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Excitations of Bose-Einstein condensates in a one-dimensional periodic potential
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We report on the experimental investigation of the response of a three-dimensional Bose-Einstein condensate ͑BEC͒ in the presence of a one-dimensional ͑1D͒ optical lattice. By means of Bragg spectroscopy we probe the band structure of the excitation spectrum in the presence of the periodic potential. We selectively induce elementary excitations of the BEC choosing the transferred momentum and we observe different resonances in the energy transfer, corresponding to the transitions to different bands. The frequency, the width, and the strength of these resonances are investigated as functions of the amplitude of the 1D optical lattice.

The knowledge of the linear response of a complex system gives crucial information about its many-body behavior. For example, the superfluid properties of a three-dimensional ͑3D͒ Bose-Einstein condensate ͑BEC͒ are related to the linear part of the phonon-dispersion relation at low momenta ͓1͔. The presence of optical lattices enriches the excitation spectrum of a BEC in a remarkable way. For deep threedimensional lattices, the gas enters the strongly correlated Mott insulator phase and the spectrum exhibits a gap at low energies ͓2͔. The response of a BEC in the superfluid phase is also drastically modified by the presence of a onedimensional ͑1D͒ optical lattice ͓3-7͔. Indeed, as in any periodic system, energy gaps open in the spectrum at the multiples of the lattice momentum and it is possible to excite several states corresponding to different energy bands at a given value of the momentum transfer ͓8,9͔. In addition, the linear dispersion relation of the superfluid, and thus its sound velocity, is changed. In the mean-field regime of interactions these peculiar features of the excitations of a superfluid BEC in the presence of an optical lattice are captured by the Bogoliubov theory ͓1͔.

Bragg spectroscopy represents an excellent experimental tool for investigating the linear response of gaseous BECs ͓10͔. It has allowed measurement of the dispersion relation of interacting BECs in mean-field regime ͓11-13͔, characterization of the presence of phase fluctuations in elongated BECs ͓14͔, study of signatures of vortices ͓15͔, and more recently study of strongly interacting 3D Bose ͓16͔ and Fermi ͓17͔ gases close to Feshbach resonances as well as 1D Bose gases across the superfluid-to-Mott insulator transition ͓18͔.

In this work we use Bragg spectroscopy to probe the excitation spectrum of a 3D BEC loaded in a 1D optical lattice. Previous experimental studies have so far investigated the excitations of superfluid BECs within the lowest energy band of a 3D optical lattice by means of lattice modulation ͓19͔ and Bragg spectroscopy ͓18,20͔. This paper presents a detailed experimental study of the different bands in the excitation spectrum of an interacting 3D BEC in the presence of a 1D optical lattice. We measure the resonance frequencies, the strengths, and the widths of the transitions to different bands of the 1D optical lattice. The measurements are quantitatively compared with Bogoliubov mean-field calculations for our experimental system ͓7͔.

We produce a 3D cigar-shaped BEC of N Ӎ 3 ϫ 10 5 87 Rb atoms in a Ioffe-Pritchard magnetic trap whose axial and radial frequencies are y =2 ϫ 8.9 Hz and x = z =2 ϫ 90 Hz, respectively, corresponding to a chemical potential Ӎ h ϫ 1 kHz, with h being the Planck constant. The condensate is loaded in an optical lattice along the longitudinal * fabbri@lens.unifi.it ©2009 The American Physical Society 043623-1 direction ͑y ˆaxis͒. Two counterpropagating laser beams with wavelength L = 830 nm create the lattice potential V͑y͒ = sE R sin 2 ͑q L y͒, where q L =2 / L = 7.57 m -1 is the wave number, s measures the height of the lattice in units of the recoil energy E R = h 2 / 2m L 2 Ӎ h ϫ 3.3 kHz, and m is the mass of a 87 Rb atom. The loading of the BEC in the lattice is performed by slowly increasing the laser intensity up to a height s with a 140-ms-long exponential ramp with time constant = 30 ms.
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After a holding time of typically 20 ms in the lattice at the height s, we excite the gas by shining two off-resonant laser beams ͑Bragg beams͒ for a time ⌬t B = 3 ms. The Bragg beams induce a two-photon transition transferring momentum and energy to the atomic sample. Their wavelength is B = 780 nm, corresponding to a wave number q B =2 / B = 8.05 m -1 , and they are typically detuned by 350 GHz with respect to the D 2 transition of 87 Rb. To change the transferred momentum we use two different geometries of the Bragg beams. In the first configuration the two beams are counterpropagating along the y ˆdirection and the transferred momentum is q =2q B = 2.12q L , which corresponds to a quasimomentum 0.12q L in the first Brillouin zone. In the second configuration the angle between the Bragg beams is smaller and the measured value of the transferred momentum ͑and quasimomentum, in this case͒ along the y ˆdirection is q = 0.96q L . In both the cases, the two beams are detuned from each other by a frequency difference using two phaselocked acousto-optic modulators. We quantify the response to the excitation by measuring the energy transferred to the gaseous BEC. The measurement of the energy transfer E͑ , q͒ is connected with the dynamical structure factor S͑ , q͒ ͑giving information on the excitation spectrum͒ by the relation ͓1͔ E͑,q͒ ϰ S͑,q͒, ͑1͒

where and q are the frequency and the momentum of the excitation. In particular, this result applies for long enough Bragg pulses, namely, ⌬t B ӷ 1, which is the case in our experiment since is on the order of several kHz. In order to get an estimate of the transferred energy E͑ , q͒, we adopt the following procedure. We linearly ramp in 15 ms the longitudinal optical lattice from s ͑the lattice height at which we have applied the Bragg pulse͒ to the fixed value s f = 5. Then we let the excitation be redistributed over the entire system by means of the interatomic collisions for 5 ms. After this time interval we abruptly switch off both the optical lattice and the magnetic trap, letting the cloud expand for a time of flight t TOF = 20 ms and we then take an absorption image of the density distribution integrated along the x âxis. Since the atoms are released from an optical lattice of relatively small amplitude ͑s f =5͒, the density distribution exhibits an interference pattern ͓21͔. We extract the rms width of the central peak of this density distribution by fitting it with a Gaussian function. The increase ⌬ in this quantity is used as a measurement of the energy transfer ͓19͔. For a given value of the transferred momentum q and amplitude s of the lattice, this procedure is repeated varying the energy h of the excitation in order to obtain the spectrum. In our regime of weak interatomic interactions, the excitation spectrum of the BEC in the presence of a 1D optical lattice can be described by the mean-field Bogoliubov approach ͓3,5͔, by which we calculate resonance frequencies j and transition strengths Z j to create an excitation in the Bogoliubov band j.

We first discuss the results obtained with the configuration of counterpropagating beams, i.e., for a transferred momentum q = 2.12q L . The induced two-photon transition is characterized by a measured Rabi frequency for the BEC in the absence of the optical lattice ⍀ R Ӎ 2 ϫ 1 kHz for the typical power and detuning of the beams used in the experiment.

A typical Bragg spectrum is presented in Fig. 1͑a͒ corresponding to a lattice height s = ͑22Ϯ 2͒. The spectrum exhibits multiple resonances corresponding to the creation of excitations in the different Bogoliubov bands as shown in Fig. 1͑b͒. From Gaussian fit of each resonance we extract central frequency, width, and relative strength of the transition toward the corresponding band. In Fig. 2͑a͒, we plot the energy values corresponding to the measured central frequencies as a function of s. Vertical error bars come from the result of the fitting procedure, while horizontal error bars correspond to possible systematic errors in the lattice calibration ͑estimated within 10%͒. For large enough amplitude s of the periodic potential we observe up to three different bands. We find good agreement between the experimental data and the numerical results of the Bogoliubov calculation ͓solid lines in Fig. 2͑a͔͒. In particular, for low amplitudes of the 1D lattice ͑s Ͻ 6͒ the agreement of the resonance energies with the Bogoliubov bands ͑full lines͒ is better than with the singleparticle ͑dashed lines͒ Bloch bands ͓see inset of Fig. 2͑a͔͒. For larger amplitude of the 1D lattice, we cannot explicitly distinguish between the Bogoliubov and Bloch results. This comes from the experimental uncertainty on the calibration of the lattice amplitude.

In the entire range of s values used in this work, we observe a resonance corresponding to an excitation created in the third band ͑red circles in Fig. 2, labelled III͒. For larger lattice amplitudes two other resonances appear, respectively, for s Ͼ 4 and s Ͼ 20, corresponding to excitations in the second band ͓blue squares in Fig. 2͑a͔͒ and in the fourth band ͓green diamonds in Fig. 2͑a͔͒. This demonstrates the possibility to excite, in a periodic system, several states for a given momentum transfer ͓8͔. For weak optical lattices creating an excitation in the third band is the most efficient process since the excitation energy of this band is continuously connected as s → 0 to that of the BEC in the absence of the 1D optical lattice at the transferred momentum q = 2.12q L . On the contrary, the possibility to excite states in the second and fourth bands of the optical lattice requires a large enough amplitude s. These observations can be quantified in terms of the strength Z j of the different excitations, which can be extracted from the energy spectrum. The strengths Z j are proportional to the integral ͐dS j ͑q , ͒, with S j ͑q , ͒ being the structure factor corresponding to the creation of an excitation in the Bogoliubov band j ͓5͔. From Eq. ͑1͒ and assuming that j is much larger than the width of the resonances of S j ͑q , ͒, we obtain Z j ͑q͒ ϰ ͵ dS j ͑q,͒ ϰ 1 j ͵ dE j ͑q,͒ ϵ g j . ͑2͒

In the experiment, we extract the quantity g j from a Gaussian fit of the different resonances. Normalizing the sum of these quantities to one for the first three observed resonances ͑g II + g III + g IV =1͒ allows direct comparison with the relative strengths Z j / ͑Z II + Z III + Z IV ͒ for j = II, III, IV. The comparison between the experimental data and the calculation reveals reasonable agreement ͓see Fig. 2͑b͔͒.

From the Gaussian fit of the experimental spectra ͓see Fig. 1͑a͔͒, we also extract the rms width of the resonances toward the second and third bands with the results plotted in Fig. 3. Different sources contribute to broaden the observed resonances. The inhomogeneous density of the trapped BEC is a first source ͓11͔. From the measured spectrum of the BEC in the absence of the optical lattice ͑s =0͒, we extract this contribution as being ͑0.36Ϯ 0.11͒ kHz, consistent with the expected value of Ӎ0.26 kHz ͓11͔. The other contributions to the width are related to the Bragg spectroscopic scheme. For our experimental parameters the largest contribution comes from the power broadening ͑⌬ P Ӎ 1 kHz͒, whereas the atom-light interaction time broadening ͑⌬ t Ӎ 167 Hz͒ is much smaller. The total resonance width can be obtained by quadratically adding up all these rms contributions. In the presence of the optical lattice we observe that the widths of the resonances corresponding to the excitations in bands II and III lie within the experimental range of the resolution expected for a coherent system, except in the case of the third band ͑III͒ for large amplitudes of the lattice ͑s Ͼ 20͒ where the width is much larger. We attribute these larger widths at high amplitude of the 1D lattice to the long tunneling times ͑0.11 s for s =20͒, implying that the system is not fully coherent along the y ˆdirection on the time scale of the experiment. Indeed, the loss of coherence spreads the population of quasimomenta across a larger fraction of the Brillouin zone. This results in a wider range of resonance energies in the system and, for large amplitude s, one expects the width of the resonances in the energy spectrum to be equal to the bandwidths. In Fig. 3 we have plotted the bandwidths of the second and third bands ͓blue ͑II͒ and red ͑III͒ lines͔. When the system becomes incoherent the width of the resonance toward the third band is equal to the bandwidth. This effect is not observable for the second band where the bandwidth ͓blue ͑II͒ line in Fig. 3͔ is smaller than the experimental resolution.

We also perform the experiment with a different configuration of the Bragg beams corresponding to a transferred momentum along y ˆ, q = 0.96q L . In Fig. 4͑a͒ an excitation spectrum in the presence of an optical lattice of height s = 11 is depicted. Note that a first resonance at low frequency is visible corresponding to an excitation with nonzero momentum within the lowest energy band ͑I͒. Such a resonance is not observed using counterpropagating Bragg beams because the strength of this transition is negligible for q = 2.12q L . Due to the variation in the transferred momentum q with respect to the previous case, the frequencies of the resonances are shifted according to the dispersion relation of the different energy bands of the system. In Fig. 4͑b͒ we report the frequencies of the resonances to bands I-III for the two values of quasimomentum used in the experiment ͑0.12q L and 0.96q L ͒. We use the region comprised between the calculated bands for s = 10 and s =12 ͑solid lines͒ to take into account the 10% error in the lattice calibration. The experimental points are in good agreement with the numerical calculation of the Bogoliubov bands for s =11 ͓dashed lines in Fig. 4͑b͔͒.

In conclusion, Bragg spectroscopy has been used to probe the response of a Bose-Einstein condensate in the presence of a 1D optical lattice. Changing the angle of the Bragg beams allowed us to investigate excitations for a transferred quasimomentum close to the center and to the edge of the reduced Brillouin zone. We have observed different resonances in the response function of the system corresponding to the different bands of the periodic potential. The system being in a weakly interacting regime, the experimental results are in quantitative agreement with the Bogoliubov band approach. This work opens the way to investigation of the excitation spectrum in the presence of an additional lattice with different wavelength ͑bichromatic potential͒ ͓22͔ and eventually to study of the localization of the excitations in a true disordered potential ͓23͔.
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 1 FIG. 1. ͑Color online͒ ͑a͒ Measured BEC excitation spectrum in the presence of a lattice with height s = ͑22Ϯ 2͒. The increase ⌬ in the width of the atomic density distribution is monitored as a function of the relative detuning between the two counterpropagating Bragg beams. The data are fitted with Gaussian functions ͑gray line͒. The arrows below the resonances indicate the corresponding bands, represented in ͑b͒ with the same colors ͑numbers͒. ͑b͒ Band structure of the excitation spectrum of a BEC in a 1D optical lattice with s = 22: first, second, third, and fourth bands are represented ͓black ͑I͒, blue ͑II͒, red ͑III͒, and green ͑IV͒ lines͔. The arrows indicate the processes starting from a BEC at q = 0 and inducing the creation of excitations in the different bands at a quasimomentum transfer 0.12q L .

  FIG.2. ͑Color online͒ ͑a͒ Band spectroscopy of a BEC in the presence of a 1D optical lattice: the energy of the resonances is reported as a function of the height s of the lattice. The experimental points ͑blue squares, red circles, and green diamonds͒ are compared with the numerical calculation of the Bogoliubov spectrum in the presence of a 1D lattice ͑solid lines͒ and the single-particle Bloch spectrum ͑dashed lines͒. The lines correspond to the energies of an excitation in the second ͓blue ͑II͒ line͔, third ͓red ͑III͒ line͔, and fourth ͓green ͑IV͒ line͔ Bogoliubov bands. Inset of ͑a͒: zoom of graph ͑a͒ for low values of s. ͑b͒ Relative strengths of the excitations in the second ͑II͒, third ͑III͒, and fourth ͑IV͒ bands. Symbols and colors ͑numbers͒ are the same as in ͑a͒.

  FIG.3. ͑Color online͒ rms width of the resonances to the second ͑blue squares͒ and third ͑red circles͒ bands as a function of s. The gray region corresponds to the experimental rms width ͑with its uncertainty͒ for the BEC in the absence of the lattice ͑s =0͒. The blue ͑II͒ and red ͑III͒ lines are, respectively, the bandwidths of the second and the third bands, calculated in the mean-field Bogoliubov approach.