. Indeed, x2 is maximal
and it is an extension of CACA◦A.

Definition 5 is an equivalent formulation of the one given in [9] and follows from the
examples given there. It is known from [9] that there can still be an exponential number of
maximal motifs in a string. An example is given for quorum q = 2 with the string tk = AkTAk

of length 2k +1 which has a number of maximal motifs exponential in k. This can be shown
by first noticing that any motif of tk can contain only A as a solid character because no motif
containing T can occur twice. Secondly, let us consider, for all 1 ≤ i ≤ k − 2, the set of
motifs Xi with all the motifs of length k containing exactly i don’t cares. Each such motif
occurs i + 2 times in the string, one for each distinct don’t care matching the letter T, and
two occurrences that match the first and the last k letters of tk. Moreover, all these motifs
are maximal. In fact, any extension to the left or to the right would cause the loss of at least
one among the two last occurrences mentioned above. Similarly, any replacement of a don’t
care with an A would cause the loss of one of the remaining i occurrences. Since we have
that |Xi| =

(
k−2

i

)
, and since i ∈ [1, k − 2], then there are

∑k−2
i=1

(
k−2

i

)
= 2k−2 such motifs.

The fact that |tk| = Θ(k) leads to the exponential result.
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2.2 Irredundant Motifs

The first notion of a basis of motifs with don’t cares was given in [9] and further explored
in [10]. It is based on the notion of irredundant motif which we formally introduce in this
section.

Definition 6 (Irredundant motif) A maximal motif x is irredundant if, for any maximal
motifs y1, y2, . . . , yk such that Lx = ∪k

i=1Lyi
, motif x must be one of the yi’s. Vice versa, if

all the yi’s are different from x, pattern x is said to be covered by motifs yi, y2, . . . , yk.

Example (continued) Consider again the string s = CACACATACATAC. Motif x2 =
CACA◦A◦A◦A (which is maximal as we have shown in the previous example) is irredundant
because its occurrence list Lx2

= {0, 2} cannot be built as the union of lists of maximal mo-
tifs different from x2 itself. Likewise, motif x4 = CA◦AC with Lx4

= {0, 4, 8} is irredundant
as well. It is maximal because an extension to the left/right would cause the loss of the left-
most/rightmost occurrence, and its don’t care matches different solid characters in different
occurrences. It is irredundant because occurrences at position 0 and 4 can be covered by x2,
but no maximal motif can cover position 8. On the other hand, the motif x3 = CA◦A with
location list Lx3

= {0, 2, 4, 8} is maximal but it is redundant because Lx3
= Lx2

∪ Lx4
.

In [9], irredundant motifs are suggested as a generator for all repeated motifs in a string.

Definition 7 (BI) Given a string s and a quorum q, the basis of irredundant motifs BI

is the set of all irredundant motifs for s and q. The size of BI is the number of motifs it
contains.

Example (continued) The basis of irredundant motifs BI for the string s of the previous
example has size 7 and it contains the motifs x0 = AC, x1 = CA◦ACATAC, x2 = CACA◦A◦A◦A, x4 =
CA◦AC, x5 = ACA◦A, x6 = A◦A, and x7 = A◦A◦A.

The set BI is a generator for all maximal motifs in s. In [9, 10], an algorithm is shown
which generates all maximal motifs starting from the basis of irredundant motifs. The
procedure is based on an iterative application of a generating operator ⊕ that we define as
follows.

Definition 8 (⊕) Given σ1, σ2 ∈ Σ∪{◦} with σ1 6= σ2, we have σ1⊕σ2 = ◦ and σ1⊕σ1 = σ1.
This operator is extended to two padded strings x, y ∈ Σ∗ with |x| = |y| in the obvious way:
u = x ⊕ y is such that u[i] = x[i] ⊕ y[i] for all integers i between 0 and |x| − 1.

Example (continued) Let us consider again the input string s = CACACATACATAC. We
showed that the motif x3 = CA◦A is redundant because its occurrence list is the union of
those of x2 = CACA◦A◦A◦A and x4 = CA◦AC. Indeed, we have that x3 = CA◦A = CACA◦A◦A◦A⊕
CA◦AC = x2 ⊕ x4.

Notice that the ⊕ operator is such that, if u = x ⊕ y is not the empty word, then
Lu = Lx ∪ Ly. The ⊕ operator is also associative (and commutative) and therefore can be
extended in an obvious way to three or more strings. Observe finally that Definition 8 is
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equivalent to the definition of ⊕ in [10] which states that u = x ⊕ y if u is the most specific
pattern such that u � x, y.

Each redundant maximal motif x can be written as y1 ⊕ y2 ⊕ · · · ⊕ yp where the yi’s are
irredundant motifs (it is enough to choose the yi’s that cover x according to the Definition 6,
possibly iterating the process if these are redundant). Different sets of irredundant motifs
y1, y2, . . . , yp can nevertheless lead to the same x. This makes inefficient the process of
exhaustively generating all motifs from the subset of irredundant ones. For this reason, an
output sensitive algorithm (in the sense of taking time proportional to the size of the output)
is suggested in [10]. The algorithm first builds maximal subsets P of BI , each containing
motifs that start with the same letter and are such that none is less specific than another. It
is shown in [10] that it is not necessary to consider generations involving motifs belonging to
different subsets P as the resulting maximal motifs may be obtained by generations involving
motifs belonging to a same subset. The motifs in each subset are aligned on their first letter.
For each column of the alignment, each letter appearing at least q times in the column leads
to the generation of a new maximal motif.

2.3 Tiling Motifs

In this section, we describe the notion of a basis for motifs introduced in [13] and further
explored in [14, 15].

Definition 9 (Tiling) A maximal motif x is a tiling motif if, for any choice of maximal
motifs y1, y2, . . . , yk and integers d1, d2, . . . , dk such that Lx = ∪k

i=1(Lyi
+ di), there exists

at least one value of i such that yi = x. Otherwise, motif x is a tiled motif and motifs yi,
y2, . . . , yk tile x.

Example (continued) Given s = CACACATACATAC, its motif x5 = ACA◦A with Lx5
=

{1, 3, 7} is maximal, but it is tiled by x1 and x2 (where Lx1
= {0, 4} and Lx2

= {0, 2})
because its occurrence list can be obtained as (Lx1

+ 3) ∪ (Lx2
+ 1). Hence, the motif x5 is

not tiling. On the other hand, motif x1 is tiling.
According to Definition 9, if x is tiled by y1, y2, . . . , yk for given integers d1, d2, . . . , dk,

then k > 1. In fact, for k = 1, the equality Lx = Ly1
+ d1 with x 6= y1 would contradict the

maximality of x or y1. Observe also that the yi’s in Definition 9 are not necessarily distinct.

Definition 10 (BT ) Given a string s and a quorum q, the basis of tiling motifs BT is the
set of all tiling motifs for s and q. The size of BT is the number of these motifs.

Example (continued) The basis BT of tiling motifs for the string s of the previous ex-
ample has size 2 and it contains only the motifs x1 = CA◦ACATAC with Lx1

= {0, 4}, and
x2 = CACA◦A◦A◦A with Lx2

= {0, 2}.
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2.4 Primitive Motifs

In [11, 12], the concept of primitive motifs has been introduced as another possible notion of
basis for repeated motifs with don’t cares. Both in [11] and in [12], two different definitions
have been proposed and claimed to be equivalent. The first definition is the following.

Definition 11 (Primitive) A maximal motif x is primitive if and only if there are no
motifs yi (not necessarily maximal) with yi 6= x for 1 ≤ i ≤ k, such that Lx = ∪k

i=1Lyi
.

In other words, the patterns that are candidate to cover x do not need to be maximal, but
they have to occur at least q times. Hence, any right extension of x, or any motif obtained
from x by replacing a don’t care with a letter is a candidate for the set of yi’s of Definition 11,
provided it has at least q occurrences. Although not explicitely stated in [11, 12] (but clearly
meant according to the examples that follow the definition of primitive motif in the paper1),
it should be further required that the yi’s in Definition 11 do not occur in x, otherwise many
motifs would be discarded because they are covered, for instance, by their prefixes occurring
as many times as the motif itself (which is in contrast with the requirement of maximality).

The second definition given in [11, 12] is claimed to be equivalent to the first one; rather,
it is identical to the definition of tiling motifs (and produced independently). Definition 11
leads to a superset of the set of tiling motifs. Indeed, the fact of not allowing for shifts when
trying to cover x (and thus to discard it), leads to keep more motifs than in the case of tiling
motifs, as shown in the following example.

Example (continued) Let us consider again the input string s = CACACATACATAC with
q = 2, and the motif x0 = AC with Lx0

= {1, 3, 7, 11}. We have that x0 is maximal
because any extension to the right loses the rightmost occurrence, no one-letter extension
to the left can be made with a solid character, and longer left extensions would lose the
leftmost occurrence. Using the definition of tiling motifs, x0 is discarded due to motifs
x1 = CA◦ACATAC and x2 = CACA◦A◦A◦A with, respectively, Lx1

= {0, 4} and Lx2
= {0, 2},

because Lx0
= (Lx1

+ 7) ∪ (Lx2
+ 1). On the other hand, using Definition 11, no motif

occurring at least twice can cover the occurrence at position 11 without a shift. Indeed, the
only candidate different from x0 itself is y = A, but the occurrence list of y is a superset of
that of x0. Hence x0 is primitive but not tiling in s. Notice also that x0 is irredundant.

Observe that the set of motifs that are primitive (according to Definition 11) and not
tiling contains at least all irredundant motifs x such that x occurs as a suffix of the input
string. Indeed, in such cases, no motif different from x itself or occurring in it can cover the
rightmost occurrence of x.

Definition 12 (BP ) Given a string s and a quorum q, the basis of primitive motifs BP is
the set of all primitive motifs for s and q according to Definition 11. The size of BP is the
number of motifs in BP .

1In [12], page 331, x = AAAA◦◦AAAA is listed among the primitive motifs with q = 2 of AAAAAXAAAAA while,
according to Definition 11, it is covered, for instance, by AAAA◦◦AAA and AAAA◦◦AA that occur at the same
positions as x.
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Example (continued) The basis BP of the string s = CACACATACATAC has size 3 and
contains the motifs x0 = AC with Lx0

= {1, 3, 7, 11}, x1 = CA◦ACATAC with Lx1
= {0, 4}, and

x2 = CACA◦A◦A◦A with Lx2
= {0, 2}.

In the examples above we have shown an instance for which BT ( BP ( BI . In the
Section 3 we will prove that these proper inclusions are valid in general.

2.5 Properties shared by all bases

In all definitions of a basis, a maximal motif x not in the basis is discarded by other motifs
y1, . . . , yk distinct from x, each one occurring stricly less than |Lx| times. As a consequence,
if x is a maximal motif that occurs exactly q times, then there exist no set of maximal motifs
distinct from x that can cover or tile it because they should be motifs with strictly less than
q occurrences and this would contradict tha fact that they are maximal. All maximal motifs
occurring exactly q times belong therefore to all bases.

When, instead, a motif x is covered or tiles by others, say y1, . . . , yk, then we must have
by definition that Lyi

is a proper subset of Lx for 1 ≤ i ≤ k if x is covered, and Lyi
is a

proper subset of (Lx − di) if x is tiled. Observe that in both cases, we have that x occurs in
each one of the yi’s; this happens at position 0 of each yi if x is redundant or non primitive,
and at position di if it is tiled. In fact, a motif x is only tiled or covered by motifs that are
more specific than it, and thus x occurs in each one of them.

Finally, in all definitions of a basis, we have that if the quorum is set to q = 1, then the
input string itself is a maximal motif and it is the only maximal motif occurring exactly q
times. In the case of tiling motifs, this single motif coincides also with the basis.

As we mentioned in Section 2.2, it is shown in [9, 10] that the set of irredundant motifs
is enough to generate all maximal motifs. Basically, the reason is that the operation of
eliminating a redundant motif can be easily reversed by means of the ⊕ operator. Indeed,
the generating operator maps two or more patterns whose occurrences overlap into a pattern
that is less specific than any of the initial patterns and whose occurrences is the union of all
their occurrences.

It is intuitive to see that the ⊕ operator can be extended to allow a shift between the
two input words in order to reverse also the operation of eliminating a tiled motif.

Definition 13 (⊕h) Given h and x, y ∈ (Σ∪◦)∗ we define u = x⊕hy by u[i] = x[i+h]⊕y[i]
for all integers i between 0 and |x| − h.

In practice, this is the same as performing the operation ⊕ between x, and y shifted by
h positions to the right.

Example (continued) Let us consider the usual input string and the motif x0 which is
tiled by x1 and x2 as Lx0

= (Lx1
+ 7) ∪ (Lx2

+ 1). We have that x1 ⊕6 x2 = CA◦ACATAC⊕6

CACA◦A◦A◦A = TAC ⊕ CACA◦A◦A◦AAC = x0. The shift h = 6 was chosen because 6 = 7 − 1
where 7 and 1 are the respective shifts applied to Lx1

and to Lx2
in order to obtain Lx0

and
thus to tile x0.

9



In [10] an output sensitive algorithm is described which generates all maximal motifs
starting from the basis of irredundant motifs (see Section 2.2). A similar approach applied
to the basis of tiling motifs that replaces the ⊕ operator with its shifted version for all shifts
would result in a method that generates all maximal motifs starting from such the basis.
Making it also output sensitive is a less trivial extension because applying the ⊕ operator
with different shifts to different pairs of tiling motifs may result in the same maximal (tiled)
motif.

In either case however, we believe that actual applications based on the notion of a basis
should not lead to a blind generation of all maximal motifs. Indeed, this would go against
the motivation behind the whole idea of a basis of motifs. The generation of useful motifs
should be driven by the specific application and should be applied on suitable subsets of the
basis only. What is important is that, in theory, both bases are enough powerful to generate
all motifs.

3 Differences among the bases

A remarkable difference between the bases is that the basis of tiling motifs BT is symmetric.
That is, each tiling motif in the basis for the reverse string s̃ is the reverse of a tiling motif
in the basis of s. This follows directly from the definition of tiling motifs and from the fact
that maximality is also a symmetric notion. Symmetry is a desirable property for a basis.
It does not hold for the bases BI and BP of, respectively, irredundant and primitive motifs.
Intuitively, the reason is that a motif x may be eliminated by other motifs only if the starting
positions of such motifs coincide with those of x, while the ending position may differ. When
the string and the motifs (maximal or not) are reversed, the former ending positions become
starting positions and they might no longer coincide.

Example (continued) Let us consider again the string s = CACACATACATAC and the ir-
redundant (but not tiling) motif x6 = A◦A for s. In the string s̃ = CATACATACACAC we have
that the motif x̃6 = x6 is not irredundant because it is eliminated, for example, by A◦AC = x̃3

and A◦A◦A◦ACAC = x̃2. Indeed, Lfx6
= {1, 3, 5, 7, 9} = {1, 5, 7, 9}∪ {1, 3} = Lfx3

∪Lfx2
. Notice

that motif x3 is also maximal in s as well as its reverse in s̃ (the notion of maximality is
symmetric), but x3 is redundant in s while its reverse is irredundant in s̃. Similarly, motif
x̃0 = CA is not primitive in s̃, while x0 is primitive in s as shown in Section 2.4. Indeed, in s̃
we have that x̃0 with Lfx0

= {0, 4, 8, 10} is covered, for example, by the two motifs CAC with
LCAC = {8, 10} and CAT with LCAT = {0, 4}.

We now show some results concerning set inclusions among the three bases. Before that,
we need the following definition.

Definition 14 (Maximal Extension) Given a string s and a motif y, the maximal ex-
tension of y is the motif y obtained by, as much as possible, extending y and replacing its
don’t cares with letters, so long as no occurrence is lost.

Observe that for any y, the extension y is unique and that we always have that y is a
maximal motif with that Ly + d = Ly for some d ≥ 0.

10



Example (continued) In string s = CACACATACATAC, the maximal extension of the motif
y = TAC (with Ly = {6, 10}) is y = CA◦ACATAC (with Ly = {0, 4}).

We are now ready to prove the following results.

Lemma 1 For any input string s and for any quorum q, we have that BT ⊆ BP . Moreover,
there exist instances for which BT ( BP .

Proof : In order to show that BT ⊆ BP , it is sufficient to show that for any x 6∈ BP we
have that x 6∈ BT . Let x 6∈ BP . This means that there exist k motifs y1, y2, . . . , yk with
k > 1 and yi 6= x such that Lx = ∪k

i=1Lyi
. They are not necessarily maximal, hence let us

consider y1, y2, . . . , yk that are, respectively, the maximal extensions of y1, y2, . . . , yk. The
yi’s are maximal and none of them is equal to x because none of the yi’s occurred in x.
Moreover, for each 1 ≤ i ≤ k we have that Lyi

+ di = Lyi
for some di ≥ 0, and thus

Lx = ∪k
i=1Lyi

= ∪k
i=1(Lyi

+ di), meaning that the yi’s tile x. This proves that x 6∈ BT .
Finally, the string s = CACACATACATAC of the previous examples is such that BP \ BT =

{x0} 6= ∅. ⊲⊳

The following result is proved in [12].

Lemma 2 For any input string s and for any quorum q, we have that BP ⊆ BI . Moreover,
there are instances for which BP ( BI .

Proof : As for the previous lemma, it is enough to show that for each x 6∈ BI we have
that x 6∈ BP . To this purpose, it is sufficient to show that the yi’s that cover x according
to Definition 6 are maximal motifs and thus, in particular, they are motifs that cover x
according to Definition 11 as well.

Finally, in the string s of the proof of Lemma 1, we have BI\BP = {x4, x5, x6, x7} 6= ∅. ⊲⊳

Summing up, we proved the following general result.

Theorem 1 In general, BT ⊆ BP ⊆ BI ; there are strings for which BT ( BP ( BI .

The difference in the asymptotic sizes of the bases with respect to the length of the input
string is an important issue that is addressed in Section 4 for q = 2 and in Section 5.2 for
q > 2.

4 On the size of the bases if q = 2 and their construction

In this section we show that the different definitions for the bases lead to a hierarchy of
space bounds, which enforces the condition BT ( BP ( BI stated in Theorem 1, for an input
string of length n and quorum q = 2. We demonstrate in Section 4.1 that the size of BT is
O(n). In Section 4.2, we show that the size of BP is between Ω(n) and O(n2), while we show
in Section 4.3 that the size of BI is Ω(n2).
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4.1 Tiling motifs

We define in this section a set of strings that are obtained by applying the ⊕ operation to
the input string and all its possible shifts. We also give a characterization of tiling motifs in
terms of these strings that leads to a linear upper bound for the number of tiling motifs.

Definition 15 (Merge) Let Mergek = s ⊕k s for 1 ≤ k ≤ |s| − 1.

In other words, given a string s ∈ Σ∗ (recall that strings are padded to the left and right
with an infinite number of don’t cares), Mergek is the result of the application of the ⊕
operation to the string s with s itself shifted k positions to the right.

Example (continued) Let us consider again the string s = CACACATACATAC. The non
empty merges are Merge2 = CACA◦A◦A◦A, Merge4 = CA◦ACATAC, Merge6 = ACA◦A, Merge8 =
CA◦AC, and Merge10 = AC.

We can observe that if q = 2 then each motif y occurs in at least one merge. In fact, it is
enough to consider Merge |j−i| for i, j ∈ Ly with i 6= j. More precisely, each pattern y occurs(
Ly

2

)
times in the merges, possibly having multiple occurrences in some of them. In fact, y

has an occurrence in Merge |j−i| for each pair i, j ∈ Ly with i 6= j. Moreover, in [13, 14], the
following lemmas are proved (and thus the proof is omitted here).

Lemma 3 Any Mergek of length at least one is a maximal motif.

Lemma 4 Each tiling motif of a string s with q = 2 is equal to Mergek for some integer k
between 1 and n − 1.

As a direct consequence of Lemmas 3 and 4, we have the following two results.

Theorem 2 Given a string s and q = 2, BT ⊆ {Mergek | 1 ≤ k ≤ n − 1}.

Corollary 1 (Linearity of BT ) The number of elements in BT of a string s of length n is
at most n − 1.

Example (continued) Among the merges listed in the previous example, we have that
Merge1 and Merge2 coincide with, respectively, x2 and x1, which are precisely the only tiling
motifs of s. The other merges are all maximal but tiled.

In [15], an O(n2 log n log |Σ|) time complexity (and linear space) algorithm is given for the
computation of the basis of tiling motifs. The algorithm is strongly based on the property
of tiling motifs stated in Theorem 2. The algorithm is sketched as follows.

• The multiset M′ of the n − 1 merges is computed. For each Mergek, compute the
occurrences list Tk = {δ, δ + k} where s[δ] = s[δ + k] is the first solid character of
Mergek (done in O(n2) time).
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• The multiset M′ is transformed into the set M by removing duplicates and possibly
joining the lists T (takes O(n2 log |Σ|) time).

• The complete occurrence lists L of the merges are computed and the merges such that
L 6= T are discarded2 (done in O(n2 log n log |Σ|) time).

• The remaining merges have a total number of occurrences that is linear in |s|, which
allows to efficiently discard all remaining tiled motifs, if any (in O(n2) time).

More details about the algorithm can be found in [13, 14, 15].

4.2 Primitive motifs

The analog of Theorem 2 does not hold for BP as the following counter-example shows.

Example Let us consider the string s′ = CACACATACACAC, quorum q = 2, and motif
x′

0 = AC with Lx′

0
= {1, 3, 7, 9, 11}. We have that x′

0 is maximal because a right extension
would cause the loss of the rightmost occurrence, a left extension with a C would cause
the loss of the occurrence at position 7, and any longer left extension would exclude the
leftmost occurrence. Moreover, x′

0 is primitive because no motif different from x′
0 itself

can cover the occurrence at position 11. The merges of s′ are Merge2 = CACA◦A◦ACAC,
Merge4 = CA◦ACA◦AC, Merge6 = ACACA, Merge8 = CACAC, Merge10 = CAC, and Merge12 = C.
The primitive motif x′

0 is not equal to any of the merges, although it is the suffix of several
of them.

In order to understand the differences illustrated in the example, we give a characteriza-
tion of the motifs in BP \BT , which allows to obtain an upper bound on the size of such set,
and hence on the size of BP for q = 2.

Lemma 5 (BP \ BT ) ⊂ {x′ | x′ is a suffix of x ∈ BT}.

Proof : Let x ∈ (BP \ BT ). Since x is tiled, there must exist tiling motifs y1, y2, . . . , yk and
integers d1, d2, . . . , dk such that Lx = ∪k

i=1(Lyi
+ di) and yi 6= x for each 1 ≤ i ≤ k. Let us

now consider, for each 1 ≤ i ≤ k, the pattern y′
i that is the suffix of yi starting at position

di. The patterns y′
1, y

′
2, . . . , y

′
k have the following properties:

• They start with a solid character. The reason for this is that the yi’s tile x with shifts
di’s. Their positions yi[di] thus coincide with the first letter of x which is the same in
all occurrences. Since the yi’s are maximal, we have that yi[di] = x[0] ∈ Σ.

• They occur at least q times because they are suffixes of motifs.

• We have that Lx = ∪k
i=1Ly′

i
because Ly′

i
= Lyi

+di. In fact, we have that (Lyi
+di) ⊆ Ly′

i

because y′
i occurs at position di of yi and thus that Lx ⊆ ∪k

i=1Ly′

i
. Moreover, we have

that x occurs in each y′
i and thus that ∪k

i=1Ly′

i
⊆ Lx.

2Correctness of this step is guaranteed by a result proved in [13] stating that for all tiling motifs the lists
L and T must coincide.

13



Hence, if y′
1, y

′
2, . . . , y

′
k do not cover x (which is primitive), it must be because at least one

of them is equal to x, which means that x is a suffix of the tiling motif yi. ⊲⊳

It is worth observing that the primitive motif x′
0 of the last example meets the character-

ization of Lemma 5 because it is a suffix of Merge2,Merge4,Merge6,Merge8 which are tiling
motifs for s′. We can now state the following result concerning the size of BP if q = 2.

Theorem 3 The number of elements in BP of a string s of length n with q = 2 is O(n2).

Proof : This is a direct consequence of the fact that |BT | = O(n) and that |BP \BT | = O(n2)
since there are at most O(n2) suffixes of motifs in BT if q = 2. ⊲⊳

Observe that the quadratic upper bound of Theorem 3 may not be tight and thus the
size of BP can still be linear if q = 2, although it is not a subset of the set of the merges.

Finally, an O(|Σ|n2 log2 n log log n) time complexity algorithm for the computation of the
set of primitive motifs if q = 2 is described in [12]. The idea of the algorithm is also to first
compute a superset of the basis, and then to check for the primitive property. However, it
is not clear for which one of the two definitions (primitive or tiling motifs) given in [12] the
algorithm is designed. Furthermore, the paper assumes that there is at most a linear number
of primitive motifs for q = 2.

4.3 Irredundant motifs

In this section, we show a quadratic lower bound for the number of irredundant motifs.
We can already observe that the set of irredundant motifs is not a subset of the merges,
even though each irredundant motif necessarily occurs in at least one merge. Indeed, any
irredundant motif x must occur in Mergek for k = j − i with i, j ∈ Lx and i < j.

Example (continued) In the string s = CACACATACATAC, the merges are Merge2 =
CACA◦A◦A◦A, Merge4 = CA◦ACATAC, Merge6 = ACA◦A, Merge8 = CA◦AC, and Merge10 =
AC. The irredundant motifs are x0 = AC = Merge10, x1 = CA◦ACATAC = Merge4, x2 =
CACA◦A◦A◦A = Merge2, x4 = CA◦AC = Merge8, x5 = ACA◦A = Merge6, x6 = A◦A which
occurs in Merge2, Merge4, Merge6, and Merge8 but is not equal to any of them, and finally
x7 = A◦A◦A which occurs in (but is different from) Merge2.

Hence, the n− 1 upper bound cannot hold for irredundant motifs. We now show that no
linear upper bound holds either because there exists an infinite family of strings, introduced
in [14], for which there are Ω(n2) irredundant motifs in the basis for quorum q = 2, where
n is the length of the input string. Such strings are denoted by sk. Each one of them (for
any positive integer value of k) is an extension of tk = AkTAk, where Ak denotes the letter A
repeated k times. String tk has an exponential number of maximal motifs, including those
having the form A{A, ◦}k−2A with exactly two don’t cares. The reason is that each such
motif, let us call it x, occurs four times in tk: two occurrences of x match the first and the
last k letters in tk while each distinct don’t care in x matching the letter T in tk contributes
to one of the two remaining occurrences. Extending x or replacing a don’t care with a solid
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character reduces the number of these occurrences, so x is maximal. However, each motif x
is covered in tk and hence it is redundant. String sk is obtained by prefixing tk with O(|tk|)
symbols so that each motif x becomes irredundant in sk. Since there are Ω(k2) of them, and
n = |sk| = Θ(|tk|) = Θ(k), this leads to the quadratic lower bound for irredundant motifs.

In order to define the string sk on the alphabet Σ = {A, T, u, v, w, x, y, z, a1, a2, . . . , ak−2},
we introduce a few notations. Let ũ denote the reversal of u, and let evk, odk, uk, vk be the
strings defined as follows:

if k is even : evk = a2a4 · · · ak−2, if k is odd : evk = a2a4 · · · ak−3,
odk = a1a3 · · · ak−3, odk = a1a3 · · · ak−2,
uk = evk u ẽvk vw evk, uk = evk uv ẽvk wx evk,

vk = odk xy õdk z odk, vk = odk y õdk z odk.

The strings sk are then defined by sk = ukvktk for k ≥ 5. For example, denoting letter
ai with the number i, we have that s7 = 24uv42wx24135y531z135AAAAAAATAAAAAAA.

Whatever the parity of k is, the string sk has size n = Θ(k). Moreover, in [14] the
following result is proved.

Proposition 1 Each motif of the form A{A, ◦}k−2A with exactly two don’t cares is irredun-
dant in sk.

By Proposition 1, the number of irredundant motifs in sk is at least
(

k−2
2

)
= Ω(k2), that

is the number of choices of two positions in {A, ◦}k−2. Since we observed that n = O(k),
then we have that the basis of irredundant motifs for string sk contains Ω(n2) irredundant
motifs. All the details of the proof of this lower bound can be found in [14].

The construction of the basis for the irredundant motifs given in [1] is incremental and
requires O(n3) time for an input string s of length n. Let Bi denote the basis of irredundant
motifs for the suffix si = s[i]s[i + 1] · · · s[n − 1] of the input string. The base step is Bn−1,
which is simple to build. The inductive step computes Bi having already computed Bi+1.
The final outcome is then B0, which is the basis of irredundant motifs for s.

In order to illustrate the inductive step, we may figure out an n × n matrix M , whose
rows and columns are numbered from 0 to n − 1. Row i and column i are associated with
symbol s[i], so that M [i, j] = s[i] ⊕ s[j]. Only the entries for which i < j are filled, so that
M is an upper triangular matrix.

The diagonals of M restricted to its rows and columns numbered from i to n−1 contribute
to the construction of Bi. In particular, to obtain Bi from Bi+1, two steps are run adding
row i and column i to M :

• Find: Build B̂, which is the set of the motifs in Bi+1 that occur also in position i, plus
those occurring in i but not contained in Bi+1.

• Discard: Eliminate the redundant motifs in B̂ ∪ Bi+1, thus obtaining Bi.

Several properties are exhibited in [1] to show that the two steps take each O(n2) time, for
a total of O(n3) time. We refer the reader to that paper for more details.
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5 Increasing the quorum

We now indicate some properties related to the computation of a basis for a string s when
the quorum q is higher than 2. We start by observing some properties of maximal motifs
related to the quorum.

Definition 16 (Max q) Given a string s, let Max q be the set of maximal motifs for a quorum
q (with q ≥ 2).

We start by proving the following result.

Lemma 6 Given a string s, we have that Max q′ ⊆ Max q for all 2 ≤ q < q′.

Proof : Let x ∈ Max q′ . Suppose x /∈ Max q. This implies there exists y ∈ Max q with
Ly = Lx + d and y does not occur in x. Therefore, x occurs in y (consequently, d ≤ 0).
Motif y has thus the same number of occurrences as x (this number is at least q′) and is
more specific than it, which contradicts the hypothesis that x ∈ Max q′ . ⊲⊳

Lemma 6 applied to increasing values of the quorum suggests that for each string s ∈ Σn,
there exists q0 with 2 ≤ qo ≤ n such that, for q > q0, we have Max q = ∅, and thus also all
the bases eventually collapse to the empty set when the quorum reaches the threshold q0.
The value of q0 is indeed the number of occurrences of the most frequent symbol appearing
in the input string. In general, it can be as large as n, as is the case for s = An where
{A} = Maxn = BT = BP = BI with q = n. Interesting values of q are those for which this is
not yet the case and in the next section we investigate some properties of the basis of tiling
motifs with quorum q > 2 with respect to the bases with smaller quorums.

5.1 Generating Bq+1 from Bq for tiling motifs

In this section, we show some properties of the basis of tiling motifs for growing values of
the quorum. Related results have been independently observed also in [12] for primitive
motifs. In what follows, the results are proved for tiling motifs, thus in this section B will
mean BT omitting the subscript T , which we replace with the value of the quorum q. When
appropriate, we shall mention also whether the property holds for the other bases.

Definition 17 (Bq) Given a string s and quorum q, let Bq ⊆ Max q be the set of tiling motifs
with quorum q (with q ≥ 2).

We start by defining an useful notation.

Definition 18 (B=
q ,B>

q ) Let B=
q = {x ∈ Bq | |Lx| = q} ⊆ Bq be the set of motifs in Bq

that occur exactly q times. In a similar way, we denote by B>
q = {x ∈ Bq | |Lx| > q} ⊆ Bq

the set of motifs in Bq that occur strictly more than q times. Clearly B=
q ∪ B>

q = Bq and
B=

q ∩ B>
q = ∅.
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We now prove a collection of properties that result in a characterization of the motifs in
Bq+1 in terms of those in Bq.

The following result also holds for primitive ([12]) and irredundant motifs (the proof can
be extended in a straightforward way).

Lemma 7 For all q ≥ 2, any motif x ∈ B>
q belongs also to Bq′ for q < q′ ≤ |Lx|.

Proof : If x is in B>
q , then it is maximal and, since it occurs at least q′ times for q < q′ ≤ |Lx|,

then x ∈ Max q′ . Suppose by absurd, x were tiled for such quorum q′ ≤ |Lx|. Let y1, y2, . . . ,
yk be the maximal motifs which tile x, that is, such that Lx = ∪k

i=1(Lyi
+ di) for integers

d1, d2, . . . , dk. By Lemma 6, if y1, y2, . . . , yk ∈ Max q′ , then y1, y2, . . . , yk ∈ Max q for
q < q′. This means that x would be tiled by motifs in Max q, and thus that x is not in Bq, a
contradiction. ⊲⊳

It is obvious that a motif x in B=
q cannot belong to Bq′ for any q′ > q because it does not

satisfy the quorum. On the other hand, the reverse of Lemma 7 is not true: a motif x in Bq′

may not belong to Bq for q < q′ because there can be motifs in Max q − Max q′ that tile it.
Therefore, although the basis is always a subset of the set of maximal motifs, the inclusion
relation proved in Lemma 6 for Max q is not inherited by Bq. In fact, in general, the set Bq

is not a subset nor a superset of Bq−1. This holds for all the bases as shown by the following
example.

Example Let us consider the string s = ACAAATAAAAA. With quorum 2, basis B2 con-
tains A◦◦AA◦AA, A◦A◦A◦AAA, AA◦◦AAAA, and A◦AAA◦A. Basis B3 includes A◦◦◦A◦AA, A◦◦AA◦A,
A◦AAA. We see that B2 and B3 do not even intersect. In fact, all motifs in B2 occur exactly
twice and thus cannot belong to Max 3, and therefore to B3. On the other hand, all motifs
in B3 certainly belong to Max 3 and hence to Max 2, but they are not tiling because they
are tiled by motifs that belong to Max 2 \ Max 3. For example, AA◦◦A with LAA◦◦A = {3, 4, 7}
is in B3, but it is not in B2 because it is tiled by AA◦◦AAAA (with LAA◦◦AAAA = {3, 4}) and
A◦◦AA◦AA (with LA◦◦AA◦AA = {1, 4}) shifted by three positions. For the same string, the bases
of primitive and irredundant motifs for q = 2 contain the tiling motifs plus some others
(the primitives non tiling for q = 2 are AA, AAA, and A◦AAA, and the irredundant non prim-
itive are A◦◦◦AAA, A◦AA, and AA◦◦A). For both bases, the motifs that are also tiling must
be discarded when q goes from 2 to 3 because they lose the quorum. Moreover, A◦◦AA◦A
is primitive and irredundant (because it is tiling) when q = 3 but neither of them when q = 2.

We recall that u = x ⊕h y is such that u[i] = x[i + h] ⊕h y[i] for all integers i between
0 and |x| − h, that is the operation applies to y and the ith suffix of x, which we also
denote by x[i . . |x| − 1]. The operation ⊕ can be naturally extended to more than two
strings by placing a don’t care at a position where at least two of the strings have different
characters. Notice that such operation ⊕ is clearly associative (and commutative), while ⊕h

in general is not. For instance, we have that ((ACDEG◦H⊕2DAGMH)⊕2GM) = G is different from
(ACDEG◦H⊕2 (DAGMH⊕2 GM)) that results in the empty string. Therefore, when we apply the
shifted ⊕ to more than two strings, we instead use a notation that applies the shift to the
string (rather than to the operator) and we use the unshifted operator ⊕ notation. Hence,
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we use the more intuitive notation x[i . . |x| − 1] ⊕ y[j . . |y| − 1] ⊕ w to indicate that the
operator ⊕ is applied to x, y, and w shifted in such a way that position i of x is aligned with
position j of y and position 0 of w, although this can be written in a more compact way
with an adequate choice of the shift applied to the operator.

Lemma 8 Let y, z be two distinct elements of Bq for q ≥ 2 padded to the left and to the
right with an infinite number of don’t cares. Let x = (y ⊕i z) ∈ Σ ∪ Σ(Σ ∪ {◦})∗Σ for i an
integer between 0 and |y| − 1. If x is not empty, then |Lx| > q. Moreover, motif x belongs
to Max q′ for q < q′ ≤ |Lx|.

Proof : Clearly |Lx| ≥ q. Suppose |Lx| = q. Since Lx = (Ly + i) ∪ Lz, then |Lx| = q =
|Ly + i| = |Lz| and y and z would not be distinct, which is a contradiction. We now prove
that x ∈ Max q′ . Suppose again by absurd that x /∈ Max q′ for q < q′ ≤ |Lx|. There exists
w ∈ Max q′ with Lw = Lx + d such that w does not occur in x. Therefore, x occurs in w.
Let j and k be the positions of the occurrences of x in y[i . . |y| − 1] and z respectively. Let
y′ = w[d . . |w| − 1] ⊕ y[i + j . . |y| − 1] and z′ = w[d . . |w| − 1] ⊕ z[k . . |z| − 1]. We have
that y[0] · · · y[i + j − 1]y′ and z[0] · · · z[k − 1]z′ are more specific than y and z respectively,
contradicting the hypothesis that y, z ∈ Bq. ⊲⊳

In other words, we have shown that a pair of motifs in y, z ∈ Bq can generate a third
motif x having more than q occurrences. Such a motif is not in Bq because it is tiled by y
and z, but it is a candidate to belong to the basis for quorum higher than q because it is
maximal and it is possible that for a higher quorum, the set of maximal motifs no longer
contains motifs that tile it. The next result investigates what happens to x in the case where
|Ly|, |Lz| ≥ q + 1.

Lemma 9 Let y, z be two distinct elements of B>
q for q ≥ 2. Let x = y⊕iz ∈ Σ∪Σ(Σ∪{◦})∗Σ

for i an integer between 0 and |y| − 1 such that x is not empty. We have that x belongs to
Max q+1 − Bq+1.

Proof : The fact that x ∈ Max q+1 is an immediate consequence of Lemma 7. Moreover,
x 6∈ Bq+1 because it is tiled by y and z, which also belong to Max q+1. ⊲⊳

A simple generalization of Lemma 9 suggets that a motif x generated by a pair of motifs
y and z in B>

q is a candidate for belonging to a basis only for a quorum stricly greater than
min{|Ly|, |Lz|}.

Lemma 10 Let y1, . . . , yk (with k > 2) be three or more distinct elements of Bq for q ≥ 2
padded to the left and to the right with an infinite number of don’t cares. Let the string x be
such that x = (y1[i1 . . |y1| − 1] ⊕ y2[i2 . . |y2| − 1] ⊕ · · · ⊕ yk) ∈ Σ ∪ Σ(Σ ∪ {◦})∗Σ belong to
Max q+1 for i1, . . . , ik−1 integers such that 0 ≤ ij ≤ |yj| − 1 and 1 ≤ j ≤ k. Then x does not
belong to Bq+1.

Proof : We prove the results for the case of three strings, say y1, y2 and y3, since the gen-
eralization to any number k > 2 of strings is straightforward. Let r1 = y1[i1 . . |y1| − 1] ⊕
y2[i2 . . |y2| − 1] and r2 = y2[i2 . . |y2| − 1] ⊕ y3. By Lemma 8, r1, r2 ∈ Max q+1 and thus
also |Lr1

|, |Lr2
| > q. Since x = y1[i1 . . |y1| − 1] ⊕ y2[i2 . . |y2| − 1] ⊕ y3 ∈ Max q+1 and

y1[i1 . . |y1| − 1] ⊕ y2[i2 . . |y2| − 1] ⊕ y3 = r1[i1 . . |r1| − 1] ⊕ r2, with |Lr1
|, |Lr2

| ≥ q + 1,
maximal motifs r1 and r2 tile motif x. ⊲⊳

18



Summing up, as we state in the following proposition, Lemmas 8, 9 and 10 tell us that
two motifs in Bq can generate a motif in Bq+1 only if one of the two has exactly q occurrences,
and that more than two motifs in Bq cannot generate a motif in Bq+1, even if they all have
exactly q occurrences.

Proposition 2 Let x belong to Bq+1. We have that, if x /∈ Bq then there exist y, z ∈ Bq

with either y ∈ B=
q or (inclusive) z ∈ B=

q , and an integer i between 0 and |y| − 1 such that
x = y ⊕i z.

Proof : If x ∈ Bq+1, then it must be that x ∈ Max q+1 and thus x ∈ Max q. Therefore,
s ∈ Max q \ Bq, and thus there exists y1, . . , yk ∈ Max q that tile x. For Lemma 10, it must
be k = 2. Finally, Lemma 9 tells us that y1 or y2 belong to B=

q , which is the thesis. ⊲⊳

A consequence of the results introduced in this section is that there are necessary and
sufficient conditions on motifs in Bq that allow an incremental generation of the bases for
higher quorum. This is actually what was done in [12] where such an incremental algorithm
generating a basis with quorum q from a basis with quorum q − 1 and from Max q−1 is
suggested. Nevertheless, this algorithm has an exponential time complexity. This follows
immediately from the results shown in the next section.

5.2 An exponential lower bound for all bases

We show (Section 5.2.1) that no polynomial-time algorithm generating bases explicitly can
exist for any arbitrary value of q in the worst case, for all the bases considered in this paper.
The size of these bases can be proven to depend exponentially on q ≥ 2, that is, we give
a lower bound of

(n−1

2
−1

q−1

)
= Ω( 1

2q

(
n−1
q−1

)
) for the size of any basis. In practice, this size has

an exponential growth for increasing values of q up to O(log n), but larger values of q are
theoretically possible in the worst case. Fixing q = (n− 1)/4 + 1 in our lower bound, we get
a size of Ω(2(n−1)/4) motifs in the bases. On the average, q = O(log|Σ| n) using the fact that
the expected number of simultaneous comparisons needed to find the first solid character of
a merge is O(|Σ|q−1), which must be less than n.

We show a further property for the basis of tiling motifs in Section 5.2.2, giving an upper
bound of

(
n−1
q−1

)
on its size with a simple proof. Since we can find an algorithm taking time

proportional to the square of that size, we can conclude that a polynomial-time algorithm for
finding the basis of tiling motifs exists in the worst case if and only if the quorum q satisfies
either q = O(1) or q = n − O(1) (the latter condition is hardly meaningful in practice).

5.2.1 A lower bound of
(n−1

2
−1

q−1

)
on the bases

We show the existence of a family of strings for which there are at least
(n−1

2
−1

q−1

)
tiling motifs

for a quorum q. Since a tiling motif is also primitive and irredundant, this gives a lower
bound for all bases. For q > 2, this gives a lower bound of Ω

(n−1

2
−1

q−1

)
= Ω( 1

2q

(
n−1
q−1

)
) for the

the size of all bases.
The strings are this time of the form tk = AkTAk (k ≥ 5), without the left extension used

in the bound of Section 4.3. The proof proceeds by exhibiting
(

k−1
q−1

)
motifs that are maximal

and have each exactly q occurrences, from whence it follows immediately that they are tiling.
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Indeed, the observation we made in Section 2.5 holds for any q ≥ 2. Namely, all maximal
motifs that occur exactly q times in a string are tiling. The following results are proved in
[14].

Proposition 3 For 2 ≤ q ≤ k and 1 ≤ p ≤ k − q + 1, any motif Ap ◦ {A, ◦}k−p−1 ◦ Ap with
exactly q don’t cares is tiling (and thus primitive and irredundant) in tk.

Theorem 4 String tk has
(n−1

2
−1

q−1

)
= Ω( 1

2q

(
n−1
q−1

)
) tiling (and thus primitive and irredundant)

motifs, where n = |tk| and k ≥ 2.

5.2.2 An upper bound of
(

n−1

q−1

)
tiling motifs

We now show that
(

n−1
q−1

)
is an upper bound for the size of a basis of tiling motifs for a string

s and quorum q ≥ 2. Let us denote as before such a basis by B. To prove the upper bound,
we use again the notion of a merge except that it involves q strings. Let k denote now an
array of q − 1 positive values k1, . . . , kq−1 with 1 ≤ ki < kj ≤ n− 1 for all 1 ≤ i < j ≤ q − 1.
A merge is the (non empty) pattern that results from applying the operator ⊕ to the string s
and to s itself q − 1 times, each time shifted by ki positions to the right for 1 ≤ i ≤ q − 1.

Definition 19 (MMerge) Let sk denote the string such that its jth character is sk[j] =
s[j] ⊕ s[j + k1] ⊕ · · · ⊕ s[j + kq−1] for all integers j. MMergek is the pattern obtained by
removing all the leading and trailing don’t cares in sk (that is, appearing before the leftmost
solid character and after the rightmost solid character).

Lemmas 11–12 reported below extend Lemmas 3–4 to the case of q > 2 and their proofs
are also simple extensions.

Lemma 11 If MMergek exists for quorum q, it must be a maximal motif.

Lemma 12 For each tiling motif x in the basis B with quorum q, there is at least one k for
which MMergek = x.

We now state the main property of tiling bases that follows from Lemma 11 and Lemma 12.

Theorem 5 Given a string s of length n and a quorum q ≥ 2, let M be the set of MMergek,
for any of the

(
n−1
q−1

)
possible choices of k for which MMergek exists. The basis B of tiling

motifs for s satisfies B ⊆ M, and therefore the size of B is at most
(

n−1
q−1

)
.

The tiling motifs in our basis appear in s for a total of q
(

n−1
q−1

)
times at most. A variation

of the algorithm given in [15] gives a pseudo-polynomial time complexity of O
(
q2

(
n−1
q−1

)2
)

for computing Bq.
In [12], the same upper bound is proved (independently from the proof of [14]). Namely,

it is shown that there are at most Cq−1
n−1 primitive motifs, but again here it is not clear

whether the result refers to the definition of tiling motifs or of primitive ones. The same
doubt applies to an algorithm that computes the basis of primitive motifs for quorum q from
that with quorum q− 1 in O(Cq−1

n−1 |Σ| n log2 n log log n) time. Adding the cost of computing
the requested basis for q − 1 (and thus for q − 2 and so on until the quorum 2), this would
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also result in an algorithm computing a basis for any q having a cost that is quadratic in the
possibly exponential size of the basis itself. Notice that Lemma 5 which characterizes the
set BP \ BT is valid for any quorum q, and hence we have that in general the size of BP is in
O(|BT | + n|BT |) = O(n|BT |) but, as it was the case for q = 2, this bound is not necessarily
tight.

Combining the upper bound shown in this section with the lower bound of Section 5.2.1,
we obtain that there exists a polynomial time algorithm for finding the basis if and only if
either q = O(1) or q = n − O(1).

6 Two Bases for Common Motifs

In the literature, the problem of finding motifs that are common to more than one string
instead of repeated within a unique input string is often considered. For instance, a motif
common to two or more biological sequences can correspond to a binding site shared by
the sequences. The problem has also other text mining applications that we mentioned in
Section 1, such as detection of plagiarism and frequent itemsets. In this section, we define
two notions of basis for the set of motifs common to two input strings.

6.1 Weak Basis

Let s ∈ Σn and t ∈ Σm be the two input strings (we assume w.l.o.g. that m ≥ n). As for the
case of repeated motifs considered so far, common motifs are strings in the alphabet Σ∪{◦}
where Σ is the alphabet of the input strings and ◦ is the don’t care. Such strings start and
end with a solid character. Differently from the problem addressed so far, there is no other
quorum requirement for common motifs than that they should occur in both input strings.
Assuming the definitions of pattern, specificity, and occurrence of Section 2, we extend the
definitions concerning motifs to common motifs and their occurrences in the following way.

Definition 20 (Common motif) A pattern x ∈ Σ ∪ Σ(Σ ∪ {◦})∗Σ is a common motif
for strings s ∈ Σn and t ∈ Σm if and only if there exist ℓ, ℓ′ with 0 ≤ ℓ ≤ |s| − 1 and
0 ≤ ℓ′ ≤ |t| − 1, such that x occurs in s at position ℓ and in t at position ℓ′.

Definition 21 (Occurrence pair) A common motif x that occurs in s at position ℓ and in
t at position ℓ′ has an occurrence pair Px = (ℓ, ℓ′). Given an occurrence pair P, we denote
by P + i the set {(ℓ + i, ℓ′ + i) | P = (ℓ, ℓ′)}.

The above definition associates to a motif just a pair of occurrences independently from
the possibility that the same motif occurs also elsewhere in s or t. In this sense, the occurrence
pair is a weak version of the complete occurrence list of a common motif, and for this reason
we call the resulting basis (defined below) a weak basis.

Definition 22 (w-maximal common motifs) A common motif x is w-maximal (weak
maximal) if and only if it has an occurrence pair Px such that, for each common motif y
with an occurrence pair Py and integer d with Py = Px + d, we have that y occurs in x.

Observe that the notion of maximality of a common motif is related to one (or more) of
its occurrence pairs that, unlike occurrence lists, are not unique.
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Example Let s = ATGATC and t = ATCATG. The common motif ATC has only the occurrence
pair (3, 0) for which it is w-maximal. The common motif AT has four occurrence pairs, namely
(0, 0), (0, 3), (3, 3), and (3, 0), for which it is not w-maximal. For example, for the occurrence
pair (0, 3), there is the common motif ATG with the same occurrence pair and it does not
occur in AT.

Since the occurrence list is here limited to a pair for all w-maximal motifs, there is no
need to appeal to more restrictive properties such as the property of not being tiled by
other w-maximal common motifs. Therefore, we suggest as a first notion of basis for the
motifs common of s and t, the set of all w-maximal common motifs with the corresponding
occurrence pairs. Such a basis, called a weak basis, has an interesting and surprisingly simple
characterization which leads to an efficient algorithm for computing it. This is formalized in
the following definitions and results.

Definition 23 (CMerge) Let us assume that t[i] = ◦ for all i < 0 and i > |t| − 1. For
all possible shifts k such that −(n − 1) ≤ k ≤ m − 1, let ck be the string such that ck[i] =
s[i]⊕ t[i + k] ∀ 0 ≤ i ≤ |s| − 1. We denote by CMergek (common merge) the string obtained
from ck by removing all don’t cares to the left of the leftmost solid character and to the right
of the rightmost solid character.

Example Given a string t, let us consider again s = ATGATC and t = ATCATG. We have
that the non empty CMerges are CMerge−3 = ATC, CMerge0 = AT◦AT, and CMerge3 = ATG.

The CMerges are analogous to the merges introduced in Section 4.1, except that they
are no longer obtained by superposing a string s with all the shifts of itself, but rather by
superposing the longest string t with all possible shifts of the other string s. Notice that
any common motif c has one occurrence in CMerge(j−i) for each one of its occurrence pairs
Pc = (i, j).

Theorem 6 The weak basis coincides with the set of distinct non empty CMerges.

Proof : We first show that all non empty CMerges are w-maximal common motifs. Let
c = CMergek be non empty. It has an occurrence pair Pc = (ℓ, ℓ + k). Let us assume that
there exists another common motif y with an occurrence pair Py such that Py = Pc + d for
some integer d. As observed above, it must be that y occurs in CMergek and thus in c.

We now show that all w-maximal common motifs are CMerges. Let x be a w-maximal
common motif with the occurrence pair Px = (ℓ, ℓ′). From the remark above, we have that x
occurs in CMerge(ℓ′−ℓ). Moreover, CMerge(ℓ′−ℓ) has the occurrence pair (ℓ, ℓ′), which is equal
to Px (and thus in particular it is a d-shift with d = 0), and by definition of w-maximality
of x it must be that CMerge(ℓ′−ℓ) occurs in x, which implies that x = CMerge(ℓ′−ℓ). ⊲⊳

As a consequence, the size of the weak basis is linearly bounded (there are at most as
many motifs in the weak basis as distinct CMerges), and computing it is as easy as computing
the set of distinct non empty CMerges, which can obviously be done in O(n(m + n)) time.
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6.2 Strong Basis

The reason for the efficiency of the algorithm that computes the weak basis lies on the fact
that there is no need to compute all the occurrences of the CMerges, as this is not required
in the output nor is needed for a selection like in the case of tiling motifs. Nevertheless, a
complete list of all the occurrences of a common motif may be required by certain applica-
tions. For this reason, we now define a new notion of occurrence list for common motifs, and
hence a corresponding new notion of maximality and basis.

Definition 24 (Common motifs occurrence list) A common motif x has as occurrence
list the pair of lists CLx = (L(x,s),L(x,t)) where L(x,s) (resp. L(x,t)) is the list of all the
occurrences of x in s (resp. t). Given an occurrence list CL = (Ls,Lt), we denote by CL + i
the pair of lists (Ls + i,Lt + i).

Observe that for a given common motif x, its occurrence list is unique, differently from the
case of occurrence pairs. In fact, any common motif with occurrence list CLx = (L(x,s),L(x,t))
has an occurrence pair (i, j) for each i ∈ L(x,s) and j ∈ L(x,s). As a direct consequence of
this, we have that also for occurrence lists of common motifs, there is a relation with the
CMerges. Namely, each common motif x with occurrence list CLx = (L(x,s),L(x,t)) occurs
in CMerge(j−i) for each i ∈ L(x,s) and j ∈ L(x,s). Based on this more complete version of
occurrence set for common motifs, a new notion of maximality can be defined, as well as a
notion of tiling motifs.

Definition 25 (Maximal common motifs) A common motif x is maximal if and only if
for each common motif y and integer d such that CLy = CLx + d, we have that y occurs in x
(and thus d ≥ 0).

Definition 26 (Tiling common motifs) Given two occurrence lists of common motifs
CL1 = (L1,L

′
1) and CL2 = (L2,L

′
2), let CL1 ∪ CL2 = ((L1 ∪ L2), (L

′
1 ∪ L′

2)). A maximal
common motif x is a tiling common motif if and only if, for any maximal common motifs
y1, y2, . . . , yk and integers d1, d2, . . . , dk such that Lx = ∪k

i=1(Lyi
+ di), motif x is one yi.

When, instead, all yi are different from x, pattern x is said to be a tiled common motif. We
also say that the common motifs yi, y2, . . . , yk tile x.

Example Let us consider again the strings s = ATGATCATG and t = ATCATGATC and their
maximal common motif ATG with occurrence list CLATG = ({0, 6}, {3}). This motif is max-
imal but not tiling because it is tiled by the maximal common motifs ATCATG and ATGATC.
In fact, the latter are both maximal because they are equal to CMerge−3 and CMerge3,
respectively; moreover, since CLATCATG = ({3}, {0}) and CLATGATC = ({0}, {3}), we have that
CLATG = (CLATCATG + 3) ∪ CLATGATC.

The second notion of basis for common motifs that we suggest is that set of all tiling
common motifs, and we call it strong basis. Similarly to the case of repeated motifs, the
following results hold3:

3We omit the proofs either because they are similar to those for repeated motifs or because they are
trivial consequences of previous results.
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• For all k such that −(n − 1) ≤ k ≤ m − 1, CMergek is a maximal common motif.

• Each maximal common motif is also w-maximal for a suitable occurrence pair.

• Each tiling common motif is a CMergek for some k with −(n − 1) ≤ k ≤ m − 1.
Nevertheless, in general not all CMerges are tiling common motifs.

• The strong basis for common motifs contains O(n + m) motifs.

• The strong basis for common motifs is symmetric.

The strong basis can be computed by an algorithm similar to the one shown in [13] for
repeated motifs. Indeed, we can prove that for each tiling common motif the list CLx coincides
with the list CTx of the occurrence pairs that can be directly recovered from the CMerges
that are equal to x. Furthermore, the sum of all these occurrences is linearly bounded. This
allows an efficient detection of non tiling common motifs among the CMerges. In conclusion,
we have that the strong basis can be computed in the following way. First, the set of all
the distinct CMerges can be computed in O(n(n + m)) time and there are O(n + m) of
them. Second, finding all their occurrences and discarding those such that CT 6= CL takes
O((n + m)m log m) = O(m2 log m) time. Finally, discarding the remaining non tiling motifs
can be performed in O((m + n)2) time using two bit vectors of size n + m. The overall time
complexity is thus in O(m2 + (n + m)m log m + (m + n)2) = O(m2 log m).
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