
HAL Id: hal-00620062
https://hal.science/hal-00620062v1

Submitted on 3 Oct 2011 (v1), last revised 20 Feb 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On rational graphs
Christophe Morvan

To cite this version:

Christophe Morvan. On rational graphs. Fossacs 00, 2000, France. pp.252-266. �hal-00620062v1�

https://hal.science/hal-00620062v1
https://hal.archives-ouvertes.fr

Introduction to rational graphs

Christophe Morvan

IRISA, Campus de Beaulieu, 35042 Rennes, France
cmorvan@irisa.fr

Abstract

Using rationality, like in language theory, we define a family of infinite graphs.
This family is a strict extension of the context-free graphs of Muller and Schupp,
the equational graphs of Courcelle and the prefix recognizable graphs of Caucal. We
give basic properties, as well as an internal and an external characterization of these
graphs. We also show that their traces form an AFL of recursive languages, containing
the context-free languages.

1 Introduction

When dealing with computers, infinite graphs are natural objects. They emerge naturally
in recursive program schemes or communicating automata, for example. Studying them as
families of objects is comparatively recent: Muller and Schupp (in [MS 85]) first captured
the structure of the graphs of pushdown automata, then Courcelle (in [Co 90]) defined
the set of regular (equational) graphs. More recently Caucal introduced (in [Ca 96]) a
characterization of graphs in terms of inverse (rational) substitution from the complete
binary tree. Step by step, like Chomsky’s languages family, a hierarchy of graph families
is built: the graphs of pushdown automata, regular graphs and prefix recognizable graphs.

To define infinite objects conveniently, we have to use finite systems. For infinite graph-
s, two kinds of finite systems are employed: internal systems or external systems. Roughly
speaking an internal characterization is a machine producing the arcs of the graph. An
external characterization yields the structure of the graph (usually “up to isomorphism”).
There is, of course a relationship between internal and external characterization: for ex-
ample the pushdown automata are an internal characterization of the connected regular
graphs of finite degree whereas the deterministic graph grammars are an external system
for the family of regular graphs.

The purpose of this article is to give both internal and external characterization of
a wider family of graphs. Using words for vertices, rationality (like in language theory)
will provide an internal characterization; it will also give basic results for this family: for
example rational graphs will be recognized by transducers; a rational graph is a recursive
set; determinism for rational graphs will be decidable. Then inverse substitution from the
complete binary tree (like in [Ca 96]) will be an external characterization of this family.
Strangely this extension will prove to be a slight extension of the prefix recognizable graphs:
instead of taking the inverse image of the complete binary tree by a rational substitution
we will consider the inverse image of the complete binary tree by a linear substitution (i.e.,
a substitution where the image of each letter is a linear language). Finally properties of
the traces of these graphs will be investigated: we will show that the traces of these graphs
form an abstract family of (recursive) languages containing the context-free languages.

1

2 Rational graphs

In this section we will define a new family of infinite graphs, namely the set of rational
graphs. We will state some results for this family and give examples of rational graphs.

2.1 Partial semigroups

This paragraph introduces rationality for partial semigroups and uses this notion to give
a natural introduction for rational graphs.
We start by recalling some standards notations: for any set E, its cardinal is denoted by
|E|; its powerset is denoted by 2E . Let the set of nonnegative integers be denoted by N.
A semigroup S is a set equipped with an operation · : S × S → S such that: for all u, v
in S there exists w in S such that ·(u, v) = w denoted by u · v = w and this operation is
associative (i.e., ∀u, v,w ∈ S, (u · v) · w = u · (v · w). Finally, a monoid M is a semigroup
with a (unique) neutral element (denoted ε along these lines) i.e., an element ε ∈M such
that for all element u in M u · ε = ε · u = u.
Now, a partial semigroup is a set S equipped with a partial operation · : S × S → S, with
D ⊆ S × S the domain of ·; set D need not be S × S. Moreover we impose this operation
to be associative as follows: [(u, v) ∈ D∧ ((u · v), w) ∈ D] ⇔ [(v,w) ∈ D∧ (u, (v ·w)) ∈ D]
and in that case, u · (v · w) = (u · v) · w. Meaning that if multiplication is defined on the
one side, then it is defined on the other side and both agree.
Notice that a partial semigroup S such that D is S × S is a semigroup.

Example 2.1. Given two semigroups (S1, ·1) and (S2, ·2) such that S1∩S2 is empty. The
union S = S1 ∪ S2, with the partial operation · defined as ·1 over the elements of S1 and
·2 over the element of S2, is a partial semigroup.

Taking a new element ⊥ we complete any partial semigroup S into a semigroup S ∪ {⊥}
by extending its operation · as follows:

a · b = ⊥ for all a, b ∈ S ∪ {⊥} such that (a, b) 6∈ D.
Also the product S × S′ of two partial semigroups S and S′ is a partial semigroup for
operation · defined componentwise:

(a, a′) · (b, b′) = (a · b, a′ · b′) for all (a, b) ∈ D and (a′, b′) ∈ D′.
In order to define the rational subsets of a partial semigroup, we have to extend its
operation to its subsets:

A · B := {a · b | a ∈ A ∧ b ∈ B } for every A,B ⊆ S

The powerset 2S of S, is a semigroup for · so defined.
Now, a subset P of a partial semigroup S is a partial subsemigroup of S, if P is a partial
semigroup for · of S i.e., P · P is a subset of P .
For any subset P of a partial semigroup S, following subset P+ =

⋃
n>1 P

n (with P 1 = P

and Pn+1 = Pn · P for every n > 1) is the smallest (for inclusion) partial subsemigroup
of S containing P . Set P+ is called the partial semigroup generated by P . In particular
(P+)+ = P+. Also, S is finitely generated if S = P+ for some finite P .
A set P ⊆ S is a code if there is no two factorization in P+ of the same element:

u1 · · · um = v1 · · · vn ∧ u1, . . . , um, v1, . . . , vn ∈ P ⇒ m = n ∧ ∀ i ∈ [1 · · · n], ui = vi

A partial semigroup S is free if there is code P such that P+ = S.
For every W ⊆ 2S , we denote by

⋃
W = {a | ∃P ∈ W,a ∈ P}. Operator + commutes

with operator
⋃

, i.e.,
⋃

(W+) = (
⋃
W)+ for every W ⊆ 2S .

Lemma 2.2. We have
⋃

(W+) = (
⋃
W)+ for every W ⊆ 2S

2

Proof.

u ∈
⋃

(W+) ⇔ ∃P1, . . . , Pn ∈W, u ∈ P1 · P2 · · ·Pn

⇔ ∃P1, . . . , Pn ∈W∃u1 ∈ P1, . . . , un ∈ Pn, u = u1 · u2 · · · un

⇔ ∃u1, . . . , un ∈
⋃
W,u = u1 · u2 · · · un

⇔ u ∈ (
⋃
W)+

The (left) residual u−1P of P ⊆ S by u ∈ S is following subset:
u−1P := {v ∈ S | u · v ∈ P}

and satisfies following basic equality:
(u · v)−1P = v−1(u−1P) for all u, v ∈ S and P ⊆ S.

Definition 2.3. Let (S, ·) be a partial semigroup. The family Rat(S) of rational subsets
of S is the least family R of subsets of S satisfying the following conditions:

(i) ∅ ∈ R; {m} ∈ R for all m in S;

(ii) if A,B ∈ R then A ∪B,A · B and A+ ∈ R.

Remark: Partial associativity is necessary to the definition of An. It ensures that An is
independent of the order of the multiplications. Indeed
In order to generalize well known results for monoids in the case of partial semigroups,
and as our purpose is to deal with graphs, we will set some notations and definitions for
graphs and automata.
Let P be a subset of S. A (simple oriented labelled) P -graph G over V with arcs labelled
in P is a subset of V ×P×V . An element (s, a, t) in G is an arc of source s, goal t and label
a (s and t are vertices of G). We denote by Dom(G), Im(G) and VG the sets respectively
of sources, goals and vertices of G. Each (s, a, t) of G is identified with labelled transition
s

a−→
G
t or simply s a−→ t if G is understood.

A graph G is deterministic if distinct arcs with same source have distinct label: r a−→ s ∧
r

a−→ t ⇒ s = t. A graph is (source) complete if, for every label a, every vertex is source
of an arc labelled a: ∀a ∈ P, ∀s ∈ VG, ∃t s a−→ t. Set 2V ×P+×V of P+-graphs with vertices
in V is a semigroup for composition relation: G ·H := {r a·b−→ t | ∃s, r a−→

G
s ∧ s b−→

H
t} for

any G,H ⊆ V ×P+ ×V . Relation u−→
G+

denoted by u=⇒
G

or simply u=⇒ if G is understood,

is the existence of a path in G labelled u in P+. For any L in S, we denote by s L=⇒ t that

there exists u in L such that s u=⇒ t.

The trace (or set of path labels) L(G,E,F) of G from a set E to a set F is the following
subset of P+:

L(G,E,F) := {u ∈ S | ∃ s ∈ E, ∃ t ∈ F, s u=⇒
G
t }

Given P ⊆ S, a P -automaton A is a P -graph G whose vertices are called states, with an
initial state i and a subset F of final states; the automaton recognizes subset L(A) of P+:
L(A) := L(G, {i}, F). An automaton is finite (resp. deterministic, complete) if its graph
is finite (resp. deterministic, complete). This allows to state a standard result for rational
subsets.

Proposition 2.4. Given a subset P of a partial semigroup S, Rat(P+) is

3

(i) the smallest subset of 2S containing ∅ and {a} for each a ∈ P , and closed for ∪, ·,+
(ii) the set of subsets recognized by finite P -automata,

(iii) the set of subsets recognized by finite and deterministic P -automata.

Proof. Let us first denote by Rat(P), Reco(P+), Recofd(P+) the sets (i), (ii) and (iii).
• Rat(P) ⊆ Reco(P+). Set Reco(P+) contains ∅ and {a} for each a ∈ P . It is closed for
∪, · and + for the same reasons as for monoids. Therefore, Rat(P) which is the smallest
subset of 2S satisfying these properties is a subset of Reco(P+).
• Reco(P+) ⊆ Recofd(P+). Consider L ∈ Reco(P+) and A a finite P -automaton such
that L(A) = L. As for monoids, we only have to determinize (locally) G (the P -graph as-
sociated to A): let V be the set of vertices of G, we construct a graph G′ in 2V ×P×2V that
will be deterministic. The automaton A′ will have G′ for graph, state {i} (the subset of V
reduced to i) as initial state and as set of final states, set F ′ := {Q | Q ⊆ V ∧ Q∩F 6= ∅}.
• Recofd(P+) ⊆ Rat(P+). Now, using an induction over the number of states of the
automata and lemma 2.2 we show that each element of Recofd(P+) is a finite union and
+, of the singletons of P , and thus an element of Rat(P+).
• Now, Rat(P) = Reco(P+) = Recofd(P+), it remains to show that these sets are
Rat(P+).
By definition Rat(P) ⊆ Rat(P+), then by induction on the structure of Rat(P+): single-
tons of P+ are concatenation of singletons of P and are therefore in Rat(P), therefore by
minimality of Rat(P+) we have Rat(P+) ⊆ Rat(P), which concludes this proof.

Let us now consider another family of subsets of a partial semigroup S: the recognizable
subsets of S.

Definition 2.5. A partial semigroup morphism ϕ : S1 → S2 where (S1, ·1) and (S2, ·2)
are partial semigroups (with Di domain of ·i), is an application such that, for all u, v in
S1: if (u, v) ∈ D1 then (ϕ(u), ϕ(v)) ∈ D2 and ϕ(u) ·2 ϕ(v) = ϕ(u ·1 v)
This definition is a natural extension of semigroups morphisms: if we consider two semi-
groups and a partial semigroup morphism between them, this morphism is a semigroup
morphism.

Definition 2.6. A subset P ⊆ S (S a partial semigroup) is recognizable if there exist a
finite partial semigroup S′, a partial semigroup morphism ϕ : S → S′ and a subset P ′ ⊆ S′

such that P = ϕ−1(P ′).

Remark: the set of recognizable subsets of a partial semigroup S is denoted by Rec(S).
Also, notice that the image of the morphism could, as well, be a finite monoid; in that
case the recognizable subsets remain the same.
Now, a graph G is said path-deterministic if graph G+ is deterministic, i.e., if u=⇒

G
is a

function for every u in P+: r u=⇒ s ∧ r u=⇒ t ⇒ s = t.
When a graph G is path-deterministic and complete, we denote by su the unique state
such that s u=⇒ su ; in particular s(u · v) = (su)v.

This allows the use of P -automata to characterize recognizable subsets of P+.

Proposition 2.7. Given a subset P of a partial semigroup, Rec(P+) is the set of subsets
recognized by the complete path-deterministic P -automata having a finite set of states.

4

Proof. Let us first denote by Recocdd(P+) the set of subsets of P+ recognized by a com-
plete path-deterministic P -automata having a finite set of states. We have to prove that
Recocdd(P+) = Rec(P+).

• Recocdd(P+) ⊆ Rec(P+). Let us consider L ∈ Recocdd(P+), A a P -automaton such
that L = L(A), G be the associated graph and V the set of its vertices. As |V | is finite, the
set of fonctions from V to V (denoted V V) is a finite monoid for composition. We define
now a function h : P+ → V V , such that to every u in P is associated the function u such
that u(p) = pu for all p in V . This function is well defined because A is path-deterministic.
This function is a partial semigroup morphism because the automaton is complete: [[inu-
tile ? let u and v be two elements of P+ such that u · v is defined. u · v ∈ P+ therefore
h(u ·v) is defined. Also, h(u) and h(v) are defined, for every state p ∈ V , h(u)(p) is defined
(A is complete), it is a unique state q of V , as A is complete, h(v)(q) is defined, it is a
unique state r of V . This defines a path from p to r labelled u · v and therefore, as A is
path-deterministic, h(u · v)(p) = r = h(u)oh(v)(p). So h is a partial semigroup morphism,
]] now consider finite subset of V V P = {u | u(i) ∈ F}, set L is equal to h−1(P) and
therefore recognizable.

• Rec(P+) ⊆ Recocdd(P+). Consider L ∈ Rec(P+) and say L = h−1(N) for h a
partial semigroup morphism and N ⊆ S with (S, ·S) a finite partial semigroup (and DS

the domain of ·S). Consider set M := S ∪ {⊥, ε} with operation · defined as follows:
a · b = ⊥ ∀a, b ∈ S ∪ {⊥}, (a, b) 6∈ DS and a · ε = ε · a = a ∀a ∈ S ∪ {⊥}

(M, ·) is a partial semigroup. Morphism h can be extended to M (composed with
canonical injection of S into M). We still have L = h−1(N), with N ⊆ M . We construct
the automaton A, using elements of M as vertices: G := {(p, u, p ·h(u)) | u ∈ P ∧ p ∈M},
now A := (G, {ε}, N).
First, does A satisfies the conditions of Proposition 2.7?
Automaton A has a finite set of states (M is a finite monoid), it is complete by construction.
In order to establish that A is path-deterministic and it recognizes set L we will show that:

s
u=⇒
G
t⇒ t = s · h(u)

By induction on n > 1 for u ∈ Pn.
(Basic) n=1. by construction of G.
(Induction) Suppose for all i 6 n, (u ∈ P i): s u=⇒

G
t ⇒ t = s · h(u). Now let s au=⇒

t
with

a ∈ P and u ∈ Pn+1. There exists r such that s a−→ r
u=⇒ t. By basic and induction

conditions, r = s · (a) and t = r · h(u). Therefore, t = s · h(a) · h(u) = s · h(a · u).

Thus A is path-deterministic . And also A recognizes L:

L(A) = {u ∈ P+ | ∃s ∈ L, ε
u=⇒h(s)}

= {u ∈ P+ | ∃s ∈ L, h(s) = h(u)}
= h−1(h(L))
= L

Remark: The hypothesis that the P -automaton is complete is necessary: the identity
relation in a free monoid is not a recognizable relation but it can be realized by a P -
automaton having a finite set of states and such that u=⇒ is deterministic for each u ∈ P+.

5

Now Propositions 2.4 and 2.7 allows the extension to partial semigroup of well-known
results for monoids.

Proposition 2.8. For any partial semigroups S and S′, we have following properties:

(i) for every L1 ∈ Rec(S) and L2 ∈ Rat(S), L1 ∩ L2 ∈ Rat(S);

(ii) Rec(S) is a boolean algebra;

(iii) Rec(S) ⊆ Rat(S) if S is finitely generated (Mc Knight theorem);

(iv) Rec(S) = Rat(S) if S is finitely generated and free (Kleene theorem);

(v) L ⊆ Rec(S) ⇔ {u−1L | u ∈ S}finite;
(vi) L ∈ Rec(S × S′) ⇔ L =

⋃n
i=1(Ui × Vi)

for some n ∈ N and for all i Ui ∈ Rec(S), Vi ∈ Rec(S′) (Mezei theorem).

Proof. (i). So let A1 and A2 be two S-automata.
Say A1 = (G1, i1, F1), A2 = (G2, i2, F2), L1 = L(A1) and L2 = L(A2). We define G1 ×G2

to be equal to
{(s1, s2) u−→(t1, t2) | s1 u−→

G1

t1 ∧ s2
u−→

G2

t2}.
If G1 and G2 are deterministic (resp. path-deterministic, complete), then G1 × G2 is
deterministic (resp. path-deterministic, complete).
Furthermore if (i1, i2)

u=⇒
G1×G2

(t1, t2) then i1
u=⇒

G1

t1 and i2
u=⇒

G1

t2. Therefore we have,

L(G1 ×G2, {(i1, i2)}, F1 × F2) ⊆ L(A1) ∩ L(A2)
[(i1, i2)

u=⇒
G1×G2

(t1, t2) ∈ F1 ×F2] ⇒ [i1
u=⇒

G1

t1 ∧ i2
u=⇒

G1

t2] ⇔ [u ∈ G1 ∧u ∈ G2] Conversly,

suppose that one of the graph is complet and path-deterministic (for example G1) and
that u ∈ L(A1) ∩ L(A2), there is a path in G2 leading from i2 to a vertex p in F2

(labelled u1, u2, . . . , un elements of S). As G1 is complete there is a path from i1 labelled
u1, u2, . . . , un leading to a state q, this path is labelled u, thus as G1 is path-deterministic
and u ∈ L1 q ∈ F1. Thus there is a path from (i1, i2) labelled u1, u2, . . . , un leading to
(q, p) ∈ F1 ×F2. Therefore L(A1)∩L(A2) ⊆ L(G1 ×G2, {(i1, i2)}, F1 ×F2), this allows to
conclude:
L(A1) ∩ L(A2) = L(G1 ×G2, {(i1, i2)}, F1 × F2)
when either A1 or A2 is path-deterministic and complete. This proves that (i) is true, and
also that Rec(S) is closed under intersection.
(ii). We have already that Rec(S) is closed under intersection. It remain to show that
∅ belongs to Rec(S) and that it is closed under complementation. Obviously ∅ ∈ Rec(S)
furthermore for any path-deterministic and complete S-graph G, we have:

L(G, i, F) + L(G, i, VG − F) = M
So Rec(S) is closed under complementation.
(iii)-(iv). Consider S finitely generated: M = P+ for some finite P ⊆ S. Therefore
a P -automata with a finite set of states is finite. Hence, by propositions 2.4 and 2.7
Rec(P+) ⊆ Rat(P+), i.e., Rec(S) ⊆ Rat(S).
In order to prove that Rat(S) ⊆ Rec(S), it suffices to show that, when P is a code, any
deterministic P -graph G is path-deterministic. Suppose that r u=⇒

G
s and r u=⇒

G
t. We have

r
u1−→
G

· · · um−→
G
s and r

v1−→
G

· · · vn−→
G
t, with u1 · · · um = v1 · · · vn. As P is a code, n = m and

u1 = v1, . . . , un = vn, hence, as G is deterministic s = t.
(v). (⇒) Let P ∈ Rec(S): P = L(G, i, F) with G a path-deterministic and complete
S-graph (and VG finite). For each u, v ∈ S we have:

6

u−1L(G, i, F) = {v | u · v ∈ L(G, i, F)} = {v | i(u · v) ∈ F} = L(G, iu, F)
Therefore, u−1L(G, i, F) = L(G, s, F) for i u=⇒ s. Hence {u−1L | u ∈ S} ⊆ {L(G, s, F) | s ∈
VG} is finite.

(⇐) Let P ⊆ S such that {u−1P | u ∈ S} is finite. Now we use a new symbol ε (not in
S) we complete S into a partial semigroup S ∪ {ε} by extending its operation · as follows:

a · ε = ε · a = ε for all a ∈ S.
For all u ∈ S, we define set u to be u−1P if u 6∈ P and u−1P ∪ {ε} if u ∈ P . We set ε to
be P . This allows the definition of following S-graph:

G = {u u−→u · v | u ∈ S ∪ {ε} ∧ v ∈ S}
VG is finite, G is complete and path-deterministic: u v=⇒u · v. Furthermore the following
is true:

v ∈ L(G, ε, {u | ε ∈ u}) ⇔ ∃u ∈ S, ε ∈ u ∧ ε v=⇒u⇔ ε ∈ v ⇔ v ∈ P
thus P = L(G, ε, {u | ε ∈ u}) ∈ Rec(S)

(vi).(⇐) by (ii) Rec is closed by union. Therefore it only remains to show that given P
in Rec(S) and P ′ in Rec(S′), P × P ′ ∈ Rec(S × S′).
Now let M and M ′ be finite partial semigroup; ϕ and ϕ′ two partial semigroup morphisms
such that P = ϕ−1(N) and P ′ = ϕ−1(N ′) for N ⊆ M, N ′ ⊆ M ′. Set M ×M ′ has a
natural partial semigroup structure, we define partial semigroup morphism h as follows:

h : S × S′ →M ×M ′ such that h(u, v) = (ϕ(u), ϕ′(v))
We have h−1(N ×N ′) = (h−1(N)× h−1(N ′)), thus P ×P ′ = h−1(N ×N ′) ∈ Rec(S ×S′).
(⇒). Finally, let P be in Rec(S) and P = L(G, i, F) for some path-deterministic and
complete S-graph G (with a finite vertex set. By (v), following equivalence on S:

u ≡S v if u−1P = v−1P , is of finite index. We denote by [u]S the class of element u.
Now [u]S =

⋃{L(G, i, iv) | u ≡S v}, hence [u]S ∈ Rec(S) for all u in S.
Let R ∈ Rec(S × S′). By (v), R has a finite set E of left residuals:

E = {(u, u′)−1R | u ∈ S ∧ u′ ∈ S′}.
Therefore {u−1Dom(R) | u ∈ S} = π1(E) and {u′−1Im(R) | u′ ∈ S′} = π2(E) (where
Dom(R) (resp. Im(R)) denotes the set of left (resp. right) hand side elements of relation
R) are finite sets. Thus Dom(R) (resp. Im(R)) is a recognizable subset of S (resp. S′).
So

R =
⋃{[u]S × [u′]S′ | (u, u′) ∈ R}

is a finite union and each factor is a product of recognizable subsets.

We simply translated the standards definitions of recognizable and rational subsets of
monoids given for example in [Be 79]. An interesting example of a partial semigroup is
the subject of these lines: the set of arcs (labelled with an element of a finite set) between
elements of a free monoid is a partial semigroup; its rational subsets are the rational
graphs.

2.2 Partial semigroups and graphs

In this section, we will consider an important example of partial semigroup: the set of
rational graphs. So consider an arbitrary finite set X and denote X∗ its associated free
monoid. We will consider graphs as subsets of X∗×A×X∗ (the set of graphs over X∗ with
arcs labelled in A). For convenience, set 2X∗×A×X∗

is denoted GA(X∗).
Now, with (u, ai, v) ·i (u′, ai, v

′) = (u · u′, ai, v · v′), set X∗ × {ai} × X∗ (ai in A) is a
monoid. As stated in Example 2.1 the union of these monoids (namely X∗×A×X∗) is
a partial semigroup. We denote by · the operation in X∗×A×X∗ (which is ·i for each
X∗ × {ai} ×X∗).

7

Remark: this · operation for graphs is indeed, similar to the synchronization product for
transition systems defined by Nivat and Arnold in [AN 88].
We are now able to define the set of rational graphs.

Definition 2.9. The set of rational graphs, denoted Rat(X∗×A×X∗) is the family of
rational subsets of X∗×A×X∗.

Let us now recall that a transducer is a finite automaton over pairs (see for example
[Au 88] [Be 79]). A rational relation (i.e., a rational subset of X∗ ×X∗) is recognized by
a rational transducer.
There is a strong relationship between rational graphs and rational relations and to charac-
terize the family of rational graphs in a more practical way we will use labelled transducers.

Definition 2.10. A labelled transducer T = 〈Q, I, F,E,L〉 over X, is composed of a finite
set of states Q, a set of initial states I ⊆ Q, a set of final states F ⊆ Q, a finite set of
transitions (or edges) E ⊆ Q×X∗×X∗×Q and an application L from F into 2A.

Like for P -graphs, transition (p, u, v, q) of transducer T will be denoted by p
u/v−→
T
q or simply

p
u/v−→ q if T is understood. Now similarly an element (u, d, v) ∈ X∗×A×X∗ is recognized by

transducer T if there is a path p0
u1/v1−→

T
p1 · · · pn−1

un/vn−→
T

pn and p0 ∈ I, pn ∈ F , u = u1 · · · un,

v = v1 · · · vn and d ∈ L(pn).
Remark: an illustration of transducer execution will be given in Example 2.12.

Proposition 2.11. A graph G in GA(X∗) is rational if and only if it satisfies one of the
following equivalent properties:

(i) G belongs to the smallest subset of GA(X∗) containing:
∅,{ε d−→ ε},{x d−→ ε} and {ε d−→x}, for all x ∈ X, all d ∈ A, and closed under ∪, ·
and +;

(ii) G is a finite union of rational relations over each letter:
G =

⋃
d∈ARd, for Rd ∈ Rat(X∗ × {d} ×X∗);

(iii) G is recognized by labelled rational transducer.

Proof. (i) This is a direct consequence of Proposition 2.4, (i):
{ε d−→ ε, x

d−→ ε, ε
d−→x | x ∈ X ∧ d ∈ A}+ = X∗×A×X∗

(ii) If G is a finite union of rational sets, it is then a rational set by definition. Conversely,
if G is in Rat(X∗×A×X∗), then set G∩X∗×{d}×X∗ is in Rat(X∗×{d}×X∗), according
to Proposition 2.8, because X∗ × {d} ×X∗ is in Rec(X∗×A×X∗).
(iii) This is a direct consequence of (ii), and Proposition 2.4 (ii).

Proposition 2.11 states that for any graph G in Rat(X∗×A×X∗), relation: d−→
G

:=

{(u, v) | u d−→
G

v} is rational for each d in A. Therefore we also introduce −→
G

:=
⋃

d∈A
d−→
G

,

which is also a rational relation. Naturally we denote by d−→
G

(u) (resp. −→
G

(u)) the image

of word u by relation d−→
G

(resp. −→
G

) (and similarly for subsets of X). Also for a rational

graph G there are possibly many transducers generating it, thus we will denote by Θ(G)
the set of transducers generating G.

We will now give some examples of rational graphs.

8

Example 2.12. The graph in Figure 2.1 is called the grid. This is a rational graph gen-
erated by the transducer on Figure 2.2. Its second order monadic theory is undecidable
hence rational graphs have an undecidable second order monadic theory.

a a

a a

b bb

a a

b bb

A A2

B
AB A2B

B2
AB2 A2B2

ε

Figure 2.1: The grid, with vertices in {A,B}∗

p

q1 a

A/A

q2 b

B/B

A/A

ε/A

ε/B

Figure 2.2: Transducer recognizing the grid

Why does the arc (AB, b,AB2) belong to the graph? Simply because the following path
is in the transducer:

p
A/A−→ p

ε/B−→ q2
B/B−→ q2

and that b is associated to the final state q2.

Example 2.13. The graph in Figure 2.3 is another example of rational graph.

c

c

a

a

b

b

b

b

b

b
00

01

11

001

011

111

000

0

1

ε a

c⊥

Figure 2.3: The graph anbncn

9

1/1

0/0

r1

r2

r3

a

b

c

p

1/1

ε/0

0/1

0/0
0/1

0/0

1/ε
1/⊥

1/1q2

q1

Figure 2.4: Transducer recognizing the graph anbncn

We finish with a last example showing that the transition graphs of Petri nets are
rational graphs.

Example 2.14. For more detail on Petri nets the reader may refer to [Re 85]. A Petri net
can be seen as a finite set of transitions of this form: An1

1 An2
2 · · ·Anm

m
d−→Al1

1 A
l2
2 · · ·Alm

m ,
with Ax

i representing there are x coins in place Ai (d represents the label (if any) of the
transition). Following transducer generates the transition graph associated to the above
transition:

A2/A2

A
n2
2 /A

l2
2 dqp1 p2

A
n1
1 /A

l1
1

A1/A1

A
nm
m /A

lm
m

Each vertex of the generated graph correspond to a marking of the Petri net. Each arc of
the graph represents that a transition has been fired.

2.3 Some results for rational graphs

This section will introduce results for this family of graphs. Some of these results are just
a reformulation of known results over rational relations. Others are simple facts on these
graphs and their boundary.
The first fact is that this family is an extension of previous families. Simply recall that
every prefix recognizable graph (defined in [Ca 96]) is a finite union of graphs of the following
form :

(U a−→ V) ·W := {uw a−→ vw | u ∈ U ∧ v ∈ V ∧ w ∈W}
with U, V,W rational sets.
This characterization ensures that prefix recognizable graphs are rational graphs. As the
regular graphs (defined in [Co 90]) are prefix recognizable graphs, they are rational too.
Furthermore, the graphs in Examples 2.12 and 2.13 are not prefix recognizable graphs thus
the inclusion is strict. All this justifies the study of rational graphs.

Let us now translate some well-known results for rational relations, to rational graphs.

10

Proposition 2.15. A rational graph G is of finite out-degree if and only if there exists
a transducer T ∈ Θ(G) such that there exists no cycle in T labelled on the left with the
empty word which is not labelled on the right with the empty word. In other words the
only cycles labelled on the left ε, are labelled on the right ε.

Remark: naturally this proposition can be translated to characterize the graphs of finite
in-degree, by simply replacing right by left and vice-versa.

Proof. This proposition is a straightforward consequence of Proposition 5.3.a, p40 from
[Au 88]. Actually, it is simply replacing the words “finite image” (for relations) with “finite
out-degree” (for graphs).

Proposition 2.16. Every rational graph is recursive: it is decidable whether an arc
(u, d, v) belongs to a rational graph.

Proof. Given a rational graph G, language d−→
G

(u) is effectively a rational language; to

decide whether (u, d, v) is an arc of G we only have to check if v belongs to d−→
G

(u).

Theorem 2.17. It is decidable whether a rational graph is deterministic (from its trans-
ducer).

Proof. Again this is a simple translation of a rational relation result. This result from
Schützenberger stated in [Au 88] (theorem 3.5, p 28) proves the decidability of function-
ality for rational relations, and of course a rational graph is deterministic if and only if
the associated relation on each letter is functional.

Proposition 2.18. The inclusion and equality of deterministic rational graphs is decid-
able.

Proof. See [Be 79], corollary 1.3, page 95.

Remark: unfortunately this result ceases to be true for general rational graphs ([Be 79]
Theorem 8.4, page 90).
We have already seen that the second order monadic theory of these graphs is undecidable
in general. We will now see that it is also the case for the first order theory.

Proposition 2.19. The first order theory of rational graphs is undecidable.

Proof. We will prove this proposition by reducing Post’s correspondence problem (P.C.P.)
to this problem. Let us recall the P.C.P.: given an alphabet X and (u0, v0), (u1, v1),...,
(un, vn) elements of X∗×X∗. Does there exist a sequence 0 6 i1, i2, . . . , im 6 n, such that
u0ui1 · · · uim = v0vi1 · · · vim ? To an instance of P.C.P. (i.e. a family (ui, vi)) we associate
following transducer:

p
u0/v0

q a

ui/vi (for i ∈ [1 · · · n])

11

The resolution of P.C.P. becomes finding a vertex s such that s a−→ s is an arc of the graph
generated by the transducer. It is a first order instance, therefore,as P.C.P. is undecidable,
the first order theory of rational graphs is not decidable in general.

Before giving another negative decision result, let us denote by ũ the mirror of word u
(defined by induction on the length of u: ε̃ = ε and ãu = ũa (for any u with |u| > 0).

Proposition 2.20. Accessibility is not decidable for rational graphs in general.

Proof. Once again, we use P.C.P. Using the same notations as earlier define a (word)
rewriting system G, using two new symbols # and $, in the following way:

G

$ −→ ui$ṽi ∀i ∈ {0, · · ·, n}
$ −→ #

A#A −→ # ∀A ∈ X

Now “P.C.P. has a solution” is equivalent to the existence of a derivation from u0$ṽ0 to
#. But, considering the following transducer:

q a

A/A(for A ∈ X)

p

A/A(for A ∈ X)

$/ui$ṽi(for i ∈ {0, · · ·, n})

$/#

A#A/#(for A ∈ X)

the question becomes: is there a path leading from u0$ṽ0 to the vertex # ? Answering the
last question would allow P.C.P. to be solved in the general case which is a contradiction.
Therefore accessibility is undecidable for the rational graphs in general.

Remark: the transitive closure of a rational graph is, at least, uneffective. If this construc-
tion were effective and rational, then accessibility for rational graph would be decidable.
Now we will see a case where accessibility is decidable for rational graphs. A transducer
T is increasing if every pair (u, v) recognized by T is such that the length of v (denoted
by |v|) is greater or equal to the length of u : |v| > |u|.
Proposition 2.21. The accessibility is decidable for any rational graph with an increasing
transducer.

Proof. Let us denote by T6n(u) following set: T6n(u) :=
⋃n

i=0 T
i(u). For all n ∈ N this

set is rational.
Now, let G be a rational graph generated by an increasing transducer T and let u and v
be two vertices of G. Let us put n0 = |{w ∈ X∗ | |u| 6 |w| 6 |v|}| = |X||u| + · · · + |X||v|.
Vertex v is accessible from u if and only if v belongs to T6n0(u). Thus accessibility is
decidable for rational graphs with an increasing transducer.

Before stating a technical lemma, recall that s
u/v
=⇒ t denotes a path in a transducer from

state s to state t labelled u/v. And denote by s
u/v
=⇒
6=
t an elementary path from s to t, i.e.,

a path with no cycle: no vertex of the path (except, maybe, s and t) occur more than
once.

Lemma 2.22. Let G be a rational graph of finite out-degree. There exists two integers p
and q such that for every (s, a, t) ∈ G we have |t| 6 p.|s| + q

12

Proof. Given T in Θ(G) (the set of transducers recognizing G), we first remove every

transition s
ε/ε−→ s from T . It will still recognize G. Given any path s

u/v
=⇒
6=
s ∈ T , Proposition

2.15 ensures that |u| 6= 0, therefore one can define p0 as follows:

p0 := max
{⌈ |v|

|u|
⌉
| s u/v

=⇒
6=
s ∈ T

}

Also, one can define q in the following way.

q := max{|v| − |u| | s u/v
=⇒
6=
t ∧ s ∈ I ∧ t ∈ F}

Now consider (u, d, v) an arc of G. There exists a path in T labelled u/v. This path can
be decomposed into simple cycles on the one hand and into transitions that are not in
any cycle on the other hand (notice that a cycle can be “inside” another cycle; it can be
moved “outside” because length is the only parameter that matters). Now consider the
ui/vi(i ∈ I) labelling the cycles. For all i we have : |vi| 6 p0.|ui|, therefore we get∑

i∈I

|vi| 6 p0.
∑
i∈I

|ui|

And, as the ui’s are disjoint factors of u∑
i∈I

|vi| 6 p0.|u|

Now the transitions that are not in any cycles are labelled wj/zj(j ∈ J) and we have∑
j∈J |zj | 6 q + |u|. Therefore, as |v| =

∑
i∈I |vi| +

∑
j∈J |zj | we get

|v| 6 (p0 + 1).|u| + q

To get the inequality from the lemma we simply have to put p = p0 + 1.

This lemma allows the construction of a graph that is not structurally rational.

Example 2.23. Consider an infinite tree in X∗×A×X∗ such that every vertex of depth
n has 222n

sons. This tree is not strucurally rational, in other words whatever name you
give to the vertices of triplex it is never a rational graph. This is a direct consequence
of previous lemma: say n is the length of the root, there are at most |A|(npl+pl−1q+···+q)

vertices of depth l.

Despite these results the transducers are not able to capture the structure of rational
graphs. For example, this transducer:

p
ε/AB

q a

A/A B/B

13

generates following graph:

a a

a a a

a a a

a A2B2 A3B3

B

A

AB

A2B A3B2 A4B3

A3B4A2B3
AB2

ε

The connected component of the empty word, ε, is a straight-line. It is “up to isomor-
phism” obviously rational, but as a sub-graph of this graph, it is not rational (its vertices
form a context-free language). Therefore we need an external (“up to isomorphism”)
characterization of these graphs. This is the subject of the next section.

3 An external characterization

In this section, we will characterize rational graphs using inverse linear substitutions.
Labelled transducers are an internal representation of rational graphs, it clearly depends
on the name of the vertices. But often in graph theory, the name of the vertices is not
relevant, it carries no information. An external characterization, like the graph grammars
for equational graphs, produces graphs without giving names for vertices. It only gives
the structure of the graph. Inverse linear substitution is an external characterization of
rational graphs.

3.1 Graph isomorphism

An external characterization of rational graphs is given “up to isomorphism”.
Two graphs G1 and G2 in GA(X∗) are isomorphic, if there is a bijection ψ : V (G1) →
V (G2) such that: s1

d−→
G1

s2(i.e., (s1, d, s2) ∈ G1) if and only if ψ(s1)
d−→

G2

ψ(s2).

Two isomorphic graphs have the same structure: they are the same up to a renaming of
the vertices.
Now let us consider the equivalence (≡) generated by graph isomorphism: we say that
G1 is equivalent to G2 (denoted G1 ≡ G2) if G1 and G2 are isomorphic. This equivalence
relation provides us with a partition of GA(X∗) denoted GraphA := GA(X∗)/ ≡. This
allows the introduction of the set of structural rational graphs:

GRatA := {[G]≡ ∈ GraphA | G ∈ Rat(X∗×A×X∗)}
This set is the set of graphs that are isomorphic to some rational graph, i.e., such that
there exists a rational graph with the same structure.
Set GraphA (and GRatA), that denotes the set of equivalence classes, does not depend on
the choice of set X. In other words, we can choose X to be any two letters alphabet with
no loss of generality.

Lemma 3.1. For all subset X ′ (with at least two elements) of X and all class [G]≡ of
GraphA (= GA(X∗)/ ≡) there exists G0 in GA(X ′∗) such that G0 ∈ [G]≡.

Proof. Consider a and b two letters of X ′ and [G]≡ an element of GraphA. Now say X =
{x1, x2, . . . , xn}, and define the following morphism: ϕ : X∗ → X ′∗ such that, for all i:
ϕ(xi) = aib. By definition ϕ is injective. Furthermore, graph ϕ(G) = {(ϕ(u), d, ϕ(v))|(u, d, v) ∈
G} is in GA(X ′∗) and, by construction isomorphic to graph G. This is the desired
graph.

14

We now have to characterize the structure of GRatA. This is the goal of the next section.

3.2 Substitution

Recall the definition of the prefix recognizable graphs (family RECRat). This family has
been defined as the set of graphs obtained from the complete binary tree by inverse rational
substitution, followed by rational restriction. We will use the same process (actually a
linear context-free substitution) to obtain the family of rational graphs.
A substitution over a free monoid X∗ is a morphism ϕ : A∗ → 2X∗

, which associates to each
letter in A a language in X∗. Our purpose is to study graphs, starting from the complete
binary tree (Λ) labelled X = {A,B}. To move by inverse arcs, we use a new alphabet :

X = {A,B} and we say that x A−→ y if y A−→x. Given a language L and two vertices x
and y, recall that x L=⇒

Λ
y ⇔ ∃u ∈ L, x

u=⇒
Λ
y. Now, given a substitution ϕ : A∗ → 2(X∪X)∗ ,

we can define the graph ϕ−1(Λ) in the following way:

ϕ−1(Λ) = {x d−→ y | d ∈ A ∧ x
ϕ(d)
=⇒

Λ
y}

Given a language L, we define now LΛ = {s | r L=⇒
Λ
s}. It allows us to consider the graph

ϕ−1(Λ)|LΛ
: it is the image of the complete binary tree by an inverse substitution followed

by a restriction; if L is rational, we say a rational restriction.

Example 3.2. Example 2.12 states that the grid is a rational graph. Following substi-
tution: h(a) = {Bm

ABm| m > 0}, h(b) = {B} over the complete binary tree on {A,B},
followed with the restriction to L = A∗B∗ produces a graph isomorphic to the grid:

a

a

a a

a

a

b

b

b

b

bb

A

B

Now, it is well know that there is a close relationship between linear languages and
rational relations (a linear language is a context-free language generated by a grammar
with only, at most, one non-terminal on the right hand side of each rule). And indeed, if
we denote the set of linear languages over the alphabet X ∪X by Lin(X ∪X), we have
the following proposition.

Proposition 3.3. The set GRatA is a subset of the family of the graphs obtained from the
complete binary tree (Λ) by an inverse linear substitution, followed by a rational restriction:

GRatA ⊆ {[ϕ−1(Λ)|LΛ
]≡ | ∀d ∈ A, ϕ(d) ∈ Lin(X ∪X) ∧ L ∈ Rat(X)}

Proof. First put E = {[ϕ−1(Λ)|LΛ
]≡ | ∀d ∈ A, ϕ(d) ∈ Lin(X ∪X) ∧ L ∈ Rat(X)}.

Let us take a graph G0 ∈ Rat(X∗×A×X∗) with X = {A,B}. Call T0 a transducer
generating G0 , i.e., T0 ∈ Θ(G0). To construct a substitution corresponding to G0 we will

15

define a new rational graph in [G0]≡.
We define its transducer T ′ by substituting in any transition of T0, every occurrence of A
by AA and every occurrence of B by BB. Then to each initial state p, we introduce a
new transition (p0, AB,AB, p). The unique initial state of T ′ is p0, the final states of T ′

are those of T0. Now, we can easily verify that G′
0 (the rational graph generated by T ′) is

isomorphic to G0, so G′
0 ∈ [G0]≡.

Now we construct the following linear grammar (G) : for every transition (p, u, v, q) in
T ′ (p and q are states of T ′) we define the production q −→ ũpv; for p0 we define the
production p0 −→ ε.
This is a linear grammar. Now for every label d in A define the linear language:

Ld :=
⋃

p∈ final sates of T ′ producing d

L(p)

where L(p) is the language generated from p by the grammar G.
A triple (u, d, v) ∈ X∗×A×X∗ is an arc in G′

0 if and only if ũv ∈ Ld (by construction).
The language L := Dom(G′

0) ∪ Im(G′
0) is by definition a rational language. Furthermore

the application ϕ : A∗ → 2X∗
such that ϕ(d) = Ld for every d in A, is a linear substitution

(notice also that its projections over X∗ and X∗ are rational languages (corresponding to
the domain and image of G′

0)). We will show that G′
0 = ϕ−1(Λ)|LΛ

, thus [G0]≡ is equal to
[ϕ−1(Λ)|LΛ

]≡ which will allow us to conclude this proof.
First let us prove that G′

0 ⊆ ϕ−1(Λ)|LΛ
.

Suppose (u, d, v) ∈ G′
0. Therefore ũv ∈ Ld, i.e., ũv ∈ ϕ(d). Without loss of generality

(the name of the vertices of Λ is not important) one can suppose that the root of Λ is ε
and then by induction, every vertex in Λ is identified by the unique shortest path from

the root to itself. Then we have u
eu=⇒
Λ
ε and naturally ε v=⇒

Λ
v, therefore we have : u

euv=⇒
Λ
v.

As u and v are in LΛ we finally get : (u, d, v) ∈ ϕ−1(Λ)|LΛ
.

Conversely we will prove that ϕ−1(Λ)|LΛ
⊆ G′

0.
Suppose now that (u, d, v) ∈ ϕ−1(Λ)|LΛ

. Therefore u, v ∈ LΛ and there are u0 and v0

such that ũ0v0 ∈ Ld and there is a path u
fu0v0=⇒
Λ
v. By definition of Ld, u0, v0 ∈ LΛ. The tree

structure of Λ implies that there is a vertex w such that u
fu0=⇒
Λ
w and w

v0=⇒
Λ
v. Therefore

(by definition) w u0=⇒
Λ
u and it implies u = w.u0 and v = w.v0. Now, u, u0, v, v0 ∈ LΛ,

their length are even integers, therefore the length of w is also even. By construction,
every word in LΛ starts with AB and then is a succession of AA’s and BB’s. All these
facts imply that w = ε. Therefore u0 = u and v0 = v so (u, d, v) ∈ G′

0. This yields
ϕ−1(Λ)|LΛ

⊆ G′
0.

Therefore G′
0 = ϕ−1(Λ)|LΛ

and so [G0]≡ belongs to E which concludes the proof.

The converse of this result would help us to grab the structure of rational graphs. Unfor-
tunately it is not obvious. Actually the following example illustrate the difficulty of the
naive converse of Proposition 3.3.

Example 3.4. Consider ϕ(a) = {BBAnBn|n ∈ N}, it is a linear substitution. Consider
L = BA∗B∗ and the graph G = ϕ−1(Λ)|LΛ

. Structurally, graph G is rational (it is
the star). But the graph naturally associated to G (according to ϕ(a) and L) is G′ =
{(B, a,BAnBn)|n ∈ N}, which is not rational.

So there is a deep isomorphism problem to get the converse. Actually, we will try
to inject rationality in the “linear language” to achieve a complete characterization of
rational graphs.

16

A natural way to introduce rationality into Lin(X ∪X) would be to impose the pro-
jections over barred and non-barred letters to be rational. The next example shows that
again, things are not so nice.

Example 3.5. Consider ϕ(a) = {ABBAnBm| n > m}∪{BBAnBm|m > n} ϕ is a linear
substitution. Moreover it has rational projections over barred and non-barred letters.
Consider L = BA∗B∗ and the graph G = ϕ−1(Λ)|LΛ

. Structurally, graph G is rational
(it is two stars). But the graph naturally associated to G (according to ϕ(a) and L) is
G′ = {(BA, a,BAnBm)| n > m} ∪ {(B, a,BAnBm)| m > n}, which is not rational (its
intersection with the recognizable set {BA}×{a}×BA∗B∗ is {(BA, a,BAnBm)| n > m}
which is not rational).

Now consider the set Ratlin(X ∪ X) of linear languages (called rational-linear) over
(X∪X)∗ such that the production of their grammars are of following form: p→ uqv (with
u ∈ X

∗ and v ∈ X∗) or p→ ε.

Theorem 3.6. Set GRatA is precisely the set of graphs obtained from the complete binary
tree (Λ) by a rational-linear substitution, followed by a rational restriction :

GRatA = {[ϕ−1(Λ)|LΛ
]≡ | ∀d ∈ A, ϕ(d) ∈ Ratlin(X ∪X) ∧ L ∈ Rat(X)}

Proof. Let E be defined as follows:

E := {[ϕ−1(Λ)|LΛ
]≡ | ∀d ∈ A, ϕ(d) ∈ Ratlin(X ∪X) ∧ L ∈ Rat(X)}

We have to show that GRatA = E.
Step 1: we will first prove that GRatA ⊆ E.
So let us take a graph G0 ∈ Rat(X∗×A×X∗). The construction done in the proof of
Proposition 3.3 works perfectly. The only thing is to notice that the substitution is a
language of Ratlin which is obvious.
Step 2: we will now prove that E ⊆ GRatA.
Now consider a graph G = h−1(Λ)|LΛ

in E.
We will suppose that, for every d in A, h(d) is in Ratlin(X ∪X) hence every u in h(d) is
an element of X∗

X∗. Now fix d in A and consider a grammar (Gd) generating h(d) (from
a non-terminal p0). Suppose its productions are of the following form:

p −→ uqv, u ∈ X
∗
, v ∈ X∗

or p −→ ε

Now, we construct from each grammar (generating h(d)), a transducer Td (producing the
letter d): every non-terminal of the grammar is a state of the transducer. Then for every

production p −→ uqv there is a transition q
ũ/v−→ p in Td. For each non terminal producing

the empty word the associated state is an initial state: for all p such that p −→ ε then
p ∈ I(Td). Finally p0 (the initial non-terminal of Gd) is a final state of the transducer:
F (Td) = {p0}.
Consider a word uv ∈ h(d); by construction (ũ, v) is recognized by Td. Define T1 the
transducer (with labelled exits) union over all d in A of the Td’s, and call G1 the graph
generated by T1. The graph G1 is rational, and furthermore G1 ⊆ h−1(Λ) (with the same
names for the vertices as in step 1 the arcs of G1 correspond to the paths containing the
root of Λ). Now consider the graph G2:

G2 :=
⋃
d∈A

{(u, d, u)|u ∈ X∗} ·G1

17

This is a rational graph (as a finite union and concatenation of rational graphs). Moreover
G2 = h−1(Λ):
First, G2 ⊆ h−1(Λ): consider an arc (u, d, v) ∈ G2. Then there exist u0, v0 and u1 such
that (u, d, v) = (u1, d, u1)·(u0, d, v0), with (u0, d, v0) ∈ G1. Now let us consider the vertices

u, v and u1 in Λ. We have u = u1 · u0 (as a word) therefore there is a path u
eu0=⇒
Λ
u1 and

similarly there is a path u1
v0=⇒
Λ
v. Hence there is a path u

eu0v0=⇒
Λ
v and, as ũ0v0 is a word in

h(d), (u, d, v) ∈ h−1(Λ).
The converse works in exactly the same way. Now we have to produce precisely h−1(Λ)|LΛ

,
which is just the intersection of G2 with LΛ ×A× LΛ :

G := G2 ∩ LΛ ×A× LΛ. We can then rewrite it in the following way:
G :=

⋃
d∈A{G2 ∩ LΛ × {d} × LΛ}. Now, as it is a finite union we just have to prove that

G2 ∩LΛ ×{d}×LΛ is rational. But LΛ is a rational set over a free monoid, it is therefore
recognizable. Hence LΛ × {d} × LΛ is a recognizable subset of X∗×A×X∗ and so its
intersection with a rational subset (G2) of X∗×A×X∗ is still rational.
Finally, G equals h−1(Λ)|LΛ

by construction so we have E ⊆ GRatA which concludes the
proof.

Now that an external characterization of the rational graphs has been given, the next
section will consider the properties of the traces of rational graphs.

4 The traces of rational graphs

We have already seen that there is a strong connection between language theory and ratio-
nal graphs. In this section we will see another connection between graphs and languages,
in terms of traces.
We first recall that the trace of a graph G leading from a vertex set I (of initial states) to
a vertex set F (of final states) is the set of all the path labels in the graph, leading from
a vertex in the set of initial states to a vertex in the set of final states:

L(G, I, F) := {u | ∃s ∈ I ∃t ∈ F, s
u=⇒
G
t}

In other words the trace of a graph is “the language of its labels”. For example the traces
of the finite graphs are all rational languages and the traces of prefix recognizable graphs
are all context-free languages. Notice by the way that the traces of rational graphs contain
therefore every context free language.

Proposition 4.1. The traces of rational graph leading from a rational vertex set to a
context free vertex set (or vice-versa) is recursive

Proof. This simple result is a straightforward consequence of the proof of Proposition
2.16, which states that every rational graph is recursive. Consider a rational graph G. To
check whether a word u is in the trace of graph G (from a set I to a set F), it is just to

check if the set S =
u(|u|)−→

G
(
u(|u|−1)−→

G
(· · · u(1)−→

G
(I) · · ·)) intersects set F . Set I is rational, thus

its image by a rational transduction is rational too, hence by a simple induction, set S is
rational too. Therefore it is decidable whether S ∩ F is empty. In the reverse case (the
path between a context-free vertex sets and a rational vertex set): the situation is the
same because the image of a context-free set by a rational transduction is a context-free
set.

18

Let us denote by TR the family of the traces of rational graphs leading from a rational
vertex set to a rational vertex set: TR = {L(G, I, F)|G ∈ Rat(X∗×A×X∗) ∧ I, F ∈
Rat(X∗)} (notice that we could as well restrict ourselves to a unique initial state and a
unique final state). Now we will show that set TR form an Abstract Family of Languages
(AFL), that is, it satisfies following properties:

• closure for intersection with a rational (regular) language,

• closure under non-erasing (monoid)morphism, and inverse morphism,

• for each L,L′ ∈ TR we have L · L′, L ∩ L′, L+, L∗ ∈ TR.

Proposition 4.2. The intersection of two elements of TR is an element of TR.

Proof. Consider two elements L and L′ of TR. Say L = L(G, I, F) and L′ = L(G′, I, F).
The language L∩L′ is actually the trace of G · ({$}×A×{$}) ·G′ (with $ a new symbol)
between IG · {$} · IG′ and FG · {$} · FG′ . Hence L ∩ L′ in an element of TR.

As rational languages are traces of rational graphs (finite graphs are rational graphs),
family TR is closed under intersection with rational languages.
Now let us recall that a finite (resp. rational) substitution σ : A∗ → 2A∗

is a morphism
such that for each letter d in A σ(d) is a finite (resp. rational) subset of A∗. A substitution
is non-erasing if ε 6∈ σ(d) for all d ∈ A.

Proposition 4.3. Family TR is closed under non-erasing finite substitution.

Proof. Consider σ a finite substitution, and L a language in TR. Say L = L(G, I, F), and
T is a transducer in Θ(G). Now, let d be a letter of A, and w in σ(d), we will perform the
following construction (there are a finite number of such constructions because A and each
σ(d) are finite): we construct a transducer T(d,w) that will produce for each arc (u, d, v) of
G a path labelled w between u and v (the construction of such a transducer is explained
bellow). Then, naturally language σ(L) is the trace of the graph generated by the union
of all the constructed transducers:

σ(L) = L

 ⋃

d∈A

 ⋃

w∈σ(d)

G(T(d,w))

 , I, F

where G(T) is the graph generated by transducer T . Now it only remains to explain the
construction of transducer T(d,w), for d in A and w in σ(d). Consider a new symbol # that
is not an element of X and a new symbol $ that is not in A. Now we construct T(d,w) by
induction on the length of w.
(|w| = 1). Then T(d,w) is simply T|d with all exits labelled w (instead of d).
(|w| = 2). For each final state q producing d in T , we construct two final states of T(d,w):
q1 that will produce (u, u#) for all (u, v) produced by q; q2 that will produce (u#, v) for
all (u, v) produced by q. Then we simply label q1 with w(1) and q2 with w(2). Doing that
for all final state (q) producing d yields transducer T(d,w).
(n ⇒ n + 1). Suppose that we can construct T(d,w) for every w such that |w| 6 n. And
consider w with |w| = n+1. To construct T(d,w) we first construct a transducer T1 realizing
the substitution σ(d) = $w(|w|) (using (|w| = 2)). Then we transform T1 substituting the
word w(1)w(2) . . . w(|w| − 1) to $ (which is possible thanks to the induction hypothesis)
which produces T(d,w).

Following corollary is a direct consequence of this proposition.

19

Corollary 4.4. Family TR is closed under non-erasing morphism.

Notice that the condition “non-erasing” is essential for our proof. A interesting ques-
tion is whether this condition is necessary. There is a deep graph isomorphism problem
to solve to answer this question.

Proposition 4.5. Assume that L is an element of TR and that σ is a finite substitution
over A∗ then σ−1(L) is a language of TR.

Proof. This proposition is a consequence of Elgot and Mezei’s theorem, which states that
the composition of two rational relations is a rational relation (see for example [Be 79],
Theorem 4.4 p 68). To simplify the notations, we will consider the case where A has
two elements (a and b), it would be exactly the same for more letters. Now say σ(a) =
{u1, u2, . . . , un} and σ(b) = {v1, v2, . . . , vm}. Let L0 be in TR. Let G, I and F be
respectively a rational graph and two rational sets such that L0 = L(G, I, F). Let T be a
transducer in Θ(G) and denote by Ta and Tb its rational relations associated to a and b.
Now define T ′

a =
⋃n

i=1[Tui(1)oTui(2)o · · · oTui(|ui|)] and T ′
b =

⋃m
i=1[Tvi(1)oTvi(2)o · · · oTvi(|vi|)].

These two relations are rational relations, and therefore the associated graph G′ (which
associates an arc labelled a to each pair of T ′

a and an arc labelled b to each pair of T ′
b) is

rational too. The trace in G′ leading from I to F is precisely σ−1(L0) which is therefore
an element of TR.

Remark: Note that it is not as straightforward for inverse rational substitution. Actually
it seems that it is not true for inverse rational substitution: consider any rational graph
with one label (a) and the inverse rational substitution σ(a) = a∗. The graph image with
the same approach would be the transitive closure of the original graph, which is not
effectively rational (and might not even be structurally rational) as stated in the remark
page 12.
Following corollary is an obvious consequence of proposition 4.5.

Corollary 4.6. Family TR is closed under inverse morphism.

Proposition 4.7. Family TR is closed under concatenation, Kleene plus and star.

Proof. The argument is more or less the same for the three operations.
Step 1: Consider L1 and L2 two elements of TR. Suppose now that L1 = L(G1, I1, F1)
and L2 = L(G2, I2, F2) We can also suppose that V (G1) ∩ V (G2) = ∅. Now, for each arc
(u, d, v) in G1, with v in F1, we want to define new arcs labelled d leading from u to each
vertex in I2. We call GF,I the set of all these arcs. If GF,I is rational then the graph
G1 ∪ GF,I ∪ G2 is rational. Also the trace of G1 ∪ GF,I ∪ G2, leading from I1 to F2, is
precisely L1 · L2. It only remain to show that GF,I is rational.
Let T be a transducer in Θ(G1). For each letter d in A the set T−1

d (F1) is a rational set.
As I2 is also a rational set, the set T−1

d (F1)× I2 is recognizable. Hence T−1
d (F1)×{d}× I2

is also recognizable and therefore GF,I =
⋃

d∈A(T−1
d (F1) × {d} × I2) is rational. This

concludes step 1.
Step 2: Consider L in TR we want to show that L+ is in TR. It is even simpler: let G be
a graph having L for trace between I and F . The graph GI,F :=

⋃
d∈A(T−1

d (F)×{d}× I)
is, for the same reasons as in step 1, a rational set. Similarly G ∪ GI,F has L+ for trace
between I and F . Hence L+ is an element of TR.
Step 3: Using the same assumptions as in step 2, we define L+. Then we have to define
a new initial state # in G (where # is a new symbol), such that there will be no return
to #. Consider set G#,I =

⋃
d∈A({#} × {d} × Td(I)). Define F ′ = F ∪ {#}, we have

L∗ = L({#}, F ′)(G ∪GI,F ∪G#,I). It is therefore an element of TR.

20

As stated earlier, we only have now to summary these results.

Theorem 4.8. The traces of rational graphs, leading from a rational vertex set to a ra-
tional vertex set, form an AFL (Abstract Family of Languages).

Proof. This result is simply a brief summary of corollaries 4.4, 4.6 and propositions 4.2
and 4.7.

Now we have an abstract family of languages that contains the context free languages.
This AFL is a subset of the recursive languages. It seems that this family is composed of
the context sensitive languages.

Conjecture 4.9. The traces of the rational graphs are precisely the context sensitives
languages.

Notice also that recently graphs of linear bounded machines (which characterize context
sensitive languages) have been studied in [KP 99].

5 Conclusion

In this paper, a general family of graphs has been introduced. Rational graphs are a
strict extension of previously studied families. It is a well grounded family, related to well
known structures of language theory. We have given both an internal and an external
characterization, as well as some basic properties.

Unfortunately, or fortunately depending on the point of view, it is a very expressive
family. Therefore many decision results are lost. An interesting question is to study
restrictions of this family that will retain decision results from former families.

Traces of rational graphs are another aspect of this family. We have shown that it
forms an abstract family of recusive languages. An interesting question is to know if these
traces are precisely the context sensitive languages.

Rational trees also seem to be an interesting field of research, but this has not been
done yet.

Acknowledgements

The author would like to express his gratitude to Didier Caucal for his help along the
preparation of this paper.

References

[AN 88] A. Arnold and M. Nivat, Comportements de processus, Colloque AFCET “les
mathématiques de l’informatique”, pp. 35–68, 1982.

[Au 88] J.-M. Autebert and L. Boasson, Transductions rationelles, Ed. Masson,
pp. 1–133, 1988.

[Be 79] J. Berstel Transductions and context-free languages, Ed. Teubner, pp. 1–278,
1979.

[Ca 96] D. Caucal On transition graphs having a decidable monadic theory, LNCS 1099,
pp. 194–205, 1996,

[Co 90] B. Courcelle Graph rewriting: an algebraic and logic approach, Handbook of
TCS, Vol. B, Elsevier, pp. 193–242, 1990.

21

[GG 66] S. Ginsburg and S. A. Greibach Mappings which preserve context sensitive
languages, Information and control 9, pp. 563–582, 1966.

[HU 79] J. E. Hopcroft and J. D. Ullman Introduction to automata theory, langages
and computation, Ed. Addison-Wesley pp. 1–284, 1979.

[KP 99] T. Knapik and E. Payet Synchronization product of Linear Bounded Machines,
in FCT LNCS 1684, pp. 362–373, 1999.

[MS 85] D. Muller and P. Schupp The theory of ends, pushdown automata, and
second-order logic, TCS 37, pp. 51–75, 1985.

[Ni 68] M. Nivat Transduction des langages de Chomsky, Ann. de l’Inst. Fourier 18,
pp. 339-456, 1968.

[Re 85] W. Reisig Petri nets. EATCS Monographs on Theoretical Computer Science, Vol.
4, Springer Verlag, 1985.

[Sc 76] M.P. Schützenberger Sur les relations rationnelles entre monöıdes libres,
TCS 3, pp. 243–259, 1976.

22

	1 Introduction
	2 Rational graphs
	2.1 Partial semigroups
	2.2 Partial semigroups and graphs
	2.3 Some results for rational graphs

	3 An external characterization
	3.1 Graph isomorphism
	3.2 Substitution

	4 The traces of rational graphs
	5 Conclusion

