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Bragg spectroscopy of strongly correlated bosons in optical lattices

David Clément, Nicole Fabbri, Leonardo Fallani, Chiara Fort, and Massimo Inguscio
LENS, Dipartimento di Fisica, Università di Firenze and INFM-CNR,

via Nello Carrara 1, I-50019 Sesto Fiorentino (FI), Italy

Using inelastic scattering of light (Bragg spectroscopy), we study the low-energy excitations of
strongly correlated phases of ultracold bosons on the cross-over from correlated 1D superfluids to
Mott insulators. As it is commonly performed in solid-state physics, the use of such a probe allows
us to extract important information about the atomic many-body state. In particular we show that
we can extract information about the dynamical structure factor S(q, ω) and about the one-particle
spectral function A(q, ω) from the Bragg spectra. This technique could be extended to study more
exotic correlated phases of ultracold atoms.

I. INTRODUCTION

Quantum many-body systems are physical systems in
the degenerate quantum regime characterized by strong
correlations between their components. The interactions
between the large number of particles composing the sys-
tem cannot be neglected a priori. In this context the
knowledge of the low-energy excitations is crucial since
they control the response to a weak perturbation and the
thermodynamics at low temperatures. The description
of the dynamics of strongly correlated systems in terms
of low-energy excitations (e.g. using Green functions) is
common in condensed matter physics [1].

From the experimental point of view, a crucial step
consists in finding ways to measure the low-energy ex-
citations of many-body systems. For instance the de-
velopment of angle-resolved photoemission spectroscopy
(ARPES) has played a major role in the study of high-
Tc superconductors giving information about the one-
particle spectral function [2]. More generally, scattering
of light or particles has proved to be a useful tool to
measure low-energy excitations and better characterize
strongly correlated systems [3, 4].

For almost a decade now, ultracold atoms have been
used to create correlated quantum phases from which
solid-state physics problems can be adressed from a dif-
ferent perspective [5]. Apart from directly tuning the
atom-atom interactions via Feshbach resonances, a com-
mon way to increase correlations between atoms con-
sists in loading the gas in optical standing waves (opti-
cal lattices) [6]. Low-dimensional gases, Mott-insulating
phases and disordered insulating states have been real-
ized in experiments using optical lattices for bosonic or
fermionic atoms [5]. As in solid-state physics, experi-
mental tools are necessary to characterize these quan-
tum many-body ultracold gases. The response to scat-
tering processes in a similar manner to what is done in
condensed matter physics is a natural candidate. Along
those lines several techniques have been proposed con-
sisting in scattering photons from the correlated atomic
state and some of them have been implemented recently.
They include radio-frequency spectroscopy [7, 8], Raman
spectroscopy[9] and Bragg spectroscopy [10–13]

In this paper we present our recent experimental work

[12, 13] which consists in exploring correlated states of
ultracold bosons by inelastic light scattering (Bragg spec-
troscopy). We measure the excitation spectra of 1D Bose
gases in the correlated superfluid regime as well as in the
Mott insulator regime, observing novel experimental sig-
natures.

II. TWO-PHOTON BRAGG TRANSITION: A
PROBE FOR LOW-ENERGY EXCITATIONS

As mentioned in introduction, the knowledge of the
low-energy excited states of many-body systems is cru-
cial. The simplest kinds of low-energy excited states
involve either one or two particles of the many-body
ground-state and they are respectively connected to the
one-particle spectral function A(q, ω) and the dynamical
structure factor S(q, ω). A(q, ω) essentially describes the
probability to remove a particle with momentum h̄q and
energy h̄ω from the many-body ground-state and S(q, ω)
describes the probability of creating an excitation with
momentum h̄q and energy h̄ω within the many-body sys-
tem. As we will show later the inelastic scattering pro-
cess we implement allows us to obtain information about
these two quantities. Let us first recall their definition:

A(q, ω) =
1

Z
∑
i,f

e−βEi |〈φf |ψ(q)|φi〉|2 δ(h̄ω + Ef + ε(q)− Ei)(1)

S(q, ω) =
1

Z
∑
i,f

e−βEi |〈φf |ψ†(q− k)ψ(k)|φi〉|2 δ(h̄ω + Ef − Ei)(2)

where |φi〉 (resp. |φf 〉) are initial (resp. final) many-
body states of the system with corresponding energies Ei
(resp. Ef ), Z =

∑
i e
−βEi being the partition function

with β = 1/kBT . The operator ψ(q) creates a particle
with momentum q. The energy ε(q) is that of the final
excited state out of the many-body wave-function.

Scattering of light by atoms in the Bragg regime refers
to an inelastic scattering process of photons which cou-
ples two momentum states of the same internal atomic
state. In the following we note h̄ω the energy and h̄q
the momentum transferred to the gas by means of this
two photon transition. In the regime of negligible spon-
taneous light scattering, the atom-light interaction is de-
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scribed as a dipole potential V = V̂ eiωt that couples state
α and state β of the single atom, with

V̂ ∝
∫
dr ψ†β(r)ψα(r) Ω(r)eiqr (3)

where the operator ψα (resp. ψ†β) annihilates a particle

in state α (resp. creates a particle in state β) and Ω is
the Rabi frequency of the atomic transition. The calcu-
lation of the scattering rate of photons requires consid-
ering all possible initial and final many-body states with
momentum and energy conservation conditions[? ]. In
evaluating the response of the atomic system to scatter-
ing of light from Eq. 3, one can make use of the Fermi
golden rule to write the scattering rate as

2π

h̄

1

Z
∑
i,f

e−βEi |Mi,f |2 δ(h̄ω + Ef − Ei) (4)

where the matrix element are calculated for the operator
of equation Eq. 3

Mi,f ∝
∫
dr 〈φf |ψ†β(r)ψα(r)|φi〉 Ω(r)eiqr (5)

In the presence of an optical lattice, the two-photon
Bragg transition can couple atomic states which belong
to different energy bands of the optical lattice (see Fig. 1).
We label the different bands by the integer n = 1..∞,
n = 1 corresponding to the lowest-energy band.

n=1

n=2

n=3

FIG. 1. (Color online) Artist’s view of the experiment. A
Mott insulating state of atoms (blue) loaded in optical lat-
tices (grey) is shone with two laser beams (red) to excite the
many-body system. Inset: Sketch of the two-photon Bragg
transition in the optical lattice: atoms absorb from one Bragg
beam and are stimulated to emit a photon in the second beam.
The two-photon transition can excite the atom in any energy
band, labelled n, of the optical lattice when the resonance
condition on the energy and the momentum transferred is
fullfilled.

We consider a two-photon transition from an atomic
many-body state initially in the lowest-energy band (n =
1). We note the initial (resp. final) many-body wavefunc-
tion with N particles φNi (resp. φNf ). We write |φNi , N ′n′〉
the state constituted of N atoms in the initial many-body
wavefunction (i.e. in the lowest-energy band n = 1) and

N ′ atoms in a high-energy band n′ > 1. With this nota-
tion a two-photon transition from the many-body ground
state can take two forms:

(i) it couples the state |φNi , 0n′〉 to |φNf , 0n′〉, i.e. the
excited atom also belongs to the lowest-energy
band n = 1 ;

(ii) it couples the state |φNi , 0n′〉 to |φN−1f , 1n′〉, i.e. one

atom is excited in the energy band n′.

We obtain two different types of contribution correspond-
ing to the two elementary scattering processes (i) and
(ii).

The matrix element for the first type of terms is:

|Mi,f |2 ∝ |
∫
dr Ωeiqr 〈φNf , 0n′ |ψ†1(r)ψ1(r)|φNi , 0n′〉|2

(6)
which can be rewritten as

|〈φNf |ψ
†
1(q− k)ψ1(k)|φNi 〉|2. (7)

By inserting it in the relation Eq. 4 one gets the relation
defining the dynamical structure factor S(q, ω) of the
many-body state.

Terms of type (ii) correspond to the Bragg transition
coupling a state in the lowest-energy band to a higher-
energy band, n′ > 1. Assuming that the excited state is
decoupled from the initial one, one obtains

|Mi,f |2 ∝ |
∫
dr Ωeiqr 〈φN−1f , 1n′ |ψ†n′(r)ψ1(r)|φNi , 0n′〉|2(8)

∝ |
∫
dr Ωeiqr 〈φN−1f |ψ1(r)|φNi 〉〈1n′ |ψ†n′(r)|0n′〉|2(9)

which is proportional to

|〈φN−1f |ψ1(q)|φNi 〉|2 (10)

leading, after inserting into Eq. 4, to the one-particle
spectral function A(q, ω) of the many-body state[? ].
When the Bragg process excites atoms from the Mott
state to a high-energy band, assuming the initial and
final states are independent is a good approximation. In-
deed, being in the Mott regime implies that the ampli-
tude of the periodic potential is large, i.e. that the dif-
ferent energy bands are separated by large energy gaps
and that atoms in the many-body state are pinned at
the lattice sites, resulting in a small overlap of the ini-
tial and final state wavefunctions. The same assumption
would not hold in the superfluid regime for shallow lat-
tice amplitudes where inter-band correlations might play
a non-negligible role. In particular the result of Bragg
scattering towards high-energy bands in the superfluid
regime cannot be carried out in the simple way we use
for the Mott state.

At last we note that the information about S(q, ω)
and A(q, ω) related to the Mott state are distinguish-
able experimentally since they come from different en-
ergy scales in the excitation spectrum: while S(q, ω) is
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related to the response at low energies (typically ω/2π <
10 kHz), A(q, ω) is probed by measuring the excita-
tion spectrum in higher-energy bands (corresponding to
ω/2π > 30 kHz).

III. EXPERIMENTAL PROCEDURE

The experiments are performed with 87Rb atoms and
the following time sequence [12, 13]. First, we load the
ultracold atoms from a Bose-Einstein condensate (BEC)
in three pairs of counter-propagating laser beams (optical
lattices), the amplitudes of which determine the many-
body state of the gas. Second, while the atoms are in this
many-body state we shine them with two Bragg beams
for a short duration (typically 3 to 6 ms) in order to
create excitations in the system. Third, the amplitude
of the optical lattices is ramped down to a small value
(5ER) where we wait for the excitations to thermalize.
Finally, we switch both the 3D optical lattice and the
magnetic trap, we let the atoms expand for a time-of-
flight (typically 20 ms) and then we take an absorption
picture of the atomic cloud. From the pictures we evalu-
ate the energy absorbed by the atomic sample from the
Bragg beams [12, 14]. Monitoring the energy absorbed as
a function of the relative detuning ν between the Bragg
beams, we obtain the excitation spectrum at a given mo-
mentum transfer h̄q0.

a. Creating correlated 1D Bose phases in optical lat-
tices We create correlated atomic states using a 3D op-
tical lattice (λL = 830 nm) with amplitudes along each
axis scaled in recoil energy unit: Vx = sxER, Vy = syER

and Vz = szER, where ER = h2/2mλ2L and m the atomic
mass. All the experiments are performed with an array
of 1D gases created by the lattices in the xOz plane, the
amplitudes of which are fixed sx = sz = s⊥ = 35 and
large enough to ensure the 1D character of the gases (the
transverse trapping frequency is ∼ 40 kHz much larger
than the chemical potential µ1D ∼ 3 kHz). Varying the
amplitude sy of the lattice along the axis of the 1D tubes,
the gases are driven from a correlated superfluid state
(sy = 0) to a Mott insulating state (sy > 6). Start-
ing from a 3D Bose-Einstein condensate, the 3D optical
lattice is adiabatically ramped up with a 140 ms-long ex-
ponential ramp with a time constant 30 ms. As already
mentioned, after shining the Bragg beams, the 3D lat-
tice is linearly ramped down to s⊥ = sy = 5 where the
system is left to thermalize for 5 ms. The expansion dur-
ing a time-of-flight from the amplitude 5ER leads to an
interference pattern in the density distribution of atoms,
the latter being the atomic equivalent of light diffraction
on a grating [15].

b. Bragg beams setup The laser beams of the Bragg
setup derive from a laser diode at λB = 780 nm and are
typically detuned by 300 GHz from the atomic transition
D2 of 87Rb. The resonant condition for the two-photon
Bragg process depends on the energy and the momen-
tum given by these two beams. The frequency difference

ν between the two beams (typically of the order of a few
kHz) defines the energy transfer hν and it is controlled
using two AOMs locked in phase. The momentum trans-
fer h̄q0 is controlled by the angle θ between the beams,
q0 = 4π/λB sin(θ/2). In the experimental setup, the two
Bragg beams are controlled by independent mechanical
supports which allows us to change θ. We align these me-
chanical setups in order to transfer the momentum h̄q0
along the axis of the 1D atom tubes. q0 is calibrated us-
ing the well-known response of a 3D BEC in the absence
of any optical lattice. The spectra presented in this pa-
per have been measured at a fixed q0 = 0.96(3)kL where
kL = 2π/λL.

c. Measuring the amount of excitations in the lin-
ear response regime The response of the gases to the
Bragg excitation is monitored by measuring the energy
absorbed by the atomic sample after thermalization of
the excitations. In brief, we measure the width of the
central peak in the interference pattern obtained in the
atomic distribution after a time-of-flight, as discussed
previously. We have checked that, when the two-photon
Bragg process is resonant, the increase of this width is
proportional to the energy absorbed by the atoms. In ad-
dition, this quantity increases linear with both the power
and the duration of the Bragg pulse in the range of pa-
rameters we use (details can be found in [13]). Therefore
the scattering of light at the finite momentum transfer
q0 we use allows exciting correlated atomic phases in a
linear regime previously unaccessed by experiments.

IV. RESULTS

A. Dynamical structure factor S(q, ω) of the
many-body atomic state

As discussed in Sect. II, information about the dynam-
ical structure factor S(q, ω) of the many-body atomic
state can be extracted from Bragg transitions within the
lowest-energy band (n = 1) of the optical lattice Vy.
When restricted to transitions within the lowest-energy
band, the response of the 1D gases to the scattering of

light is related to terms of the type |〈ψ†1ψ1〉|2, i.e. to
density-density correlation functions of the many-body
state. In Fig. 2 we present low-energy Bragg spectra of
the atomic gases across the superfluid to Mott insulator
state. This cross-over is induced by increasing the ampli-
tude sy of the optical lattice along Oy, i.e. by changing
the ratio U/2J of the on-site interaction energy U over
the next-neighbour hopping amplitude J [6].

d. Superfluid-Mott insulator cross-over The dy-
namical structure factor of a Mott insulating state is
expected to be very different from that of a correlated
superfluid [19]. This point is qualitatively enlightened
by the spectra presented in Fig. 2. Indeed we observe
that the Bragg spectrum of correlated 1D superfluids
(Fig. 2a)), which exhibits a single broad resonance, is
clearly distinguishable from the spectrum in the Mott
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FIG. 2. Bragg spectra of the 1D gases across the superfluid
to Mott insulator transition for four ratios U/2J along the
axis of the 1D atom tubes: 2.7 (corresponding to sy = 4), 7
(sy = 7), 16 (sy = 10) and 33 (sy = 13). The solid lines are
guide to the eye. The vertical dashed line in d) marks the
particle-hole excitation energy ∆p−h(q0). (Color online)

state (Fig. 2d)) where several narrow resonant peaks are
observed. While the resonance of a 3D BEC is narrow
[16], that of 1D superfluids is much larger due to the pres-
ence of stronger atom-atom correlations and temperature
effects (thermal population of 1D phase fluctuations [17]).
Concerning the Mott phase, we stress that the spectrum
measured in the experiment is more complex than that
of an homogeneous Mott insulator at zero temperature
where a single resonance corresponding to a particle-hole
excitation is expected. This complexity comes from: (i)
the presence of a trapping potential which implies the
existence of Mott regions with different fillings separated
by superfluid domains (inhomogeneous Mott insulating
state) [20] ; (ii) the finite temperature of the system. We
will discuss these points later in the paper.

More quantitatively, the appearance of the first Mott
insulating region can be precisely located by monitoring
the width of the broad resonance for low values of sy (see
Fig. 3a). The single resonance observed in the superfluid
regime (Fig. 2a)) presents a width which diminishes as sy
increases since the energy band flattens. When increasing
sy the 1D gases are driven into a state where a MI region
appears with a resonant energy larger than that of the
superfluid domain (the MI resonant energy lies above the
lowest-energy band of the optical lattice n = 1). When
the two peaks are not resolved, it implies that the width
of the single resonance suddenly increases when a MI
region appears. This analysis allows us to locate the
appearance of the first MI region in the range U/J = 8−
10 [12]. This estimate is in good agreement with the most
recent Monte-Carlo calculations for trapped systems [18].

When the 1D gases are driven from a superfluid to an
insulating state we expect the amplitude of the response
to the light scattering to drop. The spectra in Fig. 2
clearly exhibit this behaviour. In addition, the amplitude
is also expected to further drop in the MI state as the
ratio U/J increases and atoms are more correlated. In
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FIG. 3. a Evolution of the RMS width of the lowest-energy
resonance across the superfluid to Mott transition. The
shaded area corresponds to the theoretical prediction for the
appearance of the first Mott region for our experimental pa-
rameters. b Amplitude of the response of a Mott state as
a function of U/J at the frequency ν corresponding to the
particle-hole excitation (see vertical dashed line on Fig. 2d).
This amplitude scales as a power-law with the ratio J/U with
an exponent 1.7(3). (Color online)

Fig. 3b we plot the amplitude of the peak located at
the particle-hole excitation energy ∆p−h(q0) in the Mott
state (see vertical dashed line on Fig. 2d). Fitting the
experimental data with a power-law (J/U)p we find an
exponent p = 1.7(3) [21] in agreement with the expected
value 2 [19].

e. Density-density correlations in the Mott state El-
ementary excitations in a homogeneous Mott-insulator
state consist in particle-hole (p-h) excitations, i.e. mov-
ing a particle localized into a well of the periodic po-
tential to a different site, already occupied. Therefore
the typical energy needed for such a process is of the or-
der of the on-site interaction energy U . The signature
of the p-h excitations in the dynamical structure factor
consists in a resonance located close to the energy U . As
it appears on Fig. 2d) the largest resonant peak in the
MI state (marked by a vertical dashed line) is observed
at a frequency ∼ 2 kHz which is close to the energy
U ' 2.2kHz. We have identified this resonant energy
with the particle-hole excitation energy ∆p−h(q0) of the
atomic Mott insulator for a momentum transfer h̄q0. In
Fig. 4a) we plot ∆p−h(q0) as a function of U/J and we
compare the measurement to the bare value U (solid line)
calculated from the localized Wannier functions [5]. We
observe a systematic downwards shift of ∆p−h(q0) com-
pared to U . ∆p−h is expected to converge towards U for
U/J � 1 in the case of a homogeneous Mott insulator
at zero temperature. In our experimental system, finite
temperature effects and inhomogeneity might explain the
observed discrepancy.

The presence of the trapping potential is responsible
for the existence of several Mott and superfluid regions in
the 1D gases [20]. In this inhomogeneous Mott-insulator
state, a particle can hop to a site already doubly occu-
pied. The resonant energy of this process is expected to
be twice that of the homogeneous Mott resonant energy
∆p−h(q0). In Fig. 2d) a resonant peak is indeed present
at a frequency ∼ 4 kHz. We have plotted the ratio of
this resonant energy (around 4 kHz) to the one identified
as ∆p−h(q0) for different values of U/J in Fig. 4b): this
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ratio is constant and equal to 2. We exclude non-linear
processes since the response to the light scattering lies
in the linear regime and we attribute the presence of the
peak at 2∆p−h(q0) to the inhomogeneity of the experi-
mental system (coming from the trapping potential and
a loading in the optical lattice which might not be fully
adiabatic).

Finally, we want to mention that we observed reso-
nances in the energy range of 0.5-1.5 kHz in the Mott in-
sulator regime (see Fig. 2d)). These resonances can not
be attributed to the superfluid domains since their energy
is too high [12]. In an uniform Mott insulator, the energy
difference between the ground-state and the p-h excita-
tions is order of U while the energy splitting between the
latter is of the order of J . The finite temperature of the
system is expected to populate several p-h excitations on
an energy scale of the order of the temperature, a prop-
erty that can be probed using Bragg spectroscopy [19].
Further investigations have to be performed to compare
the experimental signals around 1 kHz with this scenario.

B. One-particle spectral function in the Mott
insulator

We now consider two-photon Bragg transitions to-
wards high-energy bands (n′ > 1) from an initial many-
body state in the Mott insulator regime (sy > 6). As
mentioned in Sec. II, in this regime Bragg spectroscopy
gives information about the one-particle spectral func-
tion of the many-body state since it involves terms like
|〈ψ1〉|2. This regime of coupling the many-body ground-
state to high-energy single-particle states is analogous to
techniques like ARPES in condensed-matter physics: the
excited atoms in the high-energy bands are the equiva-
lent to the removed electrons from the initial many-body
state.

In Fig. 5 we present the measurement of a Bragg spec-
trum of an inhomogeneous MI state (s⊥ = 35, sy = 9) in
the energy range corresponding to excitations in the third
band (n′ = 3). A band-mapping technique has been used
to measure the momentum of the excited atoms [15]. In
this way we have demonstrated that the excitations pre-

sented in the energy scale of Fig. 5 indeed belong to the
third energy band (see [13] for details).
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The interesting feature in the spectrum depicted in
Fig. 5 is the modulation of the amplitude in the response
to the Bragg excitation. The interpretation of this point
is currently under investigation and we expect it will give
information on the one-particle spectral function of the
Mott insulator as justified in Sec. II.

V. CONCLUSIONS

In this experimental work, we have implemented Bragg
spectroscopy to probe the low-energy excitations in cor-
related quantum phases of ultracold bosons. We have
shown how to measure the response of the atomic sam-
ple to the scattering of light in the linear regime. In
such a regime the interpretation of the results are per-
formed in close analogy with what is done in condensed
matter physics. In particular, experimental observations
can be thought in terms of the dynamical structure factor
S(k, ω) or the one-particle spectral function A(k, ω). The
experimental signatures of strong atomic correlations and
their link to the dynamical properties of the many-body
states of the gases have been enlightened. This point
underlines the interest of using Bragg spectroscopy as a
tool to probe low-energy excitations in correlated quan-
tum atomic phases. This technique could easily be ex-
tended to more exotic experimental situations like corre-
lated mixtures of different atoms where peculiar quantum
phases are expected.
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