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Abstract—Spatial Principal Component Analysis (PCA) has
been proposed for network-wide anomaly detection. A recent
work has shown that PCA is very sensitive to calibration settings,
unfortunately, the authors did not provide further explanations
for this observation. In this paper, we fill this gap and provide
the reasoning behind the found discrepancies.

First, we revisit PCA for anomaly detection and evaluate its
performance on our data. We develop a slightly modified version
of PCA that uses only data from a single router. Instead of
correlating data across different spatial measurement points, we
correlate the data across different metrics. With the help of the
analyzed data, we explain the pitfalls of PCA and underline
our argumentation with measurement results. We show that the
main problems that make PCA difficult to apply are (i) the
temporal correlation in the data; (ii) the non-stationarity of the
data; and (iii) the difficulty about choosing the right number of
components. Moreover, we propose a solution to deal with the
most dominant problem, the temporal correlation in data. We
find that when we consider temporal correlation, PCA detection
results are significantly improved.

I. INTRODUCTION

Principal Component Analysis (PCA) has been first pro-

posed as a method for traffic anomaly detection in [?]. While

being known in other domains before, Lakhina et al made

its application very popular in the networking community.

Subsequent publication confirmed the excellent performance

of PCA and proposed extensions to it [?]. Only recently, it has

been shown by Ringberg et al [?] that PCA is very sensitive

to its parameter settings. The authors have reported about

instability problems encountered when using PCA, however,

they failed in providing precise reasons for their observation.

In this paper, we will provide the missing explanations for

the encountered problems. In particular, we revisit PCA-based

approaches for anomaly detection from a signal processing

point of view. During the application of the PCA method on

our dataset, we found similar inconsistencies as those reported

in [?]. Further investigating the results, we found that the

main problem of PCA, as used today, is that it does not

consider the temporal correlation of the data. The fact that

the data is temporally correlated indeed breaks the underlying

hypothesis of the PCA-based anomaly detection method. The

main contributions of this paper are that we (i) show what

kind of problems arise when PCA is not carefully applied

to anomaly detection; and (ii) provide a profound theoretical

explanation for the encountered problem; and (iii) provide

correction to the previously published method and alter it

to a efficient anomaly detection mechanism. We validate our

improved method by applying it to real network traffic with

well known and identified anomalies.

The paper is structured as follows. In section II, we revisit

the basics of anomaly detection methods and introduce the

dataset used throughout this paper. Then, we report on the

application of PCA to this data. The first results show very

poor performance of the detector and by investigation the

reason for it, we find the some basic features necessary for

anomaly detection are not provided with PCA. For example,

we find that the decision variable does not have a mean of zero

- unfortunately PCA should be applied to zero mean random

variables only. We propose two mechanisms that help to get

the mean closer to zero and we’ll show how these mechanisms

are applied to the dataset.

In section III, we revisit the PCA theory and develop its

basic properties. We thereafter extend the analysis to stochastic

processes and explain why the simple PCA is not applicable

and should be replaced by Karhunen-Loeve (KL) expansion.

We describe this expansion an develop a Galerkin-based

approach to calculate the KL expansion from a finite number

of samples of the process. We then use the KL expansion to

develop the predictive model that could be used for anomaly

detection. We present the characteristics of the predictive

models and propose a new methodology for choosing the

optimal number of components in the KL expansion.

Section IV applies the KL extension method developed in

section III to our data and examines therewith the reasons

for the bad performance of classic PCA. We are able to

validate that the source of the poor performance really is the

temporal correlation. We further show that the non-stationarity

is a critical issue and recalibration of the model is mandatory

for good anomaly detection performance. Finally we describe

the predictive models used for anomaly detection and open

way for a signal processing approach to anomaly detection

where the main challenge becomes to design filters that will

be adapted to anomaly features.

II. PRACTICAL EXERCISE: APPLYING PCA FOR ANOMALY

DETECTION ON OUR NETWORK

The main goal of our research is to develop efficient

anomaly detection methods that are convenient for medium-
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sized ISPs (as for example, the SWITCH network, AS559).

One of the most frequently used method for anomaly detection

is the Principal Component Analysis based subspace method

developed in [?], [?]. It was therefore, an obvious choice

for a starting point to apply this method to our data. In

this section, we give an introduction to anomaly detection in

general, describe our dataset, and present the results of the

PCA-based anomaly detection method on this data.

A. About anomaly detection

An anomaly detector consists essentially of two compo-

nents: (i) an entropy reduction component and (ii) a decision

component applying statistical tests to a decision variable

issued from the first step. The entropy reduction step is here

to simplify the second step.

A predictive model that forecasts the value of the parameter

to monitor as X̂[k] is frequently used to build the entropy

reduction. This results in an error signal that has a smaller

entropy than the initial signal, but still retains the information

required for anomaly detection. A decision variable D[k] used

in the second step, is derived as a function of the prediction

error e[k] = X[k]− X̂[k]. In PCA based method, we build the

predictive model assuming the projection in an orthogonal sub-

space obtained through application of PCA is a good predictor

of the signal (see section III for a detailed description).

In the second step, we apply a statistical test to a decision

variable that depends on the prediction error. Generally, the

statistical test step checks the null hypothesis {H0 : the

decision variable is compatible with a prediction in conformity

with observation}, i.e.,we reject the null hypothesis if the

likelihood of the decision variable is below a threshold. The

statistical test needs to have the distribution of the decision

variable to obtain its likelihood. Two types of errors can occur

during the statistical test: false negatives when one assumes

that the null hypothesis is valid when there is an anomaly (the

likelihood of observing the given variable being smaller than

the threshold even if they have been an anomaly), and false

alarm when deciding to refute the null hypothesis when there is

no anomalies. The Neyman-Pearson theorem about statistical

tests [?] defines a fundamental trade-off between false alarm

probability and true negative probability; larger thresholds

lead to lower false negative rates but larger false alarms

rate and smaller thresholds result in higher false negative

rates and smaller false alarms rate. The Receiver Operating

Characteristics (ROC) Curve combining the two parameters

in one value [?] captures this essential trade-off. The ROC

curve is indeed a good performance metric for the two steps

of an anomaly detector. A good entropy reduction technique

is one that generates a decision variable with a good detection

vs. false alarm rate tradeoff, i.e.,achieves a high detection rate

with few false alarms.

For PCA based anomaly detectors, [?] proposed to use a

non-linear function of the squared error Q[k] = e[k]T e[k] as

decision variable D[k]

D(Q[k]) =
Q[k]

θ

h

(1)
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Fig. 1. ROC curve resulting from application of PCA method to three
variation of traffic metrics.

This non-linear function has been tailored to make its dis-

tribution converging as closely as possible to a gaussian

distribution. In [?], the authors refer to the work of Jensen

[?] showing that, under the hypothesis that elements of e[k]
are statistically independent and follow a gaussian distribution,

the distribution of D(Q[k]) converges to a normal distribution

with known mean and variance. [?] gives formulas for deriving

from PCA characteristics the mean and variance of D[k],
as well as the parameters θ and h. It is therefore, possible

to normalize D[k] to a gaussian random variable with zero

mean and a variance of one. In the forthcoming, we will use

the normalized D[k] as decision variable. Because of space

restrictions, we are not giving all the details of this formula

in this paper, but refer the reader to [?], [?] and [?].

B. Data Set

We use for our experiments 3 weeks of Netflow data

coming from one of the peering links of a medium-sized

ISP (SWITCH, AS559). These data were recorded in August

2007 and comprised a variety of traffic anomalies happening

in the daily operation such as network scans, denial of service

attacks, alpha flows, etc. In this dataset we distinguish between

incoming and outgoing traffic, as well as UDP and TCP

flows. For each of these four categories, we computed seven

commonly used traffic features: byte, packet, and flow counts,

source and destination IP address entropy, as well as unique

source and destination IP address counts. All metrics were

obtained by aggregating the traffic at 15 minute intervals

resulting in a 28× 192 data matrix per measurement day.

We applied the anomaly detection methods to a matrix x̃ of

size t × f with t observations from f features. We used the

first two days (394 time samples) of this dataset for model cal-

ibration. Thereafter, we applied the anomaly detection method

to all time samples. anomalies in the data were using available

manual labeling methods: visual inspection of time series and

top-n queries on the flow data. This resulted in 28 detected

anomalies event in UDP and 73 detected in TCP traffics.

It is noteworthy that our dataset is different in nature from

the one used in [?], [?]. There, the data were collected from

different network border routers. Also, [?] only analyzes the

traffic volume. In the follow-up publication [?], the authors

extended their dataset with the 4 entropy values of the source

and destination IP addresses as well as the source and des-

tination port numbers. In this work, we collected the data at

a single link. As in the work of Lakhina et al., the observed

metrics are correlated in time and in space. Our observations

and statements are valid whenever both spatial and temporal

correlation exist; they can be extended to the case studied by

[?], [?].
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C. PCA application results

We then applied the methodology described in [?] to our

data. With this method, we first apply the classical PCA as

described in section III-A to the vector of metrics x[1 : 194]
containing the first two days of metrics. For this purpose, we

derive a spatial correlation matrix as Γ̂ = 1
193x[1 : 194]x[1 :

194]T . Then, we apply the SVD decomposition to the data,

resulting in a basis change matrix. We construct a model using

only the 8 top principal components (out of 28 possible).

We choose component numbers following the methodology

proposed in [?], [?] to englobe more than 95% of the variance

in the initial metric (for detailed description see section III).

We compute the term Q[k] = e[k]T e[k] from prediction errors,

and we derived the normalized decision variable D(Q[k]) as

described above.

Because of lack of space, we show only the results for the

UDP traffic. Results for TCP traffic are analogous and are

available in [?]. The ROC curve obtained by strict application

of the PCA method as described in [?] leads to the figure

labeled ”Before mean removal” in Fig. 1.

Unexpectedly, the ROC curve showed very bad anomaly

detection performance for the classic PCA method (”Before

mean removal”). At best, we achieve a detection rate of 90%

and this comes with the burden of 49% of false alarms. We

detect only 15% of anomalies without any false alarm. The

results obtained for TCP are even worse. Clearly, with such

a performance this anomaly detection method is not useful

in practice. After checking all the steps and ensuring that we

closely followed the methodology proposed in [?], we had to

back trace all causes that could have led to the bad anomaly

detection performance.

On general terms, the results are in accordance with what

was reported in [?]. It shows that tuning PCA to operate

effectively in practice is difficult. Specifically, it shows high

sensitivity of the false positive rate to the number of principal

components chosen and relates this to the possibility that large

anomalies pollute the normal subspace. Even [?] acknowl-

edged this last point when it used another decision variable

in place of the one defined in Eq. 1 to deal with the normal

space pollution. However, [?], [?] failed to identify the causes

of the problems they described. Particularly, a misleading term

generated some confusion. In linear filter theory, any linear

filter separates the space of signals into two orthogonal and

dual subspaces: a subspace of the signals filtered by the filter

and a subspace of the signal that pass through the filter. Calling

the PCA method the subspace method is a kind of tautology.

Any entropy reduction technique based on a predictive linear

filter is a subspace method; PCA is just one subspace method

with a very particular subspace structure. This means that in all

methods, a component of the anomaly that maps to the normal

space can pollute it. This is why the misdetection/false alarm

trade)-off occurs! Stating that the PCA method has stability

problems because of normal subspace pollution is a trivial

statement as any failing prediction-based anomaly detector is

failing because of normal subspace pollution! Analyzing if

PCA is a suitable method or not requires less trivial reasoning.

One need first to evaluate the assumption of the PCA method

itself to ensure that the problem is not coming from bad

application of the method. This is indeed the core contribution

of our research.

D. Fault diagnostics of classic PCA

We began to back trace the inconsistencies by verifying

if the normalized anomaly decision variable (Fig. 2) was

following our theoretical expectations. We were expecting

to have a decision variable with mean zero and variance 1.

Actually, we observed that the mean of the decision variable

over the 192 values used for calibration was 10.58 in place of

zero! This bias could elucidate why the anomaly detection

performance was bad as we apply the thresholds with an

assumption of zero mean. Moreover, we found (see Fig. 2)

that the convergence to a gaussian distribution is dubious,

especially for the tails of the distribution where anomaly

detection methods are looking at.

The first possible explanation was a well known argument,

that was not stated in previous papers on anomaly detection:

PCA should be applied to zero mean random variables. Mean-

ing that one needs to first get the mean as close as possible

to zero before applying PCA. We describe later in this paper

how a mean close to zero can be obtained even for real-time

operation. We verified if ignoring the non-zero-mean could

have lead to our observations. We show in Fig. 1 the ROC

curve obtained by applying PCA to the metrics after reducing

the mean value. This second ROC curve shows a significant

improvement of the false alarm rate. But still, the detection

rate performance is below expectation. We checked the bias

in the decision variable and found that it is reduced but is still

important as the mean remains equal to 4.8 in place of zero.

A closer look at the proof of convergence in [?] shows

that even if the convergence is robust toward non-gaussianity

of the underlying variables, it is heavily dependent on the

independence condition between the terms in e[k]. We verified

if we can validate this condition. We estimated the correlation

between the error terms and found that there is a high

correlation between some of these terms. So the hypothesis of

independence should be fully rejected! We conclude that the

observed bias comes therefore from the lack of independence

between error terms.

However, PCA theory predicted that these errors terms

should be independent. By pursuing further the investigation,

it appeared that the problem is coming from the method pro-

posed in [?], [?]. They applied PCA to the spatial correlation

alone (see above the formula for obtaining Γ̂) and did not

remove the temporal correlation that is intrinsic in the used

data. This temporal correlation leads to the prediction error

terms and hence to the observed correlation.

E. Removing daily and weekly pattern

To check if we were going in the right direction, we tried

to reduce the temporal correlation by removing the daily and

weekly pattern. The observed metrics exhibited, as expected,
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a diurnal and a weekly pattern so that they were clearly non-

stationary. Fortunately, this pattern is highly predictable. We

used the first week of traffic as a reference to derive a weekly

profile. We computed it by applying a smoothing filter that

consisted of a centered moving average windows of size 20,

to the observed metrics during a single week. This resulted

in a smoothed version of the traffic metrics that we used as

weekly profile. We subtracted this profile from the observed

metrics to remove the daily and weekly pattern. However,

the resulting signal has still a non-zero mean. We explained

earlier that it is essential to apply PCA on zero mean signals.

Whenever removing the mean for a given dataset is a trivial

task, it becomes more difficult to remove for an online signal

in real time. For this purpose, we used a zero-mean filter that

estimates the mean from a window of 20 past samples and

subtracts it from the signal. This yields signals that have a

mean very close to zero.

We applied the same PCA method as above to the metrics

after removing the weekly pattern and the reduction of the

mean. This resulted in the third ROC curve also plotted

in Fig. 1. This ROC curve shows a major improvement in

anomaly detection quality. We achieve a detection rate of

above 95% with 22% of false alarm rate. Moreover, the bias

in the decision variable decreased from 10.58 to 2.2. This

validated the hypothesis that the problems we were seeing

are coming from the temporal correlation. A verification of

the independence condition on error terms showed that the

correlation decreases significanlt, but it remains too high to

accept the independence assumption. Similar results for TCP

traffic can be found in [?].

As explained before, the main goal of the entropy reduction

step is to generate a decision variable that could thereafter

lead to suitable ROC curves. It seems that applying PCA as

developed in [?], [?] fails to achieve this goal. The main reason

is the inability of PCA to generate a set of independent error

terms. In the following, we revisit the theoretical foundation

for PCA and examine PCA from a signal processing point of

view.

III. WHAT IS PCA: A SIGNAL PROCESSING VIEW

A browse in the literature shows two closely related but

different interpretations of PCA:

• As an efficient representation that transforms the data to a

new coordinate system such that the projection on the first

coordinate contains the greatest variance, the projection

on second coordinate has the second greatest variance,

and so on.

• As a modeling technique using a finite number of terms

of an orthogonal serie expansion of the signal with

uncorrelated coefficients.

Interestingly, the literature mainly motivates the application

of PCA to networking anomaly detection by the first inter-

pretation. However, this application is indeed following the

two last interpretations. This has resulted in some erroneous

interpretation and practices that have widely spread among the

community. We are devoting this paper to describing these

erroneous practices and to present a way of correcting them.

Let’s describe the above two interpretations with more details.

A. PCA : a suitable data representation

Let’s suppose that we have a column vector of correlated

random variables X = (X1, . . . , XK)T ∈ R
k. One observes

these random variables through N independent realization

vectors xi = (xi
1, . . . , x

i
K)T , i = 1, . . . , N and arranges them

in a N × K observation matrix x with each row containing

an observation vector xi. We are searching for the most

”suitable” non-canonical basis (e1, . . . , eK) for the vector

space R
K to represent the random variables X.

For the class of random variables that are linear (they can

be decomposed to a linear combination of independent linear

random variables) and have as sufficient statistics their means

and covariances (i.e.,means and covariances entirely describe

their joint probability distributions.), the most suitable basis is

the one that maximizes the variance of each projected compo-

nent. One very popular case where these two assumptions hold

is when (X1, . . . , XK) are jointly gaussian. Nonetheless, the

literature is full of examples where using such an orthonormal

basis results in erroneous interpretation because the linearity

or the sufficiency of mean and covariance is not valid.

Under assumption of linearity and sufficiency of mean and

variance, the most suitable basis is (φ1, . . . , φK), where φi

is an eigenvector of the covariance matrix of X defined as

Σ = ❊
{

(X−µ)(X−µ)T )
}

(µ is a column vector containing

the means of Xi). We derive these eigenvectors by solving the

following linear equation:

Σφi = λiφi (2)

where λi are the eigenvalues of the covariance matrix. As

the covariance matrix is positive definite, this equation has

at most K positive eigenvalues and K different orthonormal

eigenvectors. The basis change matrix U = [φ1, . . . , φK ]
contains in its columns, the eigenvectors φi. Solving the

above problem is called in matrix theory the Singular Value

Decomposition (SVD) of the covariance matrix.

It is noteworthy that U is a basis change matrix only when

X is zero mean, and in general one has to work with X̃ =
X − µ in place of X, i.e.,the coordinate change is ỹ = U x̃.

This last point is frequently overlooked in the literature, and

not taking care of it could lead to large errors when using

PCA1. In the forthcoming we will assume that we have taken

care of this obvious precaution so we can drop the ∼. For real

time operation, removing the mean can be approximated by

using a zero-mean filter as described in section II-E.

After applying PCA one can rewrite the initial vector of

random variables X in the new coordinate system as:

X =
K
∑

i=1

Yiφi (3)

1It is noteworthy that even if [?], [?] did not state clearly the necessity of
removing the mean, they have used zero mean signals in their implementation
code
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where Yi are jointly independent random variables with

❊
{

Yi

}

= 0 and ❱ar
{

Yi

}

= λi. PCA replaces the correlated

random variables X by a vector of independent random

variables Y that are linearly equivalent. The independence of

Yi is therefore an essential property as this is the main reason

that PCA representation is ”suitable”.

The above discussion remains theoretical, and in practice

one has a set of observations and has to pick the suitable

basis. Whenever the dataset under study is not flagrantly in

contradiction with the conditions of mean and variance suffi-

ciency, and linearity we can apply PCA and find a convenient

representation of the data.

First one has to estimate the covariance matrix using the

popular sum of product formula Σ̂ = 1
N−1x

Tx. Because

of independence between observations this gives a reliable

estimation. Thereafter applying the SVD factorization is just

a straightforward and mechanical step that could provide the

needed basis as well as the basis transform matrix.

B. Extension of PCA to a vector of stochastic processes

Before describing PCA as a modeling technique, let’s extend

it to stochastic processes. This extension is mandatory as the

signals used for anomaly detection are samples of stochastic

processes that have temporal as well as spatial correlations.

Let’s assume we have a K-vector of zero mean stationary

stochastic processes X(t) = (X1(t), . . . , XK(t))T with a

covariance functions σi,j(τ) = ❊
{

Xi(t)Xj(t − τ)
}

defined

over an interval [a, b]. The extension 2 to multi-dimension of

the Karhunen-Loeve (KLT) theorem [?] states that one can

rewrite these processes as a serie expansion (named the KL

expansion):

Xl(t) =

K
∑

i=1

∞
∑

j=1

Y l
i,jΦi,j(t) (4)

where Y l
i,j are pairwise independent random variables and

Φi,j(t) are pairwise orthogonal deterministic (non-random)

functions defined on [a, b] , i.e.,
∫ b

a
Φi,j(t)Φ

∗
m,n(t)dt = 0 for

i 6= m or j 6= n. Generally, the basis function Φi,j(t) are

rescaled such that
∫ b

a
|Φi,j |

2(s)ds = 1.

This theorem extends the PCA to a vector of stochastic

process. Eq. 4 is the equivalent of Eq. 3. The family of

deterministic functions Φi,j(t) is an orthonormal basis for the

space of linear stochastic processes and the random variables

Y l
i,j are coordinates of the stochastic process Xl(t) in this new

space. We can formally derive the basis functions Φi,j(t) by

solving the following set of linear integral equations:

K
∑

i=1

∫ b

a

σi,l(s)Φi,j(s− t)ds = λl,jΦl,j(t), j > 0.

These complex equations are simply the equivalent of equa-

tions 2. The random variables Y l
i,j are obtained by projecting

2The KL theorem was initially defined for one dimensional stochastic
processes

each stochastic process over an eigenfunction:

Y l
i,j =

∫ b

a

Xl(s)Φi,j(s)ds

The KL expansion considers the temporal correlation (between

time t and t + τ ) as well as the spatial correlation (between

process Xi(.) and Xj(.)). This results in a more complex

analysis than the simple PCA described earlier. However, this

higher complexity is unavoidable because of the temporal

correlation. Not taking it into account could lead to the errors

described in section II-C.

In practice, we have only access to a finite set of samples

observed each T time unit from the vector of stochastic

processes and we have to implement the KL expansion only

using them. In the forthcoming, we will use the notation [k]
to represent the discrete version of a time continuous process

sampled at time kT . Let’s assume that we have n samples

of the multidimensional stochastic process and the covariance

values σi,j(τ) can be assumed as negligible for τ > NT .

We can therefore truncate the KL expansion to N terms in

place of the infinite number of terms needed normally. The

Galerkin method [?] transforms the above integral equations

to a matrix problem that could be solved by applying the SVD

technique. This makes possible the derivation of KL expansion

using only a finite number of samples. The Galerkin method

generates a set of eigenvectors in a KN dimensional vector

space, that are time-sampled version Φi,j [k] = Φi,j(kT ) of

the originally continuous function Φi,j(t). Finally, we obtain

a discrete version of the KL expansion as :

Xl[k] =

K
∑

i=1

N
∑

j=1

Y l
i,jΦi,jj[k]. (5)

We first have to estimate the spatio-temporal correlation

matrix. Let’s construct a KN × (n−N) observation matrix:

x =





























x1(1) . . . x1(n − N)
x1(2) . . . x1(n − N + 1)

.

.

.

.
.
.

.

.

.

x1(N) . . . x1(n)
x2(1) . . . x2(n − N)

.

.

.

.
.
.

.

.

.

x2(N) . . . x2(n)

.

.

.

.
.
.

.

.

.

xK (1) . . . xK (n − N)

.

.

.

.
.
.

.

.

.

xK (N) . . . xk(n)





























The matrix Σ̂ = 1
n−N−1x

Tx is a KN × KN matrix that

contains all the needed spatio-temporal covariance estimates.

It is noteworthy that because of temporal correlation one needs

more data to estimate correctly the covariance here than for

the indepedent case we had in section III-A.

The Galerkin method consists of applying PCA as described

in section III-A to this large matrix. This results in KN

eigenvectors of length KN Φi,j [.] that are used to construct

a basis transform matrix U . The coefficients Y l
i,j are obtained

by applying the basis change transform y = Ux. As can be

seen applying KL expansion to K stochastic process entails
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diagonalizing a KN × KN matrix (in place of a K × K

matrix in section III-A). However, this added complexity is

unavoidable when one has to deal with correlated observations.

C. PCA as a modeling method

Up to now, we described the KL expansion as a tool for cre-

ating an equivalent (in probability) and suitable representation

of vector of stochastic processes. If we neglect some of the

smaller terms of the expansion (terms with small values of

❱ar
{

Y l
i,j

}

), we obtain a linear approximation of the initial

process in a smaller dimension vector space. The discrete

expansion in Eq. 5 is therefore approximated as:

X̂l(kT ) =

L
∑

i=1

M
∑

j=1

Y l
i,jΦ

k
i,j . (6)

where M < N and L < K. This approximation has a

noteworthy optimality property. Among all approximations

defined over a linear space of dimension LM , this is the linear

approximation with the smallest approximation error variance

(❱ar
{

X(t) − X̂(t)
}

. The basis change transform becomes a

KN ×LM matrix ULM that contains the LM eigenfunctions

Φi,j [.] in its columns. This is the theoretical basis to use the

KL expansion as a non-parametric and generic technique for

modeling a large class of processes where we cannot reject

the linearity and sufficiency of mean and variance (see section

III-A).

The non-parametric nature of the above modeling tech-

nique is simultaneously its strength and Achilles heel; a non-

parametric method is not based on any precise form of the

distribution (out of the linearity and the mean and variance

sufficiency) meaning it is more robust. At the same time

being non-parametric means that no prior knowledge can be

incorporated into the model.

Before going further, let’s first give some details about the

obtained model. The expansion in Eq. 6 provides a synthesis

method for generating an approximated process X̂l[k] by a

bank of ML filters with Finite Impulse Response equal to

Φi,j [k], k = 0; . . . ,KN ; each filter being excited by the

random variable input Y l
i,j . By predicting the values of the

realization of the KN random variables Y l
i,j by applying

the basis change matrix to observation X[.], we can use this

synthesis filter as a predictive filter. This is the approach

followed in PCA and KL expansion based anomaly detectors.

The anomaly detection literature has foreseen this approach.

Let’s assume that the K linear stochastic processes in vector

X[k] are linear processes, i.e.,one can represent them using a

dynamic state space representation as X[k+1] = AX[k]+ǫ[k],
where X[k] is a KN dimension vector constructed by concate-

nating N vectors (X[k], . . . ,X[k − N ]) and ǫ[k] is a vector

of KN independent and identically distributed (iid) random

variables. Now let’s assume that the process vector X[k] is

approximated by a finite KL expansion with LM terms. There

is therefore a ULM basis transform matrix that maps X[k]
into the new coordinate : YR[k] = ULM X̂[k] (YR[k] being

the reduced coordinate vector of dimension LM ). The inverse

projection can be found through X̂[k] = UT
MLYR[k] (as UT

is a Hermitian matrix). By replacing this term in the dynamic

state space representation and by algebraic manipulation we

obtain the following state space model for the approximated

processes:
{

YR[k + 1] = AMYR[k] +BMǫ[k]

X̂[k] = UMLYR[k] +DMǫ[k]
(7)

where AM = UT
LMAULM ; BM = UT

LM [(AS + I) | − S]
with S = −A−1 + ULMA−1

M
UT
LM ; DM = S. The resulting

model has LM uncorrelated state variables (in Y) in place of

KN state variables in the initial process (X).

The model in Eq. 7 shows precisely the effect of re-

moving some terms from the KL expansion: this replaces

the initial system dynamic by a new system with the above

parameters. We can easily compare the initial system dynamic

to the obtained model through three equivalent comparison

approaches: impulse response, zeros and poles location, and

frequency response. We can compute the poles and zeros

locations by deriving the Z-transform of the transfer function

of the processes. The initial process transfer function is
X (z)
E(z) = (zI − A)−1; the NK poles of the initial system are

the roots of the equation det(zI − A) = 0 and all the zeros

are at z = 0. The approximated system transfer function is
X̂ (z)
E(z) = UML(zI − AM)−1BM + DM;the poles being the

ML roots of det(zI − AM) = 0 and the zeros the roots of

the equation det(BM + (zI − AM)UT
MLDM) = 0. Having

the poles and zero locations we have a full characterization of

the initial and modeled system.

In practice, we frequently do not have the state-space model

of the observed process to be able to apply equation 7. One can

infer the state space model following the Maximum Likelihood

method used in [?] and thereafter use the above described

approach. Another simpler approach consists of using spectral

estimation techniques [?] to derive the spectra from the initial

process. This results in an estimated spectra for the initial

process. We derive the approximated process X̂[k] easily

as X̂[k] = UT
MLUMLX[k]. By applying the same spectral

estimation to the approximated signal one can compute the

spectra for the approximation and compare it with the spectra

of the initial process. We will illustrate this approach later in

this paper.

This results in a criterion to select the number of terms

to keep in the KL expansion. [?], [?] it suggested to choose

enough terms to capture 95% of the variance of the initial

process. However, this approach does not take care of the

features that will remain in the approximate model. A com-

plete criterion retains a large enough number of terms so

that the approximated process exhibits essential features that

are of interest for anomaly detection. We will illustrate this

approach later in section IV-D. Another outcome of the model

description is that it enables the model designer to use its a

priori knowledge to introduce or emphasize features that he

believes would be useful for anomaly detection. This enables

a refinement approach where in a first attempt we derive a
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[width=]plots/speudp.eps

Fig. 2. Normal plot of normalized decision variable D[k] for UDP traffic
obtaining over the data used for calibrating the PCA model

model through the non-parametric KL expansion method and

refine it through inspection of its features. We can refine

the model could by classical control theory techniques by

adding/removing/moving some of the poles or zeros such that

the frequency response or the impulse response has suitable

properties.

IV. VALIDATION

In this section, we will present the results of applying the

KL expansion to the dataset described in section II-B. We first

confirm that the temporal correlation is indeed the source of

the bad performance of PCA based anomaly detection on our

dataset. For this purpose, we have derived the KL expansion

of our data set after preprocessing it only by removing the

mean of the metrics.

A. Validation of KL expansion

Fig. 3 shows the ROC curves obtained for different values

of the temporal correlation range N . The figure is plotted

in semilog to present a better comparison between different

values of N . All ROC curves are obtained with enough terms

to capture 95% of the total variance in the model. In all

cases, no more than two expansion terms were neede for this

setting. The comparison of ROC curves (see Fig. 3) shows

a considerable improvement in performance of the anomaly

detection with use of KL expansion with N = 2, 3 and

thereafter a decrease for N = 4. The same is observed for

N > 4. Particularly, for N = 3 on can detect 97% of

anomalies are with no more than 16% of false alarm rate.

To verify if the problems described in section II-C are really

coming from the bias in the decision variable, we checked the

value of this bias. We observed that augmenting N decreases

the bias from 4.8 when N = 1 to 0.4 when N = 3. We

plotted in Fig. IV-A, the distribution and a normal plot of the

normalized decision variable for the model with N = 3. With

increasing N the bias decreases (even if the marginal gain

saturates). Moreover, the correlation between the terms in e[k]
decreases significantly with augmenting N . That validates our

hypothesis that relates the bad anomaly detection performance

of PCA to temporal correlation.

B. Effect of non-stationarity

It remains another issue to solve: for N ≥ 4 the performance

decreases even if the bias in the decision variable decreases.

We investigated this observation and found that most of the

mis-detections for N ≥ 4 happen at the end of the second

week and during the third week of our dataset while they

were spread in the three weeks for N < 3. A possible

explanation is the stationarity issue: when N increases, the

model contains more parameters and becomes more sensitive

to the stationarity of the traffic metrics. This means that

[scale=0.48]plots/ROCcurve2.eps

Fig. 3. ROC curves resulting from KL expansion to the dataset with only
mean removal for different value of the temporal correlation range.

[width=0.9]plots/speudp2.eps

Fig. 4. Normal plot of normalized decision variable D[k] for N = 3

we can expect that anomaly detection performance decreases

with time and this decrease is more pronounced for larger

N . To further check this explanation, we plotted in Fig. 5

the ROC curves obtained only on the first week of anomaly

data for increasing values of N . These ROC curves are now

following the theoretical intuition: with augmenting N the

anomaly detection performance ameliorates. But, it still begins

to decrease for N = 10. This is compatible with our previous

hypothesis about the effect of non-stationarity on models with

increasing N .

Non-stationarity and model recalibration are indeed impor-

tant issues that need careful evaluation and analysis. It is out of

the scope of this paper and will be the subject of a forthcoming

paper.

C. Interest of weekly trend removal

We introduced in section II-E a method to remove the

daily and weekly trend. We showed also in Fig. 1 that this

approach has promising performance. By further applying

the KL expansion to the metrics pre-processed with mean

and weekly trend removal we obtain the ROC curves plotted

in Fig. 6. For the sake of comparison, we added in the

plot the best performance ROC curve derived before trend

removal with N = 3. The ROC curves in Fig. 6 show that

weekly trend removal alone attains a performance close to the

best model obtained without weekly trend removal. One can

achieve better performance by adding a KL expansion: one

can detect all anomalies with only 15% of false alarms. We

can detect 93% of them with less than 7% of false alarms.

Moreover, one can detect 55% of anomalies without any false

alarms. Analogously to what was described in section IV-B, by

augmenting N to 3 the performance degrades. We investigated

this and found results analogous to what was described earlier.

D. Analysis of the predictive models

We developed in section III-C an approach for analyzing the

model resulting from KL expansion. Particularly, we described

an approach to evaluate the model resulting from PCA or KL

expansion based on inferring the signal spectra at the output

of the predictive model. We will illustrate the approach on our

data in this section. We are showing in Fig. 7 the spectra of our

metrics estimated using the Yule-Walker approach [?]. We also

provide the spectra of the same metric predicted by the model

resulting from the KL expansion with different numbers of

kept components. The figure shows that applying the popular

heuristic that consists in maintaining enough components to

englobe 95% of variance is not satisfactory as it results in
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[scale=0.48]plots/ROCcurve4.eps

Fig. 5. ROC curves obtained over the first week of data for different values
of N .

[scale=0.48]plots/ROCcurve3.eps

Fig. 6. ROC curve resulting from KL expansion on the metrics after weekly
trend removal.

a spectra that is far from the initial spectra. Specifically the

predicted signal contains a higher level of high frequencies.

Moreover, the low frequency part of the spectra is not well

modeled. This means that using the 5 component model will

result in overestimating high frequencies and missing the

anomalies that are happening in lower frequencies. However,

using a 12 component filter gives a better approximation of the

initial signal. This leads to a finer methodology for choosing

how many components of the KL expansion to use. We should

choose enough components to have a good approximation

of the initial signal spectra particularly in the region of the

spectrum where expected anomalies will occurs.

The pole-zero diagram of the initial sytem along with the a

predictive model with 8 components are plotted in Fig. IV-D.

The plot shows how the predictive model approximates the

initial system by positioning its 8 poles and zeros in the z-

plane. If an anomaly detector designer wishes to detect a

particular type of anomaly signals he might use the above

Pole-zeros diagram and move slightly some of the poles or

zeros to emphasize specific parts of the transfer function

spectra to achieve the needed goal.

The approach here becomes similar to the design of an

equalizer in sound processing: the predictive filter acts as an

equalizer that should filter out essential features of the anomaly

signal such that these features appears in the error signal.

One can then use the predictive model resulting from the KL

expansion and ameliorate it to be more sensitive to specific

anomalies that will happen in specific regions of the spectra.

This novel anomaly detector design methodology opens new

perspectives for introducing a priori knowledge in the design

process. We will follow up this approach in our forthcoming

papers.

V. CONCLUSION

This paper began with a very practical problem: how to ap-

ply the popular PCA method in real world anomaly detection.

We found that direct application of the PCA method results

in poor performance in terms of ROC curves; we investigated

the problem and found that the main source of the problem

is the bias coming from correlation in prediction error terms.

After a detailed theoretical analysis, it appears that the correct

framework is not the classical PCA but rather the Karhunen-

Loeve expansion. We have presented the KL expansion and

have provided a Galerkin method for developing a predic-

tive model. This method has thereafter been applied to data

traces from the Switch network and we have shown that an

important improvement is attained when temporal correlation

is considered. We also have developed a methodology for

designing anomaly detection predictive filters and have shown

its application to real data.

It is noteworthy that this paper is not claiming that PCA is

the only way to do anomaly detection. By showing that PCA

is based on a predictive filter - just as the Kalman filter is

- we open way for a signal processing approach to anomaly

detection where the main challenge becomes to design filters

that will be adapted to anomaly features. To the best of our

knowledge, this is the first paper to introduce such an approach

and to remove completely the curtain of black magic that

draped the application of PCA to anomaly detection.
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