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On rational graphs

Christophe MORVAN

IRISA, Campus de Beaulieu, 35042 Rennes, France
christophe.morvan@irisa.fr

Abstract. Using rationality, like in language theory, we define a family
of infinite graphs. This family is a strict extension of the context-free
graphs of Muller and Schupp, the equational graphs of Courcelle and the
prefix recognizable graphs of Caucal. We give basic properties, as well
as an internal and an external characterization of these graphs. We also
show that their traces form an AFL of recursive languages, containing
the context-free languages.

1 Introduction

When dealing with computers, infinite graphs are natural objects. They emerge
naturally in recursive program schemes or communicating automata, for exam-
ple. Studying them as families of objects is comparatively recent: Muller and
Schupp (in [MS 85]) first captured the structure of the graphs of pushdown au-
tomata, then Courcelle (in [Co 90]) defined the set of regular (equational) graphs.
More recently Caucal introduced (in [Ca 96]) a characterization of graphs in
terms of inverse (rational) substitution from the complete binary tree. Step by
step, like Chomsky’s languages family, a hierarchy of graph families is built: the
graphs of pushdown automata, reqular graphs and prefix-recognizable graphs.

To define infinite objects conveniently, we have to use finite systems. For
infinite graphs, two kinds of finite systems are employed: internal systems or ex-
ternal systems. Roughly speaking an internal characterization is a machine pro-
ducing the arcs of the graph. An external characterization yields the structure
of the graph (usually “up to isomorphism”). There is, of course a relationship
between internal and external characterization: for example the pushdown au-
tomata are an internal characterization of the connected regular graphs of finite
degree whereas the deterministic graph grammars are an external system for
the family of regular graphs.

The purpose of this article is to give both internal and external characteri-
zation of a wider family of graphs. Using words for vertices, rationality (like in
language theory) will provide an internal characterization; it will also give basic
results for this family: for example rational graphs will be recognized by trans-
ducers; a rational graph is a recursive set; determinism for rational graphs will
be decidable. Then inverse substitution from the complete binary tree (like in
[Ca 96]) will be an external characterization of this family. Strangely this exten-
sion will prove to be a slight extension of the prefiz-recognizable graphs: instead
of taking the inverse image of the complete binary tree by a rational substitution



we will consider the inverse image of the complete binary tree by a linear substi-
tution (i.e., a substitution where the image of each letter is a linear language).
Finally properties of the traces of these graphs will be investigated: we will show
that the traces of these graphs form an abstract family of (recursive) languages
containing the context-free languages.

2 Rational graphs

In this section we will define a new family of infinite graphs, namely the set of
rational graphs. We will state some results for this family and give examples of
rational graphs.

2.1 Partial semigroups

This paragraph introduces rationality for partial semigroups and uses this notion
to give a natural introduction for rational graphs.

We start by recalling some standards notations: for any set E, its cardinal is de-
noted by |E|; its powerset is denoted by 2F. Let the set of nonnegative integers be
denoted by N. A semigroup S is a set equipped with an operation - : S x S — §
such that: for all u,v in S there exists w in S such that -(u,v) = w denoted by
u-v = w and this operation is associative (i.e., Vu,v,w € S, (u-v)-w = u-(v-w).
Finally, a monoid M is a semigroup with a (unique) neutral element (denoted
¢ along these lines) i.e., an element ¢ € M such that for all element w in M
U-E=E-U=U.

Now, a partial semigroup is a set S equipped with - : S x S — S, a partial op-
eration, with D C § x S the domain of -; set D need not be S x S. Moreover
we impose this operation to be associative as follows: [(u,v) € DA ((u-v),w) €
D] < [(v,w) € DA (u,(v-w)) € D] and in that case, u - (v-w) = (u-v) - w.
Meaning that if multiplication is defined on the one side, then it is defined on
the other side and both agree.

Notice that a partial semigroup S such that D is S x S is a semigroup.

Example 2.1. Given two semigroups (S1,-1) and (S2,-2) such that S; NSy is
empty. The union S = §7 U Sy, with the partial operation - defined as -1 over
the elements of S; and -5 over the element of Sy, is a partial semigroup.

Taking a new element | we complete any partial semigroup S into a semigroup
S U{L} by extending its operation - as follows:

a-b= 1 foralla,b € SU{L} such that (a,b) &€ D.
Also the product S x S’ of two partial semigroups S and S’ is a partial semigroup
for operation - defined componentwise:

(a,a’) - (b,b') = (a-b,a - V) for all (a,b) € D and (a/,V) € D'.
In order to define the rational subsets of a partial semigroup, we have to extend
its operation to its subsets:

A-B:={a-bla€ ANbe B } forevery A BCS



The powerset 25 of S, is a semigroup for - so defined.
Now, a subset P of a partial semigroup S is a partial subsemigroup of S, if P is
a partial semigroup for - of S i.e., P - P is a subset of P.
For any subset P of a partial semigroup S, following subset P+ = U7121 P"
(with P! = P and P"*! = P™. P for every n > 1) is the smallest (for inclusion)
partial subsemigroup of S containing P. Set PT is called the partial semigroup
generated by P. In particular (P1T)T = P*. Also, S is finitely generated if
S = P for some finite P.
A set P C S is a code if there is no two factorization in P* of the same element:
UL Uy = V1 Up A ULyennyUm,Vl,y..., 0y € P = m = nAV i€
[1---n]u; =v;
A partial semigroup S is free if there is code P such that PT = S.
For every W C 2%, we denote by | JW = {a | 3P € W,a € P}. Operator +
commutes with operator |, i.e., J(WT) = (JW)* for every W C 2°.
The (left) residual u= P of P C S by u € S is following subset:
v iP:={veS|u-ve P}
and satisfies following basic equality:
(u-v)"tP=v"Y(u"tP) for all u,v € S and P C S.

Definition 2.2. Let (S,-) be a partial semigroup. The family Rat(S) of ratio-
nal subsets of S is the least family R of subsets of S satisfying the following
conditions:

(i) 0 € R;{m} € R for all m in S;
(ii) if A,B € R then AUB,A-B and A* € R.

In order to generalize well known results for monoids in the case of partial
semigroups, and as our purpose is to deal with graphs, we will set some notations
and definitions for graphs and automata.

Let P be a subset of S. A (simple oriented labelled) P-graph G over V with arcs
labelled in P is a subset of V' x P x V. An element (s,a,t) in G is an arc of
source s, goal t and label a (s and t are vertices of G). We denote by Dom/(G),
Im(G) and Vg the sets respectively of sources, goals and vertices of G. Each
(s,a,t) of G is identified with labelled transition s %Hf or simply s —t if G is
understood.

A graph G is deterministic if distinct arcs with same source have distinct label:
r~%s A r—t = s =t. A graph is (source) complete if, for every label
a, every vertex is source of an arc labelled a: Ya € P, Vs € Vg, 3t s—t.
Set 2VXPTXV of PT-graphs with vertices in V is a semigroup for composition

relation: G - H := {TLbnf | Es,r%s/\s%t} forany GGH CV x Pt x V.
Relation i) denoted by :Z> or simply == if G is understood, is the existence

of a path in G labelled v in PT. For any L in S, we denote by s =L ¢ that there

exists u in L such that s == t.
The trace (or set of path labels) L(G, E, F) of G from a set E to a set F is the



following subset of PT:

L(G,E,F) == {ueS|3se€kE, JteF, s%t}

Given P C S, a P-automaton A is a P-graph G whose vertices are called states,
with an initial state i and a subset F' of final states; the automaton recognizes
subset L(A) of PT: L(A) := L(G,{i}, F). An automaton is finite (resp. de-
terministic, complete) if its graph is finite (resp. deterministic, complete). This
allows to state a standard result for rational subsets.

Proposition 2.3. Given a subset P of a partial semigroup S, Rat(PT) is

(i) the smallest subset of 2° containing O and {a} for each a € P, and closed
foru, - +
(ii) the set of subsets recognized by finite P-automata,
(iii) the set of subsets recognized by finite and deterministic P-automata.

We simply translated the standards definitions of rational subsets of monoids
given for example in [Be 79]. An interesting example of a partial semigroup is
the subject of these lines: the set of arcs (labelled with an element of a finite set)
between elements of a free monoid is a partial semigroup; its rational subsets
are the rational graphs.

2.2 Partial semigroups and graphs

In this section, we will consider an important example of partial semigroup: the
set of rational graphs. So consider an arbitrary finite set X and denote X™* its
associated free monoid. We will consider graphs as subsets of X*x Ax X* (the
set of graphs over X* with arcs labelled in A). For convenience, set 2% <X jg
denoted G 4(X™).

Now, with (u,a;,v) - (v, a;,v") = (u-u,a;,v-v"), set X* x {a;} x X* (a; in
A) is a monoid. As stated in Example 2.1 the union of these monoids (namely
X*xAx X*) is a partial semigroup. We denote by - the operation in X*xAx X*
(which is -; for each X* x {a;} x X*).

Remark: this - operation for graphs is indeed, similar to the synchronization
product for transition systems defined by Nivat and Arnold in [AN 88].

We are now able to define the set of rational graphs.

Definition 2.4. The set of rational graphs, denoted Rat(X* x Ax X*) is the
family of rational subsets of X™* x A x X*.

Let us now recall that a transducer is a finite automaton over pairs (see for
example [Au 88] [Be 79]). A rational relation (i.e., a rational subset of X* x X*)
is recognized by a rational transducer.

There is a strong relationship between rational graphs and rational relations and
to characterize the family of rational graphs in a more practical way we will use
labelled transducers.



Definition 2.5. A labelled transducer T = (Q, I, F, E, L) over X, is composed
of a finite set of states (), a set of initial states I C @, a set of final states F C Q,
a finite set of transitions (or edges) F C Q x X*x X*x @ and an application L
from F into 24.

Like for P-graphs, transition (p, u, v, q) of transducer T will be denoted by p uT/% q

or simply pu—/v) q if T is understood. Now similarly an element (u,d,v) € X*x

un/vn,

AxX™* is recognized by transducer T if there is a path pg u17/v>1 P1 Pn—1 ? Dn

andpo €I, p, € F,u=uj - Up, v =101 v, and d € L(py).
Remark: an illustration of transducer execution will be given in Example 2.7.

Proposition 2.6. A graph G in G4(X*) is rational if and only if it satisfies
one of the following equivalent properties:

(i) G belongs to the smallest subset of GA(X™*) containing:

@,{6&5},{xi>5} and {s—d>x}, forallz € X, alld € A, and closed
under U, - and +;

(i) G is a finite union of rational relations over each letter:
G = Ugea Ra, for Rq € Rat(X* x {d} x X*);

(iii) G is recognized by labelled rational transducer.

This Proposition states that for any graph G in Rat(X *xAxX*), the relation:

% = {(u,v) | u % v} is rational for each d in A. Therefore we also introduce
? = Ugea %), which is also a rational relation. Naturally we denote by

%(u) (resp. ?(u)) the image of word u by relation %) (resp. ?) (and

similarly for subsets of X). Also for a rational graph G there are possibly many
transducers generating it, thus we will denote by ©(G) the set of transducers
generating G.

We will now give some examples of rational graphs.

Example 2.7. This graph: <¢_a 4 o 4°

Ty
\
| \ Aja
is a rational graph generated by this transducer : m
AJA
() —O-



Notice that its second order monadic theory is undecidable and therefore ratio-
nal graphs have an undecidable second order monadic theory.

Why does the arc (AB,b, AB?) belong to the graph? Simply because the follow-
ing path is in the transducer:

A/A e¢/B B/B
P—Dp——>q2 — Q2

and that b is associated to the final state go.

Example 2.8. This graph : 000 <"
ooa/;J
.2, ?/'b\ 001e
»| o bJ

We finish with a last example showing that the transition graphs of Petri
nets are rational graphs.

Example 2.9. For more detail on Petri nets the reader may refer to [Re 85]. A
Petri net can be seen as a finite set of transitions of this form:
AM ATz A Sy Al Al Al with AT representing there are z coins in

place A; (d represents the label (if any) of the transition). Following transducer
generates the transition graph associated to the above transition:

A /Ay Ag/Ag

m n LO n ! 1
All/A11A22/A22 A:an/Ad
— e (p) L L2 T2

Each vertex of the generated graph correspond to a marking of the Petri
net. Each arc of the graph represents that a transition has been fired.




2.3 Some results for rational graphs

This section will introduce results for this family of graphs. Some of these results
are just a reformulation of known results over rational relations. Others are
simple facts on these graphs and their boundary.

The first fact is that this family is an extension of previous families. Simply
recall that every prefiz-recognizable graph (defined in [Ca 96]) is a finite union of
graphs of the following form :

(U -5 V) W:i={uww % vw|ucUAveVAweW}

with U, V, W rational sets.

This characterization ensures that prefix-recognizable graphs are rational graphs.
As the regular graphs (defined in [Co 90]) are prefiz-recognizable graphs, they are
rational too. Furthermore, the graphs in Examples 2.7 and 2.8 are not prefiz-
recognizable graphs thus the inclusion is strict. Let us now translate some well-
known results for rational relations, to rational graphs (the proofs will be omitted
they are mostly direct consequences of results found in [Au 88] and [Be 79]).

Proposition 2.10. A rational graph G is of finite out-degree if and only if there
exists o transducer T € O(G) such that there exists no cycle in T labelled on the
left with the empty word which is not labelled on the right with the empty word.
In other words the only cycles labelled on the left €, are labelled on the right €.

Remark: naturally this proposition can be translated to characterize the graphs
of finite in-degree, by simply replacing right by left and vice-versa.

Proposition 2.11. Every rational graph is recursive: it is decidable whether an
arc (u,d,v) belongs to a rational graph.

Theorem 2.12. [t is decidable whether a rational graph is deterministic (from
its transducer).

Proposition 2.13. The inclusion and equality of deterministic rational graphs
1s decidable.

Remark: unfortunately this result ceases to be true for general rational graphs
([Be 79] Theorem 8.4, page 90).

We have already seen that the second order monadic theory of these graphs is
undecidable in general. We will now see that it is also the case for the first order
theory.

Proposition 2.14. The first order theory of rational graphs is undecidable.

Proof. We will prove this proposition by reducing Post’s correspondence prob-
lem (P.C.P.) to this problem. Let us recall the P.C.P.: given an alphabet X and
(uo,vo), (U1,v1),e., (Un,vy) elements of X* x X*. Does there exist a sequence
0 <i1,%2,...,%m < n, such that uous, - - u;,, = vov;, -+ v, 7 To an instance of
P.C.P. (i.e. a family (u;,v;)) we associate following transducer:



wi/vy (for i € [1---n])

O—=
a

The resolution of P.C.P. becomes finding a vertex s such that s — s is an arc
of the graph generated by the transducer. It is a first order instance, therefore,as
P.C.P. is undecidable, the first order theory of rational graphs is not decidable
in general. ad

Before giving another negative decision result, let us denote by @ the mirror
of word u (defined by induction on the length of u: £ = ¢ and au = @a (for any
u with |u| > 0).

Proposition 2.15. Accessibility is not decidable for rational graphs in general.

Proof. Once again, we use P.C.P. Using the same notations as earlier define a
(word) rewriting system G, using two new symbols # and $, in the following way:

$  — us0; Vi € {0,---,n}
G $ — #
ApA — # VAe X

Now “P.C.P. has a solution” is equivalent to the existence of a derivation from
up$vo to #. But, considering the following transducer:

A/A(for A € X) A/A(for A € X)
() e @
$/u;$v; (for i € {0, -, n})
@ A#A/#(for A € X) “
the question becomes: is there a path leading from wug$vy to the vertex # 7
Answering the last question would allow P.C.P. to be solved in the general case

which is a contradiction. Therefore accessibility is undecidable for the rational
graphs in general. ad

Remark: the transitive closure of a rational graph is, at least, uneffective. If this
construction were effective and rational, then accessibility for rational graph
would be decidable.

Now we will see a case where accessibility is decidable for rational graphs. A
transducer T is increasing if every pair (u,v) recognized by T is such that the
length of v (denoted by |v|) is greater or equal to the length of u : |v| > |ul.

Proposition 2.16. The accessibility is decidable for any rational graph with an
increasing transducer.

Proof. Let us denote by TS™(u) following set: TS™(u) := [JI_, T"(u). For all
n € N this set is rational.

Now, let G be a rational graph generated by an increasing transducer T and let
u and v be two vertices of G. Let us put ng = [{w € X* | |u| < |w| < |v|} =
|X|" 4 -+ |X|I"l. Vertex v is accessible from u if and only if v belongs to
TS™ (). Thus accessibility is decidable for rational graphs with an increasing
transducer. ad



We now give a technical Lemma that allows the construction of a graph that
is not structurally rational.

Lemma 2.17. Let G be a rational graph of finite out-degree. There exists two
integers p and q such that for every (s,a,t) € G we have |t| < p.|s| + ¢

Example 2.18. Consider an infinite tree in X*xAxX™* such that every vertex

of depth n has 92" sons. This tree is not strucurally rational, in other words
whatever name are given to its vertices this graph is never a rational graph. This
is a direct consequence of previous lemma: say n is the length of the root, there
are at most | X |("P'+P'" a++9) vertices of depth L.

Despite these results the transducers are not able to capture the structure of
rational graphs. A/A B/B

For example, this transducer: ) an
- @ __=/AB

A2p2  aA3B3

2

€ a a

generates this graph: A o a2, ABB2 A'B?

AB

B o AB2, A2B3 A3B%

|

|

|
The connected component of the empty word, €, is a straight-line. It is “up
to isomorphism” obviously rational, but as a sub-graph of this graph, it is not
rational (its vertices form a context-free language). Therefore we need an external
(“up to isomorphism”) characterization of these graphs. This is the subject of
the next section.

3 An external characterization

In this section, we will characterize rational graphs using inverse linear substitu-
tions. Labelled transducers are an internal representation of rational graphs, it
clearly depends on the name of the vertices. But often in graph theory, the name
of the vertices is not relevant, it carries no information. An external characteri-
zation, like the graph grammars for equational graphs, produces graphs without
giving names for vertices. It only gives the structure of the graph. Inverse linear
substitution is an external characterization of rational graphs.

3.1 Graph isomorphism

An external characterization of rational graphs is given “up to isomorphism”.
Two graphs G7 and Go in G4(X™) are isomorphic, if there is a bijection ¥ :

V(G1) — V(Gz2) such that: s; %32(2’.@., (s1,d,82) € Gy) if and only if
1

d
1&(51)?2”#(82)-



Two isomorphic graphs have the same structure: they are the same up to a re-
naming of the vertices.

Now let us consider the equivalence (=) generated by graph isomorphism: we
say that G is equivalent to G2 (denoted G; = G») if G; and G2 are isomor-
phic. This equivalence relation provides us with a partition of G_4(X™*) denoted
Graphy := G4(X*)/ =. This allows the introduction of the set of structural
rational graphs:

GRat 4 = {[G]= € Graph | G € Rat(X*x AxX")}

This set is the set of graphs that are isomorphic to some rational graph.
Set Graph 4 (and GRat 4) does not depend on the choice of set X, therefore we
can choose X to be any two letters alphabet with no loss of generality.

Lemma 3.1. For all subset X' (with at least two elements) of X and all class
[G)= of Grapha (= G4(X*)/ =) there exists G in GA(X'") such that Gy €
GI-.

We now have to characterize the structure of GRat 4. This is the goal of the
next section.

3.2 Substitution

Recall the definition of the prefiz-recognizable graphs (family RECRq:). This
family has been defined as the set of graphs obtained from the complete binary
tree by inverse rational substitution, followed by rational restriction. We will
use the same process (actually a linear context-free substitution) to obtain the
family of rational graphs.

A substitution over a free monoid X* is a morphism ¢ : A* — 2% which
associates to each letter in A a language in X*. Our purpose is to study graphs,
starting from the complete binary tree (A) labelled X = {A, B}. To move by

inverse arcs, we use a new alphabet : X = {A, B} and we say that x i>y if
Y A, 4. Given a language L and two vertices x and y, recall that x :/L1> y < Ju e
L,x :Z> y. Now, given a substitution ¢ : A* — 2<XUY)*, we can define the graph
@ 1(A) in the following way:
-1 _ d »(d)
e (A ={z—y|de AN $:A>y}
Given a language L, we define now Ly = {s | r :j> s}. It allows us to consider

the graph <p*1(/1)‘ L,: it is the image of the complete binary tree by an inverse
substitution followed by a restriction; if L is rational, we say a rational restriction.

Example 3.2. Example 2.7 states that the grid is a rational graph. Following
substitution: h(a) = {B" AB™| m > 0}, h(b) = {B} over the complete binary
tree on {A, B}, followed with the restriction to L = A*B* produces a graph
isomorphic to the grid:



Now, it is well know that there is a close relationship between linear languages
and rational relations (a linear language is a context-free language generated by
a grammar with only, at most, one non-terminal on the right hand side of each
rule). And indeed, if we denote the set of linear languages over the alphabet
X UX by Lin(X U X), we have the following proposition.

Proposition 3.3. The set GRat 4 is a subset of the family of the graphs ob-
tained from the complete binary tree (A) by an inverse linear substitution, fol-
lowed by a rational restriction:

GRata C {[p~"(A)1,]= | Vd € A, p(d) € Lin(X UX) A L € Rat(X)}

Proof (Sketch). We first transform the transducer generating the graph (G) so
that each vertex begins with the same prefix. Then we produce linear languages
(Lg) such that (u,d,v) € X*x Ax X* is an arc of G if and only if Tw € Ly. We
then define ¢(d) to be Lg. It only remains to define L (the rational restriction)
to be L := Dom(G) U Im(QG) O

The converse of this result would help us to grab the structure of rational
graphs. Unfortunately it is not obvious. Actually the following example illustrate
the difficulty of the naive converse of Proposition 3.3.

Example 3.4. Consider ¢(a) = {BBA"B"|n € N}, it is a linear substitution.
Consider L = BA*B* and the graph G = ¢~ '(A)|z,. Structurally, graph G is
rational (it is the star). But the graph naturally associated to G (according to
¢(a) and L) is G' = {(B,a, BA™"B")|n € N}, which is not rational.

So there is a deep isomorphism problem to get the converse. Actually, we
will try to inject rationality in the “linear language” to achieve a complete char-
acterization of rational graphs.

A natural way to introduce rationality into Lin(X U X) would be to im-
pose the projections over barred and non-barred letters to be rational. The next
example shows that again, things are not so nice.

Example 3.5. Consider ¢(a) = {ABBA"B™| n > m}U{BBA"B™| m > n}
@ is a linear substitution. Moreover it has rational projections over barred
and non-barred letters. Consider L = BA*B* and the graph G = @_1(A)|LA.



Structurally, graph G is rational (it is two stars). But the graph naturally
associated to G (according to ¢(a) and L) is G' = {(BA,a, BA"B™)| n >
m} U{(B,a, BA"B™)| m > n}, which is not rational (its intersection with the
recognizable set {BA} x {a} x BA*B* is {(BA,a, BA"B™)| n > m} which is
not rational).

Now consider the set Ratlin(X U X) of linear languages (called rational-
linear) over (X UX)* such that the production of their grammars are of following
form: p — uqv (with w € X" and v € X*)orp—e.

Theorem 3.6. Set GRat 4 is precisely the set of graphs obtained from the com-
plete binary tree (A) by a rational-linear substitution, followed by a rational
restriction :

GRata = {{¢" " (A)1,]= | Vd € A, ¢(d) € Ratlin(X UX) A L € Rat(X)}

Proof (Sketch). The first inclusion is treated in Proposition 3.3. For the reverse
inclusion we first take a graph G image of a rational-linear substitution, followed
by a rational restriction then we need to check that it is possible to produce a
transducer from the grammars of ¢(d) for each d. Then we show that this graph
contains G, finally, using rational intersection we obtain precisely G. a

Now that an external characterization of the rational graphs has been given,
the next section will consider the properties of the traces of rational graphs.

4 The traces of rational graphs

We have already seen that there is a strong connection between language theory
and rational graphs. In this section we will see another connection between
graphs and languages, in terms of traces.

We first recall that the trace of a graph G leading from a vertex set I (of initial
states) to a vertex set F' (of final states) is the set of all the path labels in the
graph, leading from a vertex in the set of initial states to a vertex in the set of
final states:

LG, I,F):={u|3sel3te F,S:ZNS}

In other words the trace of a graph is “the language of its labels”. For example
the traces of the finite graphs are all rational languages and the traces of prefiz-
recognizable graphs are all context-free languages. Notice by the way that the
traces of rational graphs contain therefore every context free language.

Proposition 4.1. The traces of rational graph leading from a rational vertex
set to a context free vertex set (or vice-versa) is recursive

Proof. In order to check whether a word w is in the trace of graph G (from a

set I to a set F'), it is just to check if the set S = u%i)(u(%l)(- » %(1) )



intersects set F. If set I is rational (resp. context-free) its image by a rational
transduction is rational (resp. context-free), hence by a simple induction, set S
is rational (resp. context-free). Therefore it is decidable whether SN F is empty.

O

Let us denote by TR the family of the traces of rational graphs leading from
a rational vertex set to a rational vertex set: TR = {L(G,I,F)| G € Rat(X* x
AxX*YNI, F € Rat(X*)} (notice that we could as well restrict ourselves to a
unique initial state and a unique final state). Now we will show that set TR form
an Abstract Family of Languages (AFL), that is, it satisfies following properties:

— closure for intersection with a rational (regular) language,
— closure under non-erasing (monoid)morphism, and inverse morphism,
— for each L, L' € TR we have L- L', LNL',L*,L* € TR.

Proposition 4.2. The intersection of two elements of TR is an element of TR.

Proof. Consider two elements L and L' of TR. Say L = L(G,I,F) and L' =
L(G',I,F). The language L N L' is actually the trace of G- ({8} x A x {s}) -G’
(with $ a new symbol) between I - {s} - I¢» and Fg - {s} - Fgr. Hence LN L' in
an element of TR. O

As rational languages are traces of rational graphs (finite graphs are rational
graphs), family TR is closed under intersection with rational languages.

Now let us recall that a finite (resp. rational) substitution o : A* — 24" is a
morphism such that for each letter d in A o(d) is a finite (resp. rational) subset
of A*. A substitution is non-erasing if ¢ ¢ o(d) for all d € A.

Proposition 4.3. Family TR is closed under non-erasing finite substitution.

Proof (Sketch). Consider o a non-erasing finite substitution, and L a language in
TR. We take a graph G such that L = L(G, I, F'), and T a transducer generating
G. We, then, construct a new transducer such that each production d in T is
replaced by a path u (in the corresponding graph), for each u € o(d). The trace
of the graph generated by this transducer is o (L) O

Following corollary is a direct consequence of this proposition.
Corollary 4.4. Family TR is closed under non-erasing morphism.

Notice that the condition “non-erasing” is essential for our proof. A interest-
ing question is whether this condition is necessary.

Proposition 4.5. Assume that L is an element of TR and that o is a finite
substitution over A* then o~ 1(L) is a language of TR.

Proof (Sketch). This proposition is a consequence of Elgot and Mezei’s theorem,
which states that the composition of two rational relations is a rational relation
(see for example [Be 79], Theorem 4.4 p 68). Using this we can produce a rational
graph in which a finite number of finite path are replaced by arcs. Which proves
the Proposition. a



Remark: Note that it is not as straightforward for inverse rational substitution.
Actually it seems that it is not true for inverse rational substitution: consider any
rational graph with one label (a) and the inverse rational substitution o(a) = a*.
The graph image with the same approach would be the transitive closure of
the original graph, which is not effectively rational (and might not even be
structurally rational) as stated in the remark after Proposition 2.15.

Following corollary is an obvious consequence of proposition 4.5.

Corollary 4.6. Family TR is closed under inverse morphism.

Proposition 4.7. Family TR is closed under concatenation, Kleene plus and
star.

Proof (Sketch). The argument is more or less the same as for finite automata.
We use operation over rational relations to get the results. a

As stated earlier, we only have now to summary these results.

Theorem 4.8. The traces of rational graphs, leading from a rational vertex set
to a rational vertex set, form an AFL ( Abstract Family of Languages).

Proof. This result is simply a brief summary of corollaries 4.4, 4.6 and proposi-
tions 4.2 and 4.7. ]

Now we have an abstract family of languages that contains the context free
languages. This AFL is a subset of the recursive languages. It seems that this
family is composed of the context sensitive languages.

Conjecture 4.9. The traces of the rational graphs are precisely the context sen-
sitives languages.

Notice also that recently graphs of linear bounded machines (which charac-
terize context sensitive languages) have been studied in [KP 99].

5 Conclusion

In this paper, a general family of graphs has been introduced. Rational graphs
are a strict extension of previously studied families. It is a well grounded family,
related to well known structures of language theory. We have given both an
internal and an external characterization, as well as some basic properties.

Unfortunately, or fortunately depending on the point of view, it is a very ex-
pressive family. Therefore many decision results are lost. An interesting question
is to study restrictions of this family that will retain decision results from former
families.

Traces of rational graphs are another aspect of this family. We have shown
that it forms an abstract family of recursive languages. An interesting question
is to know if these traces are precisely the context sensitive languages.



Rational trees also seem to be an interesting field of research, but this has
not been done yet.
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