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We investigate the coherence properties of an array of one-dimensional Bose gases with short-scale phase

fluctuations. The momentum distribution is measured using Bragg spectroscopy, and an effective coherence

length of the whole ensemble is defined. In addition, we propose and demonstrate that time-of-flight absorption

imaging can be used as a simple probe to directly measure the coherence length of one-dimensional gases in the

regime where phase fluctuations are strong. This method is suitable for future studies such as investigating the

effect of disorder on the phase coherence.
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Physics of one-dimensional (1D) systems attracts a great

interest both on the theoretical and the experimental side. Re-

cent progress in nanotechnology allowed the implementation

of 1D systems in a variety of fields, from inorganic and organic

superconductors [1] to carbon nanotubes and nanowires [2] to

spin chains and ladders [3] as well as cold atomic systems

[4,5]. All these systems belong to the universality class of

interacting quantum fluids known as Luttinger liquids [6],

whose properties strongly differ from their 3D counterparts.

For instance, quantum and thermal fluctuations are strongly

enhanced by the reduced dimensionality, their knowledge

giving access to key quantities characterizing the system [7].

Their presence can drastically alter the properties of the

systems, such as in superconductive disordered nanowires,

where they can lead to the formation of phase-slip centers [8].

In the context of cold atoms, both phase and density

fluctuations of 1D systems have been studied in the last years

[9–12]. In particular, phase coherence has been investigated by

monitoring interference between two different 1D gases [10]

and by observing density modulations [11] or the response

to light scattering [12] in elongated 3D quasicondensates.

Nevertheless, in all these realizations, transverse trapping

frequencies hardly exceed a few kilohertz and are typically

of the order of the chemical potential and the temperature.

Reaching the regime of strongly interacting 1D systems

would further enhance the presence of quantum and thermal

fluctuations. This can be achieved when atoms are loaded

in 2D optical lattices, allowing for much stronger transverse

confinements [4,5]. Yet in the latter case, one obtains a large

number of 1D tubes for which techniques like [10,11] cannot

be implemented to study the phase coherence properties since

tube averaging washes out the response signal.

In this Rapid Communication, we investigate the axial

coherence properties of an array of strongly phase-fluctuating

1D Bose gases and suggest time-of-flight (TOF) imaging

as a probe of the coherence length. In our case, thermally

induced phase fluctuations dominate and drastically reduce
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the coherence length (2Lφ) of the system compared to a

3D Bose-Einstein condensate (BEC) [13]. We use Bragg

spectroscopy with large momentum transfer [14] to measure

the momentum distribution and directly evaluate Lφ [12]. In

addition, we verify that direct mapping of the momentum

distribution into coordinate space via absorbtion imaging

after TOF is an effective probe of the phase fluctuations.

We demonstrate that in our range of parameters, these two

techniques yield the same results.

Our system, sketched in Fig. 1(a), consists of about

2×103 1D atomic microtubes. Each gas has typical total size

∼30 µm × 0.05 µm and linear density n1D ∼5 µm−1. To

arrange atoms in this configuration, we confine a 3D BEC

of 87Rb in a pair of orthogonal red-detuned optical lattices.

We study different configurations by tuning the amplitude

V of the 2D optical lattice (s = V/ER ranging from 5 to

56, where ER = h2/2mλ2
L, h being the Planck’s constant, m

the atomic mass, and λL = 830 nm the lattice wavelength).

The stronger the optical confinement, the more anisotropic

is the trap experienced by each 1D gas (the aspect ratio

λ = ω⊥/ω‖, namely, the ratio of the radial harmonic trapping

frequency to the axial one, ranges from 787 to 880 for

5 < s < 56). For all the amplitudes of the transverse lattices

we explore, each gas has a fully 1D character, that is,

both chemical potential and temperature are about 1 order

of magnitude smaller than the frequency of the transverse

harmonic oscillator. The crucial quantity to describe the regime

of the 1D gas is the parameter γ = mg1D/h̄2n1D , that is, the

ratio of interaction energy to the kinetic energy necessary to

correlate particles at distance 1/n1D , g1D being the interatomic

coupling in the 1D gas. In our case, γ ∼ 0.3–0.6 so that

interparticle correlations are stronger than in the mean-field

regime (see, e.g., [4]).

We first investigate the effect of the phase fluctuations via

Bragg spectroscopy. In brief, the lattice gas is diffracted from a

moving lattice created by two simultaneous off-resonant light

pulses (Bragg beams) with a relative angle θ , detuned from

each other by a tunable frequency difference ω/(2π ). This

perturbs the system activating excitations with energy h̄ω and

momentum h̄qB , the modulus of which depends on θ [14]. The

geometry of the Bragg beams is chosen to align h̄qB to the axis

of the 1D tubes. After the excitation, the lattice amplitude is
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FIG. 1. (Color online) (a) Schematic view of the two-dimensional

array of one-dimensional gases. (b) Bragg spectrum of an array of

strongly correlated 1D gases produced by lattices with amplitude

s = 50. Red curve is a fitting of the function νf (ν), where f (ν) is

a Lorentzian. (c) HWHM of the Bragg resonances as a function of

the amplitude s of the lattices for two different values of transferred

momentum: blue squares, q1 = 16.0(2) µm−1; black circles, q2 =
7.3(2) µm−1.

turned down in 15 ms to a lower value (s = 5), where the

different tubes are no longer independent, allowing the system

to rethermalize via atom-atom collisions. After 5 ms, both opti-

cal and magnetic traps are simultaneously switched off and the

system is observed after a time of flight (TOF) tTOF = 21 ms.

The physical observable is the increase of the size of the central

peak of the atomic cloud. More detailed comments on the

experimental procedure have been reported in Ref. [15]. Our

technique allows us to measure the energy �E transferred

to the system [16], which depends on the imaginary part

of its polarizability χ ′′(ω), apart from the characteristics of

the perturbing potential (amplitude VB and time duration

�t) [17]: �E ∝ V 2
Bωχ ′′(ω)�t . The polarizability can be

expressed in terms of the dynamical structure factor of the

system χ ′′
F (ω) = πS(ω,q)(1 − e−h̄ω/(kBT )).

Two different geometrical configurations of the Bragg

beams have been used to vary the transferred momentum

along the axis of the gases. Counterpropagating beams along

the axis of the atomic tubes yield q1 = 16.0(2) µm−1; a

small-angle configuration gives q2 = 7.3(2) µm−1. In both

cases we assume the excitation to be in the Doppler regime,1

where S(q,ω) is reduced to the momentum distribution n(q)

[12,14]. In this regime the spectral half width at half maximum

(HWHM) can be related to the momentum width h̄�q through

the relation �ν = (qB/2πm)h̄�q, which is linear in the wave

vector qB of the excitation.2 In the experiment, the ratio

1The Doppler regime is described by the condition q >
√

4 µm/h̄,

where µ is the chemical potential of the gas.
2To test the accuracy of this approximation, we calculate the HWHM

of the momentum distribution for a single 1D gas from the spectral

of the HWHMs of the response of identical arrays of 1D

gases to the two different excitations q1 and q2 is consistent

with q1/q2 = (2.16 ± 0.06), as expected [linear fitting of the

experimental data in Fig. 1(c) allows for defining a mean ratio

�ν1/�ν2 = (2.7 ± 0.8)].

In our range of γ ≈ 0.3–0.6, interactions are beyond the

mean-field description but still far from the Tonks-Girardeau

regime. Thus we expect the interaction-induced spatial decay

of one-particle correlation function to happen on a larger scale

than that led by phase fluctuations for typical temperatures in

the experiment (∼100 nK) [18]. The one-particle correlation

function being dominated by the exponential decay due to

phase fluctuations, the momentum distribution exhibits a

profile well described by a Lorentzian shape [13]. In Ref. [19],

the momentum distribution for a 1D gas with a parabolic profile

along its axis has been calculated, and the HWHM h̄�q of its

Lorentzian best fit has been demonstrated to rely only on the

coherence length of the gas, being

�q =
0.635

Lφ

, (1)

where Lφ = h̄2n1D/(mkBT ) is the half coherence length (T

being the temperature).

The description of the problem is complicated by the

presence of an array of gases with different densities (and

thus different characteristic Lφs). In principle, one should

consider the sum of the response of each tube. Supposing a

mean-field picture,3 interactions would give a broadening of

the width and a shift of the center of the Bragg resonance

compared to the single-particle response hνsp = h̄2q2/(2m),

both depending on the density of each tube [14]. Yet the global

response of the system to the Bragg excitation consists of a

single broad resonance, as depicted in Fig. 1(b), the center of

which is shifted compared to νsp (ν0 > νsp). Its shape is well

described by νf (ν) ≃ ωS(q,ω), where f (ν) is a Lorentzian

function [see Fig. 1(b)]. This suggests that thermal broadening

of the response of each gas exceeds the interaction-induced

broadening and masks the relative shifts of the resonant

frequencies of the tubes. We verified numerically that this

is the case for our experimental parameters [21]. Therefore

we analyze the Bragg spectra as being the response of

a single 1D gas, and we define accordingly an effective

coherence length Lφ of the whole system using the relation

in Eq. (1).

From the fittings of the Bragg spectra, we extract the

HWHM �ν. This quantity is reported in Fig. 1(c) as a function

of the amplitude s of the optical lattices and for the two

different wave vectors of the excitation q1,q2. The total number

of atoms is kept almost constant in both the series of data.

From the spectral half width, we extract the half coherence

length Lφ . As shown in Fig. 2, Lφ drops by a factor 5 as

s increases from 5 to 56. We note that for higher s values,

the coherence length becomes comparable to the interparticle

width using a free-particle-like vs a Bogoliubov dispersion relation,

and we verify that the results differ less than 10%.
3For the values of γ that we realize, the resonant frequencies of

the Lieb-Liniger modes are indistinguishable from the mean-field

solution within our experimental resolution [20].
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FIG. 2. (Color online) Lφ of the array of 1D gases reported as a

function of the amplitude s of the lattices, which squeezes the gas in

1D microtubes, and for two different values of the momentum of the

excitation: blue squares, q1; black circles, q2.

distance. In addition, the analysis of the spectra for the two

momenta q1 and q2 reveals consistent Lφ, as expected in the

Doppler regime. The optical confinement makes the aspect

ratio of the 1D gases grow and their density decrease. However,

we estimate numerically [21] that the relative variation of the

1D density in the whole range of s is about 10% and does

not justify the rapid downfall of the coherence length. This

suggests that the major role in determining Lφ is played by the

finite temperature. In fact, the higher the value of s, the larger is

the axial energy spacing, and the temperature T of the 1D gases

should approximately grow proportionally. More precisely,

provided that T ≫ h̄ω‖, as realized in our experiment (ω‖
being a few tens of Hertz), the temperature is expected to be

proportional to the energy ǫj of the low-energy axial modes

[22], that is, in turn proportional to the frequency of the axial

harmonic oscillator. This picture is indeed consistent with the

experimental observation: During the adiabatic transformation

of the 1D gases from s = 20 to s = 56, the axial energy spacing

increases by a factor ∼1.7; accordingly, in this range of s, the

measured coherence length reduces by a factor ∼2.5. However,

note that extracting temperature from the measurement of Lφ

is not straightforward as it requires to take into account the

inhomogeneity of n1D over the array; this will be the subject

of a future work [21].

To keep the insight up on the system, information on

the coherence length induced by thermal phase fluctuations

has also been extracted by directly mapping the momentum

distribution into space distribution, which is measured via

absorption imaging of the gas after switching off the trap

(below referred to as TOF measurements). The expansion

of the atomic gas from the trap is governed by two kinds

of kinetic energy: the one which interactions convert into

and the one produced by in-trap phase fluctuations. Due

to the strong anisotropy of the trap, the interaction-induced

expansion mainly affects the radial direction [23], whereas

the longitudinal size of the cloud Rint
TOF is not significantly

altered compared to its in-trap value. At nonzero temperature,

thermally induced local phase gradients produce a velocity

field given by vφ = (h̄/m)∇φ [24], φ varying significantly

on a length scale Lφ . It determines an increase R
φ

TOF of the

longitudinal size during TOF, which contributes relevantly if

R
φ

TOF/R
int
TOF > 1, where

R
φ

TOF

Rint
TOF

∼
h̄tTOF

mLφRint
TOF

. (2)

In previous experiments, the product LφRint
TOF amounts

typically to 10 µm × 260 µm for elongated 3D quasicon-

densates [12] and ∼1 µm × 170 µm in the case of atom-chip

experiments [10]. In both cases, R
φ

TOF is negligible, and the

longitudinal length after TOF cannot be related to in-trap

phase fluctuations. For our 1D lattice gases, this quantity is

reduced to ∼1 µm × 27 µm for s = 5, and it falls even 1

order of magnitude as the amplitude of the optical confinement

increases (∼0.2 µm × 22 µm for s = 56). This estimate refers

to a representative tube with a number of atoms equal to the

averaged value over all the array. Thus, in our case, one expects

that the in-trap size still dominates for low values of s and the

density profile has a parabolic shape (possibly smoothed to

a Gaussian by the finite resolution of the imaging system),

as expected in the Thomas-Fermi regime. For high values

of s, phase fluctuations should enlarge the distribution, and

the profile should assume a Lorentzian shape. To confirm

this behavior, we have analyzed the TOF profiles with both

Gaussian and Lorentzian functions. From these fittings, we

plot in Fig. 3 the mean squared value of the residuals of

both fitting functions. As anticipated from the simple formula

in Eq. (2), Fig. 3 points out the cross-over through the two

regimes at s ∼ 10–15. In particular, for s > 20, initial in-trap

phase fluctuations are responsible for the Lorentzian shape of

the TOF momentum distribution.

To quantitatively compare the results of Bragg spectroscopy

and TOF measurements, we map both energy spectra and

density profiles after TOF into the momentum space of the

in-trap gas. In the first case, we divide the measured amount

of excitation by ω, then we use the free-particle dispersion

relation, obtaining q = 4π2mν/(hqB) − qB/2. In the latter

case, the calibration of the pixel size in momentum space is

obtained by measuring the distance between two interference

peaks released from the lattices at weak amplitude. For an

array of strongly correlated 1D gases [s = 50 in Fig. 4(a)],

FIG. 3. Mean-square value of residuals of a Lorentzian (open

circles) and Gaussian function (solid circles) fitted to the momentum

distribution mapped through TOF.
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FIG. 4. (Color online) (a) Momentum distribution of an array of

1D gases in a strongly confining optical lattice (s = 50) measured

through Bragg spectroscopy (black circles) and direct mapping in

TOF density profile (red curve). (b) Half coherence length Lφ

extracted from TOF measurements shown as a function of s in linear

scale. The gray area points out the region of parameters where TOF

measurements cannot be used to extract Lφ . Inset shows a comparison

between Lφ from Bragg measurements (open circles) and direct

mapping (red circles).

the momentum distributions measured via Bragg spectroscopy

(data points) and TOF measurements (continuous line) show

an excellent agreement. From TOF measurements, we extract

the coherence length as well. According to our results from

Bragg spectroscopy, Lφ is observed to reduce as s increases

[Fig. 4(b)]. In the inset, we compare Lφ measured in the

two ways. The accordance fails in the region of parameters

(gray area) where TOF profiles are not dominated by phase

fluctuations (see Eq. (2)).

In conclusion, we investigate the coherence properties of

an array of 1D Bose gases by measuring their momentum

distribution. We observe the latter to have a Lorentzian

shape, as predicted for a single uniform 1D gas. We define

an effective coherence length of the whole ensemble, and

we show its evident reduction as the optical confinement is

increased. Comparing Bragg spectroscopy and direct mapping

of momentum into density distribution after TOF demonstrates

that TOF images give access to coherence properties in the

presence of strong phase fluctuations. Our work paves the

way for future studies of the coherence properties in 1D

geometries with short coherence lengths. Of particular interest

are strongly interacting disordered systems where the role of

thermal phase fluctuations in the nature of the superconductor-

insulator transition is debated [25]. So far, only disor-

dered quasicondensates have been investigated, where it

was shown that the contribution of phase fluctuations is

small [26].
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