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Abstract. In this work, we use inelastic scattering of light to study the response
of inhomogeneous Mott-insulator gases to external excitations. The experimental
setup and procedure to probe the atomic Mott states are presented in detail.
We discuss the link between the energy absorbed by the gases and accessible
experimental parameters as well as the linearity of the response to the scattering
of light. We investigate the excitations of the system in multiple energy bands
and a band-mapping technique allows us to identify band and momentum of the
excited atoms. In addition, the momentum distribution in the Mott states that is
spread over the entire first Brillouin zone enables us to reconstruct the dispersion
relation in the high energy bands using a single Bragg excitation with a fixed
momentum transfer.
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1. Introduction

Many-body quantum systems where strong correlations between particles play a central
role are among the most intriguing physical systems since no simple picture captures their
behavior. Examples of this kind can be found in correlated electronic systems such as high-Tc

superconductors [1], quantum liquids such as liquid helium [2] or interacting one-dimensional
(1D) systems [3] such as carbon nanotubes [4], quantum wires [5] and organic conductors [6].
A large amount of research work has been devoted to the study of such systems within
different fields of physics, yet many questions have still to be addressed. In this prospect, new
experimental possibilities have been opened by the realization of degenerate quantum gases and
the recent development of techniques to manipulate them in optical lattices. Indeed, in recent
years ultracold atomic gases have been loaded in optical lattices to create strongly correlated
quantum phases in a highly controllable manner.

Among these experiments, different atomic insulating phases have been realized
demonstrating the versatility of gaseous systems. These include bosonic Mott insulators (MIs) in
1D, 2D and 3D systems [7]–[9], disordered bosonic insulating phases [10] as well as fermionic
MIs [11, 12]. The characterization of these insulating quantum phases has enlightened many
of their properties. Experiments have demonstrated the presence of a gap in the spectrum of
MIs [7, 9] and its vanishing in a disordered insulating phase [10]. A noise correlation analysis
of time-of-flight pictures has shown the spatial order of the atomic distribution [13] and its
controlled modification when changing the lattice potential [14]. Studies of the suppression of
compressibility has been performed in fermionic [11, 12] and bosonic [15] MIs. In addition
to these properties expected in homogeneous insulating phases, the presence of a trap enriches
the experimental situation while creating alternate regions of Mott with different filling factors
and superfluid (SF) states [16, 17]. This shell structure has been identified in experiments and
clearly related to the trapping potential [18, 19]. Recently, inelastic light scattering has been
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used to measure the excitation spectrum of inhomogeneous MI states [20]. This spectroscopic
measurement performed at nonzero momentum transfer and in the linear response regime gives
a direct access to the dynamical structure factor S of those complex phases [21]–[26].

In this paper, we report the measurement of the excitation spectrum of 1D bosonic MI
states over several energy bands. The band structure is induced by the presence of the optical
lattice, which drives the system into a MI state. A particular attention is paid to the details of
the spectroscopic technique. We discuss the measurement of the energy absorbed by the atomic
system when excitations are created as well as the linearity of its response. This paper also
extends our previous work [20], the scope of which was centered on the study of excitations
lying in the lowest energy band. We present experimental results for the spectra in the higher
energy bands showing novel experimental signatures related to the one-particle spectral function
of the Mott state. A band-mapping technique is used to identify the momentum of the excited
atoms contributing to the different parts of the spectra in the inhomogeneous Mott state.

The paper is organized as in the following. In section 2, we describe the principles and
the experimental implementation of inelastic light scattering (Bragg spectroscopy) as a probe
of excitations of ultracold atoms in optical lattices. In section 3, we present the experimental
sequence allowing to extract information about the amount of excitation created by the Bragg
beams. We discuss the choice of the experimental parameters in order to work in the linear
regime, in particular for the response of MI states. Section 4 is devoted to the multi-band
spectra of the inhomogeneous MI states and to the band-mapping technique. The latter allows
us to directly reconstruct the dispersion relation in the high-energy bands induced by the optical
lattice. Finally, we discuss the relation of the high-energy band spectra with the measurement
of the one-particle spectral function of the atomic Mott state.

2. Inelastic light scattering from correlated gases in optical lattices

2.1. Inelastic light scattering as a probe of excitations

The result of weak inelastic scattering of waves or particles by many-body systems may be
described within the Born approximation and expressed in terms of the dynamic structure factor
S [27]. The dynamic structure factor is the Fourier transform of the density–density correlation
function and it carries information on the excitation spectrum of the system, independently
from the external probe. The knowledge of the dynamic structure factor S obtained from
inelastic scattering processes has proved to be central in describing many-body systems, from
the electrons in solids [28] to SF helium [2].

Inelastic light scattering has been applied to gaseous Bose–Einstein condensates (BECs) to
measure the dynamic structure factor [29]–[31]. This scattering technique, referred to as Bragg
spectroscopy, consists in a two-photon transition between two different momentum states of
the same internal ground state [29]. The dispersion relation of interacting BECs in the mean-
field regime [32]–[34], the presence of phase fluctuations in elongated BECs [35] as well as
signatures of vortices [36] have been investigated using this technique. Bragg spectroscopy is
also used as a tool to coherently manipulate atomic clouds for interferometric schemes ([37]
and references therein) or for thermodynamics studies [38, 39]. More recently, it has succeeded
in providing novel information about strongly interacting 3D Bose [40] and Fermi [41] gases
close to Feshbach resonances as well as correlated 1D Bose gases across the transition from the
SF to the MI state [20].
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Figure 1. Experimental setup: two laser beams (red), detuned with respect to
each other by a controllable frequency ν, are shone onto the atoms in the glass
cell in order to induce a two-photon transition. The direction of each beam
can be changed thanks to a rotation plate and a translation stage that allow a
precise control of the angle θ . The axes (Ox, Oy) coincide with the axes of the
lattice beam (see text below). Inset: parabolic energy spectrum of free particles.
Depending on the sign of the relative detuning ν between the Bragg beams atoms
absorb photons from beam 1 and emit in beam 2 (for ν > 0, solid lines) or absorb
from beam 2 and emit in beam 1 (for ν < 0, dashed lines), changing the direction
of the momentum transfer h̄q0.

2.2. Two-photon Bragg transitions

The Bragg spectroscopy technique consists in shining the atoms for a finite time tB with two
laser beams detuned by δ from an atomic transition. During the Bragg pulse, atoms absorb
photons from one beam and are stimulated to emit photons in the second beam. The resonance
condition for the two-photon transition consists of conserving energy and momentum. An
atom with an initial momentum pi ends up in the same internal state with a final momentum
pf = pi + h̄q0, where h̄q0 is the momentum transfer given by the two-photon process. The energy
difference between the initial and final atomic states is also given by the Bragg beams, which
are detuned from each other by a frequency ν = ν1–ν2 where ν1 and ν2 are the frequencies of the
two beams (see figure 1). In practice, by tuning the frequency difference ν, one can match the
resonance energy for the two-photon transition process to occur at a given momentum transfer
h̄q0. In other words, this corresponds to the condition for which the atomic wave function is
efficiently diffracted on the moving optical lattice created by the Bragg beams. We note VB the
amplitude of the lattice induced by the Bragg beams and �B/2π = VB/2h the associated Rabi
frequency.
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The modulus of the momentum transfer h̄q0 given to the atoms is set by the wavelength λB

of the Bragg beams and the angle θ between them, namely q0 = 4π/λB sin(θ/2) (see figure 1).
Note that the direction of q0 is perpendicular to the bisector between the two beams. The
detuning ν between the two Bragg beams controls not only the energy hν transferred to the
atoms but also the sign of the momentum transfer. For a two-photon transition towards an
excited state with higher kinetic energy, atoms absorb a photon from the beam with the higher
energy photons and are stimulated to emit a photon in the beam with the lower energy photons.
Therefore, with our convention, when the detuning ν = ν1–ν2 is positive atoms absorb photons
from beam 1, emit into beam 2 and the momentum transfer is +h̄q0 (see inset in figure 1). When
the detuning ν is negative atoms absorb from beam 2, emit into beam 1 and the momentum
transfer is opposite, i.e. −h̄q0.

In our experimental setup, a laser beam coming out from a laser diode at wavelength
λB = 780 nm, detuned by δ ' 300 GHz from the D2 transition of 87Rb, is separated into two
beams, each passing through an acousto-optic modulator (AOM). The two AOMs are locked
in phase and allow to control the relative detuning ν (ν = ν1 − ν2 � δ) between the two Bragg
beams. After passing through the AOMs, each beam is injected into a polarization-maintaining
fiber. The out-coupler of each fiber is fixed onto a post-holder mounted on a rotation plate and
a translation stage close to the cell in which the atoms are manipulated. This setup allows an
independent control of the angle of each of the Bragg beams with respect to the y-axis (see
figure 1). In particular, the angle θ between the two Bragg beams can be tuned from 30◦ to
60◦, this range being determined by the limited optical access to the glass cell. While λB is
precisely known in the experiment, the angle θ cannot be measured geometrically with high
precision. We use the atoms as a sensor to precisely calibrate q0. To this purpose we measure
the momentum transferred to a 3D BEC (in the absence of any optical lattice) in two different
ways.

2.3. Calibration of the momentum transfer

In the first calibration measurement, we measure the resonant frequency of the Bragg spectrum
for the 3D BEC. The resonance frequency depends on the momentum transfer h̄q0, on the
strength of atom–atom interactions through the dispersion relation and on the initial velocity of
the BEC center-of-mass. The dispersion relation E(q) of a trapped 3D BEC in the mean-field
regime can be written as

E(q) = h̄

√
c2

LDA(q)q2 +

(
h̄q2

2m

)2

, (1)

where cLDA(q) corresponds to an effective sound velocity within a local density approximation
and is related to the mean-field interaction term [42]. The two-photon transition induced by
the Bragg pulse couples the initial state of the 3D BEC with momentum pi = h̄qi to an
excited state with momentum pf = h̄(qi + q0). Thus the resonance energy of this process is
E(qi + q0) − E(qi). In the absence of interactions, this energy reduces to the usual quadratic
dependence of a single-particle spectrum, i.e. h̄2(qi + q0)

2/2m − h̄2q2
i /2m. In order to reduce

the effect on evaluating q0 coming from interactions, we perform Bragg spectroscopy on dilute
3D BECs after a time-of-flight. When the magnetic trap is switched off the BEC acquires a
spurious nonzero momentum h̄qi and two unknown parameters have to be determined, namely
q0 and qi. We measure the spectra at positive (h̄q0) and negative (−h̄q0) momentum transfer.
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The two resonance frequencies E(qi + q0) − E(qi) and E(qi − q0) − E(qi) allow us to precisely
determine q0 in the experiment. We obtain q0 = 0.97(3)kL where kL = 2π/λL is the wave vector
of the lattice beams (see text below) at the wavelength λL = 830 nm.

In the experiment, the bisector of the two Bragg beams is not exactly perpendicular
to the y-axis and the momentum transfer along the y-axis is the projection h̄q0,y =

4h̄π cos(α)/λB sin(θ/2) where α is the angle as defined on figure 1. Note that the axes on
figure 1 are defined as the axes of the lattice beams (see below). To measure the angle α

we diffract the atoms in the Raman–Nath regime [43] with very short light pulses (of typical
duration 3 µs). In this diffraction regime, many clouds of diffracted atoms are observed allowing
a good estimate of the axis of the momentum transferred to the atoms. We use such a procedure
for both the lattice beams and the Bragg beams separately, measuring the angle α = 9.5(1)◦

(see figure 1). As a consequence the projection of the momentum transfer along the y-axis is
h̄q0,y = 0.96(3)h̄kL.

In a second set of calibration measurements, we use the diffracted atoms of the 3D BEC
by the moving lattice created with the Bragg beams. By letting the atoms fall under gravity
after the Bragg pulse for a long enough time-of-flight (tTOF = 10–30 ms), the diffracted atoms
separate from the atoms which have not undergone the two-photon transition. The distance
between the two clouds is h̄q0,ytTOF/m in the yOz plane where absorption images are taken, m
being the atomic mass. By fitting the distance between the diffracted and non-diffracted atomic
clouds as a function of tTOF, we measure q0,y = 0.97(4)kL in good agreement with the previous
measurement.

3. Amount of excitation and linear response regime

3.1. Energy transfer by the Bragg beams to a gas loaded in optical lattices

3.1.1. Experimental setup and time sequence. We use the Bragg spectroscopic scheme
described in section 2 to probe the response of correlated 1D Bose gases in the linear
response regime [20]. Correlated Bose phases are created by loading a 3D BEC of 87Rb atoms
in a 3D optical lattice as described in previous papers [10, 20]. In brief, a 3D BEC of N ∼

1.5 × 105 atoms is produced in a magnetic trap whose frequencies are ωx = ωz = 2π × 90 Hz
and ωy = 2π × 8.9 Hz. Then it is adiabatically loaded in a 3D optical lattice created with three
pairs of counter-propagating laser beams at the wavelength λL = 830 nm. The amplitudes Vi

of the optical lattice along each axis i = x, y, z are expressed in units of the recoil energy
ER = h2/2 mλ2

L, Vi = si ER. The optical lattices are ramped up to their final values si with an
exponential ramp of duration 140 ms and time constant 30 ms.

In all the experiments described in this paper, a 2D optical lattice in the plane x Oz with
amplitudes sx = sz = s⊥ = 35 is used to create an array of 1D tubes of atoms. At this amplitude
s⊥ and in the absence of the longitudinal lattice (sy = 0), we measure the ratio of the frequencies
of the quadrupole mode νQ to the dipole mode νD to check that the 1D gases are Bose condensed.
For holding times in the 2D lattice (at s⊥ = 35) up to 50 ms, this ratio is close to the value√

3 corresponding to the expected value for 1D Bose-condensed gases close to the mean-field
regime [44, 45]. For longer holding times, the ratio increases up to the value 2 expected for
a thermal 1D Bose gas. All the experiments are performed with a typical holding time at the
amplitude s⊥ = 35 equal to 10 ms ensuring the 1D gases are Bose condensed in the absence of
the longitudinal lattice (sy = 0).
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Figure 2. (a) Experimental sequence to measure the increase 1σ of the width
of the central peak of the interference pattern after a Bragg pulse. Picture (b)
(resp (c)) corresponds to an absorption image taken after a non-resonant (resp
resonant) Bragg pulse. (d) Experimental sequence to measure the increase of
temperature 1T after a Bragg pulse and a thermalization time of 1 s. Picture (e)
(resp (f)) corresponds to an absorption image taken after a non-resonant (resp
resonant) Bragg pulse. (g) 1σ as a function of the increase of temperature 1T .
The points correspond to different power of the Bragg beams with a fixed pulse
length of 3 ms.

The amplitude sy of the optical lattice is changed to tune the 1D gases from a correlated
SF state (sy = 0) to inhomogeneous MI states (sy > 6). For large amplitudes sy the dynamics
of 1D gases (when restricted to the lowest energy band of the optical lattice along Oy) can be
described by the Bose–Hubbard Hamiltonian [16],

H = −J
∑
〈i, j〉

(a†
i a j + h.c.) +

U

2

∑
i

ni(ni − 1) +
∑

i

εi ni . (2)

Here a†
i , ai are the creation and annihilation operator of one boson at site i and ni = a†

i ai is the
particle number operator. The on-site interaction energy is given by U and the next-neighbor
hopping amplitude by J . εi is the slowly varying energy offset experienced by an atom on site i
due to the presence of the harmonic confining potential.

Once the amplitude of the 3D optical lattice has reached its final values (s⊥ = 35, sy) the
Bragg pulse is shone onto the system for a time tB (see figure 2(a)). In order to detect the
amount of excitation induced by the Bragg beams in the correlated gaseous systems, we follow
a procedure similar to that used in [7] and described in [20] that consists in measuring a quantity
related to the increase of energy in the gas.

3.1.2. Measurement of the energy transfer. After shining the Bragg pulse onto the atoms the
amplitudes of the 3D lattice are ramped down linearly to s⊥ = sy = 5 in 15 ms where we let the
system rethermalize for 5 ms (see figure 2(a)). Then the magnetic trap and the 3D lattice are
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switched off abruptly and an absorption image of the atomic distribution in the yOz plane is
taken after a typical time-of-flight tTOF ' 22 ms. Expanding from a phase coherent state in a 3D
optical lattice (s⊥ = sy = 5), the atomic distribution exhibits an interference pattern which is the
analogous of the diffraction pattern of light from a grating (see figure 2(b) and [46]). From this
interference pattern we extract the rms widths σy and σz of the central peak, the increases of
which are related to that of the energy of the system. Indeed, when the Bragg excitation is tuned
out of resonance both widths σy and σz are equal to the widths measured in the absence of the
Bragg pulse while on resonance they increase (see figure 2(c)). Moreover, we find that σy and σz

have the same dependence with the detuning ν between the Bragg beams as expected from an
efficient rethermalization process in each spatial direction when the lattices are ramped down.
In the following, we will consider an average width σ defined as σ =

√
σyσz.

To be more quantitative on the relation between the increase of σ , denoted 1σ , and the
energy absorbed by the gas, we make a comparison of 1σ after a resonant Bragg excitation with
a measurement of the temperature increase 1T realized in the same experimental conditions
(in particular, for an identical Bragg excitation). The temperature is obtained by ramping down
adiabatically the optical lattices with an exponential ramp after the Bragg pulse, letting the
system thermalize in the magnetic trap for 1 s and measuring the condensate fraction of the 3D
atomic cloud (see figure 2(d)). The comparison is performed by setting the detuning ν on the
resonance towards the second band in the case of an inhomogeneous MI state with sy = 13 (see
section 4). By changing the power in the Bragg beams, 1σ is tuned over a range typical of
that used in experiments. The results are presented in figure 2 where 1T is extracted from the
decrease of the condensate fraction. This measurement confirms that 1σ is proportional to the
energy absorbed by the atomic system, i.e. to the number of excitations created.

One may wonder whether the spectra could be obtained measuring the condensate fraction
instead of the width σ . This could be the case when the amplitude of the response of the 1D
gases is large as in the SF regime or in the Mott regime for high-energy bands. In contrast, the
amplitude of the response of the MI state within the lowest energy band is low as the system
exhibits its insulating behavior. In this case, we observe that the measurement of 1σ is more
sensitive than that of the condensate fraction, allowing to detect small excitations.

3.2. Amount of excitation A

We now describe the quantity we will be referring to as the amount of excitations. This quantity
is proportional to the increase 1σ of the central peak width of the interference pattern obtained
after a time-of-flight (see figure 2(b) and text below). It is rescaled as explained in the following.

The width σ of the central peak has a weak dependence on the total atom number N ,
which is related to the presence of interactions, independently from the Bragg excitation. In
the experiment, the total atom number typically fluctuates by 20% from shot-to-shot. In order
to remove the small variations (up to 8%) on the measurement of σ coming from fluctuations
of N , we calibrate the increase of σ with N by changing the atom number over a wide range
105–106. This scaling has been used to substract, for each measurement of σ , the contribution
to σ coming from the fluctuations in the atom number. To display the spectrum the width in
the absence of Bragg excitation is substracted in order to plot the increase 1σ . In addition, we
rescale 1σ by the parameters of the Bragg excitation, namely by the factor (PBtB/δ)−1 where
PB is the power of the Bragg beams, δ their detuning with respect to the atomic transition and
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Figure 3. Bragg spectrum of an inhomogeneous MI state with lattice amplitudes
s⊥ = 35 and sy = 13. The dashed (resp dotted) vertical line marks the resonance
energy 1ph ∼ U (resp 21ph ∼ 2U ) of the Mott state. The red arrow indicates the
detuning ν at which the linearity of the response has been tested. It corresponds
to the resonance energy of a particle–hole excitation in the Mott regions.

tB the duration of the Bragg pulse2. This procedure allows us to compare the amplitudes of the
response for spectra taken with slightly different parameters of the Bragg beams. The linear
dependence of 1σ with (PBtB/δ)−1 holds in the linear response regime, the validity of which
we discuss below. In the following, we will refer to the rescaled 1σ , called A, as to the amount
of excitation transferred to the system. The plot ofA as a function of the detuning ν between the
two Bragg beams gives the excitation spectrum. In figure 3, we show an example of a spectrum
of the inhomogeneous MI state (see text below and [20]).

3.3. Linear response regime

The linearity of the response of the system to the Bragg excitation is studied monitoring how
1σ varies with the parameters of the Bragg excitation on resonance. In [20], we have identified
the particle–hole excitation energy 1ph of the MI state. Here, we fix the frequency ν = 1ph/h
(i.e. on the resonant peak of the MI state, see red arrow in figure 3) to study the variations of
1σ as a function of the amplitude VB of the Bragg lattice and the duration 1tB of the pulse,
with the results plotted in figure 4. In the range of parameters used to monitor the spectra (for
example VB = 0.5ER and 1tB = 6 ms for the spectrum in figure 3 at sy = 13), the increase of
1σ is linear both with VB and 1tB, demonstrating that the energy transferred to the gases by the
Bragg pulse increases linearly with both those quantities.

The inset of figure 4(b) compares the variation of 1σ as a function of the pulse duration
1tB for two amplitudes VB, namely VB = 0.5ER (dots) and VB = 2.0ER (circles) at ν = 1ph/h
for sy = 13. For the larger amplitude VB = 2.0ER the response to the Bragg excitation exhibits a

2 In [20], we used a slightly different scaling for the amplitude of the response with the parameters of the Bragg
in order to normalize the different spectra, namely (P2

BtB/δ2)−1.
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Figure 4. (a) 1σ as a function of the amplitude VB of the lattice induced by
the Bragg beams, which is proportional to the power PB. The measurement is
performed at a fixed energy transfer ν = 1ph/h corresponding to the resonance
of the particle–hole excitation and for a duration of the Bragg pulse 1tB = 3 ms.
Inset: same measurement on larger scale of the amplitude VB showing saturation
for VB > ER. (b) 1σ as a function of the duration of the Bragg pulse at a given
amplitude VB = 0.5ER. As in (a), the measurement is performed at the energy
ν = 1ph/h of the particle–hole excitation. Inset: comparison of the response for
two amplitudes VB, namely VB = 0.5ER (dots) and VB = 2.0ER (circles).

saturation and the timescale of the linear regime is shorter. We note that we did not observe Rabi
oscillations as in the case of an excitation from the ground state of a 3D BEC in a harmonic trap
and a Bogoliubov mode [31]. In the latter case, the excited state is decoupled from the ground
state, a situation that might not be true anymore in the Mott state where strong correlations are
present. The increase of 1σ also saturates for large amplitudes VB as depicted in the inset of
figure 4(a).

In addition, we stress that the amplitude VB of the moving lattice created by the Bragg
beams for such parameters is much smaller than the amplitude sy of the longitudinal lattice: all
experiments are performed in a regime where VB < 0.05Vy . This regime is different from the
one where the Bragg spectrum has been obtained using the lattice modulation technique. In the
latter case, the amplitude of the lattice is typically modulated by 20%–30% due to a momentum
transfer q0 = 0 [7, 10]. In this work, the parameters U and Jy (see equation (2)) describing the
system in the Bose–Hubbard model are almost unaltered by the additional light potential created
by the Bragg beams.

The probe we use (Bragg beams) weakly affects the state of the system under investigation
and the amount of excitation varies linearly with the parameters of the probe. In this linear
response regime, the spectra we measure in the lowest energy band are proportional to the
dynamical structure factor S [27].

4. Excitations in inhomogeneous Mott states towards different energy bands

Bragg spectroscopy was used in [20] to investigate the response of inhomogeneous MI states
within the lowest energy band and to study their properties on an energy scale of the order of
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the Mott gap 1ph. Excitations to higher energy bands have been recently reported in [47] where
the authors focused on the lifetime and the coherence of higher bands population. Here, we
study the spectrum of inhomogeneous MI states on a large energy scale, focusing on transitions
to high-energy bands of the optical lattice, for a momentum transferred by the Bragg beams
q0,y = 0.96(3)kL.

Since the typical energy transferred for excitations in high-energy bands is at least one
order of magnitude larger than the Mott gap (see details below), the excited atoms are not
correlated to the non-excited ones lying in the lowest energy band. In addition, the Bragg
excitation being weak, only a small fraction of the atomic cloud is excited. Therefore, the small
amount of atoms excited in the high-energy bands can safely be considered as non-interacting
particles. This point makes the study of the high-energy excitation spectrum of a MI state much
different from that restricted to the lowest energy band where atom–atom correlations play a
crucial role [20].

4.1. Multi-band spectrum of a MI state

As demonstrated for example in [48], the presence of a periodic potential implies the existence
of different energy bands in the excitation spectrum, the so-called Bloch bands (see figure 5(a)).
The typical tunneling time of atoms in a lattice is ∼h̄/J . When it is smaller than the timescale
of the experiment, a 3D BEC loaded in the optical lattice has a long-range phase coherence.
Its quasi-momentum distribution in the presence of the optical lattice has a small extension
around the center of the first Brillouin zone qi,y = 0. Therefore, the resonance in the excitation
spectrum is narrow since the resonant condition for a two-photon transition between momentum
states h̄qi,y = 0 and h̄q f,y = h̄q0,y is well defined in energy. Our experimental resolution is good
enough to observe that this spread in energy is a small fraction of the energy bandwidth. As it is
shown on figure 5(b), the experimental spectrum of this phase-coherent system (sy = 9, s⊥ = 0)
exhibits several well-defined resonances corresponding to excitations created in the different
lattice bands [48].

The case of the array of 1D gases loaded in a 1D optical lattice is different, in particular
when the amplitude of the longitudinal lattice is large enough for the 1D gases to be in the
MI regime. On the one hand, strong atom–atom correlations are present and are responsible
for peculiar features of the Mott state such as the existence of an energy gap 1ph in the
excitation spectrum. On the other hand, the quasi-momentum distribution of a MI is spread
over the first Brillouin zone (−kL < qi,y < kL) as a consequence of the spatial localization of
atoms [49]. Deep enough in the Mott regime, this quasi-momentum distribution is expected to be
close to homogeneous over the interval [−kL; kL]. Therefore two-photon transitions towards the
excited bands are possible from any initial quasi-momentum and Bragg spectroscopy can create
excitations on a large energy interval, of the order of the energy bandwidth of single particle.
In this picture, varying the frequency between the Bragg beams allows one to selectively excite
(and therefore address) only a fraction of the atomic cloud through the resonance condition: for
a given energy transfer lying in the energy interval of an excited band, one can always find a
populated quasi-momentum state matching the resonance condition for being excited.

Figure 5(c) depicts a spectrum of 1D gases in the Mott insulating state (s⊥ = 35, sy = 9).
The energy scale is identical to that of a 3D BEC loaded in a 1D optical lattice along the y-axis
with the same amplitude sy = 9 (figure 5(b)). On this energy scale, the spectra of 1D MI states
exhibit several large resonances that have to be identified with transitions towards different
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Figure 5. (a) Energy bands of single particles in a periodic potential of amplitude
s = 9. The gray areas cover the entire energy distribution of each band and they
are reported in (b) and (c). (b) Bragg spectrum of a 3D BEC loaded in a 1D
optical lattice at the amplitude sy = 9 (blue dots) and for a momentum transfer
h̄q0,y = 0.96(3)h̄kL. The solid blue line is a fit with three Gaussian functions.
(c) Bragg spectra of an array of 1D BECs (s⊥ = 35) loaded in a 1D optical lattice
of amplitude sy = 9 (red dots), i.e. the 1D gases being in the MI state, and for a
momentum transfer h̄q0,y = 0.96(3)h̄kL. The red solid line is a guide to the eye.

energy bands of the optical lattice. The experimental measurements are reported with single-
particle energy bands as gray areas. The lowest energy band (ν < 10 kHz) is much larger than the
single-particle energy band due to the presence of atom–atom correlations. A detailed analysis
of this effect has been the object of [20]. The energy transfer corresponding to transitions
towards high-energy bands is tens of kHz much larger than the Mott gap 1ph ' h × 2 kHz [20].
Identifying the final momentum state of atoms giving contribution for the different parts of the
excitation spectrum of figure 5(c) should allow us to determine to which band the excitations
belong to. To this purpose, we have used a band-mapping technique [46] that we describe in the
following paragraph.
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Figure 6. (a) Experimental time sequence of the band-mapping technique.
(b) Band population in the case of a 3D BEC in the presence of a 1D optical
lattice of amplitude sy = 9 after a Bragg pulse with detuning ν = 38 kHz.
(c) Band population in the case of an array of 1D BECs loaded in a 3D
optical lattices of amplitudes (s⊥ = 35, sy = 9) after a Bragg pulse with detuning
ν = 34 kHz. The horizontal scale is normalized to the momentum h̄kL of the
longitudinal optical lattice in both pictures.

4.2. Measurement of the momentum of the excited atoms by the Bragg beams

4.2.1. Band population in a 1D optical lattice. In order to identify the band towards which
atoms are excited by the Bragg pulse, we switch off abruptly the magnetic trap and we ramp
down the lattice on a timescale (∼2 ms) too short for interaction-induced thermalization but
adiabatic with respect to the atomic motion in a single lattice well [46]. Doing this, one ensures
to preserve the band population. After a time-of-flight, the atomic distribution reflects the band
population in the momentum space. In practice, we ramp down the optical lattice with an
exponential ramp of duration 2 ms and time constant 0.5 ms as sketched in figure 6(a). We
first apply this technique to the 3D BEC loaded in a 1D optical lattice with amplitude sy = 9
corresponding to the spectrum of figure 5(b). The density profile along the y-axis after time-of-
flight is shown on figure 6(b) when a resonant Bragg pulse creates excitations in the third energy
band (ν = 38 kHz). The central peak around q = 0 corresponds to the non-excited cloud and it
is the only feature left when the Bragg pulse is tuned out of resonance. On resonance a small
lateral peak appears corresponding to excited atoms3. The momentum of the excited atoms lies
between 2h̄kL and 3h̄kL, proving that these atoms are excited in the third band of the optical

3 To measure the spectra we excite fewer atoms than the ones which are seen after the band-mapping technique.
Indeed, we have changed the parameters of the Bragg beams in the latter case in order to better identify the cloud
of the excited atoms.

New Journal of Physics 11 (2009) 103030 (http://www.njp.org/)

http://www.njp.org/


14

lattice. Fitting the position of the diffracted cloud with respect to the non-diffracted one with
a Gaussian function we have measured momentum transfers of 1.1(1)h̄kL and 2.8(1)h̄kL for a
Bragg pulse corresponding, respectively, to the transition towards the second and third energy
bands of the lattice. These results are in good agreement with the expected values 1.04(3)h̄kL

and 2.96(3)h̄kL corresponding to a momentum transfer h̄q0,y = 0.96(3)h̄kL given by the Bragg
beams in our configuration4.

4.2.2. Band population in the Mott insulating states. We turn to the case of the 1D gases in
the inhomogeneous MI state (s⊥ = 35, sy = 9). The same experimental technique as described
above is used to map the band population also in this case. The density profile obtained from
the band mapping of the array of 1D gases is shown on figure 6(c). The detuning between the
Bragg beams is ν = 34 kHz and corresponds to an excitation that lies in the wide and flat region
of the spectrum. As in the case of figure 6(b), the diffracted atoms are clearly visible and lie in
the third band of the optical lattice (2kL < q < 3kL). We note that the central (non-diffracted)
peak is larger and flatter over the lowest lattice band with respect to the case of figure 6(b).
This observation indicates that the quasi-momentum distribution of the inhomogeneous MI state
covers almost uniformly the first band as expected for a system that is not phase coherent.

By applying the same fitting procedure as in the case of figure 6(b), we extract the
momentum h̄q to the diffracted atoms in the case of a 3D lattice with amplitudes (s⊥ = 35, sy).
We repeat this procedure over the entire frequency range corresponding to the transition towards
the third and fourth bands, i.e. varying the relative detuning ν of the Bragg beams from 27 to
45 kHz, with the results plotted in figure 7 for sy = 10. The experimental resolution ' 400 Hz of
the Bragg spectroscopy allows us to do a precise mapping on this large energy scale. In figure 7,
we plot the energy transfer hν given by the Bragg beams as a function of the momentum of the
excited atoms measured using the band-mapping technique. These results are compared with the
dispersion relation of single particles in the presence of a periodic potential with an amplitude
sy = 10 showing a good agreement5. This demonstrates that: (i) the excitations observed over a
large energy scale between 27 and 36 kHz (resp between 37 and 45 kHz) correspond to transition
towards the third (resp fourth) energy band of the optical lattice; (ii) the quasi-momentum
distribution of the inhomogeneous MI state extends over the entire lowest lattice band since
the entire energy band can be mapped using a Bragg excitation with a fixed momentum transfer
h̄q0,y .

4.3. High-energy bands; towards novel information about the Mott state

Using a band-mapping technique we have demonstrated that the different parts of the spectrum
measured in a MI state (see figure 5(c)) can be attributed to the different energy bands induced
by the optical lattice. At high energies, e.g. for excitations into the third and the fourth band,
the frequency range of the Mott excitations corresponds to the bandwidth of the single-particle
spectrum, a feature that is expected since in that situation the typical atom–atom correlation
energy 1ph is much smaller than that of the excited atoms. Yet, as we discuss below, the peculiar

4 Note that this technique is not well adapted to the measurement of the momentum transfer for the transition
within the lowest energy band since the finite width of the non-diffracted atoms covers a large part of the first band.
5 The dispersion relation in the lowest energy band can be considered as flat on the energy scale of figure 7. In
figure 7, we have substracted this constant energy offset to the bare calculation of the single-particle dispersion
relation since it does not enter the two-photon transition process.
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lineshape of the response within a given band has to be related to the properties of the many-
body state which is probed. Therefore, the identification of the energy scale of a given excited
band opens the possibility to study the modulation of the response to the Bragg pulse within
a single band. For example, the response of the MI state to the Bragg spectroscopy shows a
structure in amplitude within the third band (from 25 to 36 kHz) in figure 5(c). In particular,
we observe an increased response at both edges of the band. A peak is mostly evident close to
the higher energy edge, the position of which corresponds to a Bragg transition from an initial
quasi-momentum qi = 0. We now schematically discuss a way to interpret these features.

We expect the atoms excited by the Bragg beams in high-energy bands not to interact with
the non-excited ones since their typical energy (corresponding to a frequency of several tens
of kHz) is much larger than the particle–hole excitation energy 1ph ' h × 2 kHz. In addition,
as already mentioned, with our experimental parameters only a minor fraction of the atoms
is excited. Therefore, the transition induced by the Bragg beams in high-energy bands can
be considered to happen between an initially strongly correlated state (Mott state) and single-
particle states: the two-photon transition creates a hole in the Mott state and it populates highly
energetic single-particle states. In other words, the response of the gas to the Bragg pulse gives
access to the one-particle spectral function of the Mott and it implies both the dispersion relation
of the hole in the Mott phase and the density of states (DOS) to populate the excited band from
the initial correlated phase6. Information about the one-particle spectral function of solid-state
systems has proved to be crucial to understand properties of correlated states such as high-Tc

6 We acknowledge interesting discussions with E Altman and S Huber on this point.
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superconductors [50] and recent proposals have demonstrated the interest of measuring the one-
particle spectral function for ultracold fermions [51]. We anticipate that the information about
the one-particle spectral function obtained from the high-energy bands spectra might shed new
light on the bosonic Mott state, in particular close to the SF–MI transition. To our knowledge,
no theoretical predictions of such an experimental signal measured with ultracold bosons
exist.

The experimental situation is more complex than the case of a homogeneous Mott state.
Due to the presence of the longitudinal trap, the 1D gases are in the inhomogeneous MI state
formed of Mott regions with different fillings separated by SF areas [17]. This state can be
viewed as constituted of domains with narrow quasi-momentum distributions (SF regions) and
domains with almost homogeneous quasi-momentum distributions (MI regions), resulting in a
nontrivial momentum distribution of the global state. As U/J increases and the system is driven
deeper in the Mott phase, the number of atoms which do not belong to a Mott state drops. For
this reason, we expect the contribution of the SF domains in the response to the Bragg excitation
not to be significant. However, a complete picture taking into account contributions from the
different Mott and SF regions has to be developed to interpret the details of the spectrum
of figure 5(c). We hope that the measurements presented in this paper could stimulate such
theoretical work.

5. Conclusion

In conclusion, we have measured the response of bosonic MI states to excitations induced by
inelastic scattering of light. As already demonstrated in [20], this spectroscopic technique is a
promising tool to characterize strongly interacting quantum phases. We have presented here in
detail the experimental setup and the way the measurement has been carried out. In particular,
we have demonstrated that the quantity we measure is proportional to the increase of energy in
the gaseous system and that the response to the light scattering is in a perturbative and linear
regime.

We have extended our previous work [20] to the study of excitations towards several energy
bands in MI states. In contrast to the case of a 3D BEC loaded in a 1D optical lattice, the spectra
of these Mott states exhibit broad resonances in energy. The use of a band-mapping technique
after applying the Bragg pulse allows us to identify these resonances with transitions towards the
different energy bands induced by the optical lattice. We also give direct experimental evidence
that the momentum distribution of Mott states spreads over the entire first Brillouin zone. This
property enables us to reconstruct the dispersion relation of the high-energy bands using a Bragg
excitation at a fixed momentum transfer.

Finally, the amplitude of the response of the inhomogeneous MI state in high-energy
bands exhibits peculiar structures within a single excited band. We expect that these could give
important information on the experimental system and we think that this point should be the
object of future investigation, both experimental and theoretical.
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