
HAL Id: hal-00620056
https://hal.science/hal-00620056

Submitted on 7 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A framework for development of concurrency and I/O in
servers

Gautier Loyauté

To cite this version:
Gautier Loyauté. A framework for development of concurrency and I/O in servers. 1st European
Conference on Systems (EuroSys 2006), Apr 2006, Belgium. 1pp., 2006. �hal-00620056�

https://hal.science/hal-00620056
https://hal.archives-ouvertes.fr

A framework for development of concurrency and I/O in servers

Gautier Loyauté
Université de Marne la Vallée

Laboratoire d’Informatique de l’Institut Gaspard-Monge
UMR-CNRS 8049

F-77454 Marne la Vallée, Cedex 2, France
e-mail: loyaute@univ-mlv.fr

Development of concurrency and I/O in servers and mid-
dlewares becomes more and more complex:

� minimization of latency;
� maximization of bandwidth;
� no consensus on the best concurrency model;
� select the model best adapted to the hardware.

Applications are modeled by a directed graph, in
which each stage (or vertex) corresponds to an
atomic unit of treatment and edges correspond to
channels (method calls, local queues or sockets) be-
tween them.

We describe here the implementation of a simple “Echo”
server which uses three stages. The directed graph models
the interconnection of its stages:

accept read write

Specifications and code generation are 100% Java !
This ensures the portability of the applications de-
veloped using our framework.

Development process

This table summarizes the development steps of our
framework:

Input / Output interfaces specified in Java by user
Events generated from interfaces
Functionnal code of a stage specified in Java by user
Technical code of a stage generated from concurrency
Stage connection

specified by user
Concurrency selection
Concurrency generated from concurrency

Event description

The developer has to define the interface for input
and/or output events for each stage. These events
allow the communication between stages.

Example:
For the initial stage, only an output interface is defined:
public interface OutputAcceptEvent {

public void setAcceptSaburoSocket(SaburoSocket s);
}

For a final stage only an input interface is defined:
public interface InputWriteEvent {

public SaburoSocket getAcceptSaburoSocket();
public ByteBuffer getReadByteBuffer();

}

For any other stage input and output interfaces should be
defined:
public interface InputReadEvent {

public SaburoSocket getAcceptSaburoSocket();
}

public interface OutputReadEvent {
public void setReadByteBuffer(ByteBuffer b);

}

Stage description

The developer should implement the handle(. . .)
method which corresponds to the instructions car-
ried out by a stage. Its parameters are the input
and/or output events and the context.

The context is the way to reach successor(s) in the graph.

Example:
public class AcceptStage {
private final SaburoServerSocket server;

public void handle(StageContext ctx,
OutputAcceptEvent out) {

SaburoSocket client = server.accept();
out.setAcceptSaburoSocket(client);
ctx.dispatchToSuccessor(out);

}
}

public class ReadStage {
public void handle(StageContext ctx,

InputReadEvent in,
OutputReadEvent out) {

SaburoSocket client = in.getAcceptSaburoSocket();
ByteBuffer buffer = null;

while((buffer = client.read()) != null) {
buffer.flip();
out.setReadByteBuffer(buffer);
ctx.dispatchToSuccessor(out);

}
}

}

public class WriteStage {
public void handle(InputWriteEvent in) {

SaburoSocket client = in.getAcceptSaburoSocket();
client.write(in.getReadByteBuffer());

}
}

The implementation is based on the Java NIO API which
provides blocking and non blocking I/O. To avoid the
complexity of this API, we provide encapsulation classes
which simplifies implementation.

Stage connections

The connection of the stages has to be specified in
Java by the developer.

Example:
StageManagerImpl manager = new StageManagerImpl();
manager.connect(AcceptStage.class, ReadStage.class);
manager.connect(ReadStage.class, WriteStage.class);

Concurrency selection

The concurrency model has to be selected in Java
by the developer.

Example:
ModelExecutorImpl executor = new ModelExecutorImpl();
executor.run(configurator, stageManager, SEDA);

Currently, these two steps are hand-coded but could be
generated automatically via an Eclipse plugin.

Communication generation

The interfaces previously defined of the input
and/or output events which allow the communica-
tion between stages are automatically generated.

The implementation of the context is also auto-
matically generated according to the concurrency
model.

Context:

If there is only one process, the context is a function
call.
In the case of several processes, we introduce queues
to implement the context.
For distributed applications, the context establishes
the connections between peers.

Concurrency generation

The last step consists in the automatic generation
of the concurrency model.

Example: Iterative architecture

public class IterativeModel {
public void service() throws Exception {

while(true)
acceptStageWrapper.handle();

}
}

Example: Staged Event-Driven Architecture

public class SedaModel
�

public void serv i ce () throws Except ion
�

new Thread (new Runnable ()
�

public void run ()
�

while (true)
�

w r i t e S e l e c t o r . doSelect () ;�
�

�
) . s t a r t () ;

new Thread (new Runnable ()
�

public void run ()
�

while (true)
�

readSelec tor . doSelect () ;�
�

�
) . s t a r t () ;

while (true)
�

acceptSe lec tor . doSelect () ;�
�

�

The bytecode is generated automatically using
ASM and all the code generators can be used at run-
time, even if they are usually used at compile time.

