A framework for development of concurrency and I/O in servers

Applications are modeled by a directed graph, in which each stage (or vertex) corresponds to an atomic unit of treatment and edges correspond to channels (method calls, local queues or sockets) between them.

We describe here the implementation of a simple "Echo" server which uses three stages. The directed graph models the interconnection of its stages:

accept read write

Specifications and code generation are 100% Java ! This ensures the portability of the applications developed using our framework.

Development process

This table summarizes the development steps of our framework:

Input / Output

Event description

The developer has to define the interface for input and/or output events for each stage. These events allow the communication between stages.

minimization of latency; maximization of bandwidth; no consensus on the best concurrency model; select the model best adapted to the hardware.

	Gautier Loyauté Université de Marne la Vallée
	Laboratoire d'Informatique de l'Institut Gaspard-Monge
	UMR-CNRS 8049
	F-77454 Marne la Vallée, Cedex 2, France
	e-mail: loyaute@univ-mlv.fr
	Development of concurrency and I/O in servers and mid-
	dlewares becomes more and more complex:

Example:

For the initial stage, only an output interface is defined:

Stage description

The developer should implement the handle(. . .) method which corresponds to the instructions carried out by a stage. Its parameters are the input and/or output events and the context.

The context is the way to reach successor(s) in the graph. The implementation is based on the Java NIO API which provides blocking and non blocking I/O. To avoid the complexity of this API, we provide encapsulation classes which simplifies implementation.

Example:

Stage connections

The connection of the stages has to be specified in Java by the developer.

Example:

StageManagerImpl manager = new StageManagerImpl(); manager.connect(AcceptStage.class, ReadStage.class); manager.connect(ReadStage.class, WriteStage.class);

Concurrency selection

The concurrency model has to be selected in Java by the developer.

Example:

ModelExecutorImpl executor = new ModelExecutorImpl(); executor.run(configurator, stageManager, SEDA); Currently, these two steps are hand-coded but could be generated automatically via an Eclipse plugin.

Communication generation

The interfaces previously defined of the input and/or output events which allow the communication between stages are automatically generated.

The implementation of the context is also automatically generated according to the concurrency model.

Context:

If there is only one process, the context is a function call.

In the case of several processes, we introduce queues to implement the context. For distributed applications, the context establishes the connections between peers.

Concurrency generation

The last step consists in the automatic generation of the concurrency model. The bytecode is generated automatically using ASM and all the code generators can be used at runtime, even if they are usually used at compile time.