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We report on the experimental investigation of the response of a three-dimensional Bose-Einstein condensate
�BEC� in the presence of a one-dimensional �1D� optical lattice. By means of Bragg spectroscopy we probe the
band structure of the excitation spectrum in the presence of the periodic potential. We selectively induce
elementary excitations of the BEC choosing the transferred momentum and we observe different resonances in
the energy transfer, corresponding to the transitions to different bands. The frequency, the width, and the
strength of these resonances are investigated as functions of the amplitude of the 1D optical lattice.

DOI: 10.1103/PhysRevA.79.043623 PACS number�s�: 03.75.Lm, 67.85.Hj, 67.85.De

The knowledge of the linear response of a complex sys-
tem gives crucial information about its many-body behavior.
For example, the superfluid properties of a three-dimensional
�3D� Bose-Einstein condensate �BEC� are related to the lin-
ear part of the phonon-dispersion relation at low momenta
�1�. The presence of optical lattices enriches the excitation
spectrum of a BEC in a remarkable way. For deep three-
dimensional lattices, the gas enters the strongly correlated
Mott insulator phase and the spectrum exhibits a gap at low
energies �2�. The response of a BEC in the superfluid phase
is also drastically modified by the presence of a one-
dimensional �1D� optical lattice �3–7�. Indeed, as in any pe-
riodic system, energy gaps open in the spectrum at the mul-
tiples of the lattice momentum and it is possible to excite
several states corresponding to different energy bands at a
given value of the momentum transfer �8,9�. In addition, the
linear dispersion relation of the superfluid, and thus its sound
velocity, is changed. In the mean-field regime of interactions
these peculiar features of the excitations of a superfluid BEC
in the presence of an optical lattice are captured by the Bo-
goliubov theory �1�.

Bragg spectroscopy represents an excellent experimental
tool for investigating the linear response of gaseous BECs
�10�. It has allowed measurement of the dispersion relation
of interacting BECs in mean-field regime �11–13�, character-
ization of the presence of phase fluctuations in elongated
BECs �14�, study of signatures of vortices �15�, and more
recently study of strongly interacting 3D Bose �16� and
Fermi �17� gases close to Feshbach resonances as well as 1D
Bose gases across the superfluid–to–Mott insulator transition
�18�.

In this work we use Bragg spectroscopy to probe the ex-
citation spectrum of a 3D BEC loaded in a 1D optical lattice.
Previous experimental studies have so far investigated the
excitations of superfluid BECs within the lowest energy band
of a 3D optical lattice by means of lattice modulation �19�
and Bragg spectroscopy �18,20�. This paper presents a de-
tailed experimental study of the different bands in the exci-
tation spectrum of an interacting 3D BEC in the presence of
a 1D optical lattice. We measure the resonance frequencies,
the strengths, and the widths of the transitions to different

bands of the 1D optical lattice. The measurements are quan-
titatively compared with Bogoliubov mean-field calculations
for our experimental system �7�.

We produce a 3D cigar-shaped BEC of N�3�105 87Rb
atoms in a Ioffe-Pritchard magnetic trap whose axial and
radial frequencies are �y =2��8.9 Hz and �x=�z=2�
�90 Hz, respectively, corresponding to a chemical potential
��h�1 kHz, with h being the Planck constant. The con-
densate is loaded in an optical lattice along the longitudinal
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FIG. 1. �Color online� �a� Measured BEC excitation spectrum in
the presence of a lattice with height s= �22�2�. The increase �� in
the width of the atomic density distribution is monitored as a func-
tion of the relative detuning � between the two counterpropagating
Bragg beams. The data are fitted with Gaussian functions �gray
line�. The arrows below the resonances indicate the corresponding
bands, represented in �b� with the same colors �numbers�. �b� Band
structure of the excitation spectrum of a BEC in a 1D optical lattice
with s=22: first, second, third, and fourth bands are represented
�black �I�, blue �II�, red �III�, and green �IV� lines�. The arrows
indicate the processes starting from a BEC at q=0 and inducing the
creation of excitations in the different bands at a quasimomentum
transfer 0.12qL.
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direction �ŷ axis�. Two counterpropagating laser beams with
wavelength 	L=830 nm create the lattice potential V�y�
=sER sin2�qLy�, where qL=2� /	L=7.57 �m−1 is the wave
number, s measures the height of the lattice in units of the
recoil energy ER=h2 /2m	L

2 �h�3.3 kHz, and m is the mass
of a 87Rb atom. The loading of the BEC in the lattice is
performed by slowly increasing the laser intensity up to a
height s with a 140-ms-long exponential ramp with time con-
stant 
=30 ms.

After a holding time of typically 20 ms in the lattice at the
height s, we excite the gas by shining two off-resonant laser
beams �Bragg beams� for a time �tB=3 ms. The Bragg
beams induce a two-photon transition transferring momen-
tum and energy to the atomic sample. Their wavelength is
	B=780 nm, corresponding to a wave number qB=2� /	B
=8.05 �m−1, and they are typically detuned by 350 GHz
with respect to the D2 transition of 87Rb. To change the
transferred momentum we use two different geometries of
the Bragg beams. In the first configuration the two beams are
counterpropagating along the ŷ direction and the transferred
momentum is q=2qB=2.12qL, which corresponds to a qua-
simomentum 0.12qL in the first Brillouin zone. In the second
configuration the angle between the Bragg beams is smaller
and the measured value of the transferred momentum �and
quasimomentum, in this case� along the ŷ direction is q
=0.96qL. In both the cases, the two beams are detuned from
each other by a frequency difference � using two phase-
locked acousto-optic modulators. We quantify the response
to the excitation by measuring the energy transferred to the
gaseous BEC. The measurement of the energy transfer
E�� ,q� is connected with the dynamical structure factor
S�� ,q� �giving information on the excitation spectrum� by
the relation �1�

E��,q� � �S��,q� , �1�

where � and q are the frequency and the momentum of the
excitation. In particular, this result applies for long enough
Bragg pulses, namely, ��tB�1, which is the case in our
experiment since � is on the order of several kHz.

In order to get an estimate of the transferred energy
E�� ,q�, we adopt the following procedure. We linearly ramp
in 15 ms the longitudinal optical lattice from s �the lattice
height at which we have applied the Bragg pulse� to the fixed
value sf =5. Then we let the excitation be redistributed over
the entire system by means of the interatomic collisions for 5
ms. After this time interval we abruptly switch off both the
optical lattice and the magnetic trap, letting the cloud expand
for a time of flight tTOF=20 ms and we then take an absorp-
tion image of the density distribution integrated along the x̂
axis. Since the atoms are released from an optical lattice of
relatively small amplitude �sf =5�, the density distribution
exhibits an interference pattern �21�. We extract the rms
width � of the central peak of this density distribution by
fitting it with a Gaussian function. The increase �� in this
quantity is used as a measurement of the energy transfer
�19�. For a given value of the transferred momentum q and
amplitude s of the lattice, this procedure is repeated varying
the energy h� of the excitation in order to obtain the spec-
trum. In our regime of weak interatomic interactions, the

excitation spectrum of the BEC in the presence of a 1D op-
tical lattice can be described by the mean-field Bogoliubov
approach �3,5�, by which we calculate resonance frequencies
� j and transition strengths Zj to create an excitation in the
Bogoliubov band j.

We first discuss the results obtained with the configuration
of counterpropagating beams, i.e., for a transferred momen-
tum q=2.12qL. The induced two-photon transition is charac-
terized by a measured Rabi frequency for the BEC in the
absence of the optical lattice 
R�2��1 kHz for the typi-
cal power and detuning of the beams used in the experiment.

A typical Bragg spectrum is presented in Fig. 1�a� corre-
sponding to a lattice height s= �22�2�. The spectrum exhib-
its multiple resonances corresponding to the creation of ex-
citations in the different Bogoliubov bands as shown in Fig.
1�b�. From Gaussian fit of each resonance we extract central
frequency, width, and relative strength of the transition to-
ward the corresponding band. In Fig. 2�a�, we plot the energy
values corresponding to the measured central frequencies as
a function of s. Vertical error bars come from the result of the
fitting procedure, while horizontal error bars correspond to
possible systematic errors in the lattice calibration �estimated
within 10%�. For large enough amplitude s of the periodic
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FIG. 2. �Color online� �a� Band spectroscopy of a BEC in the
presence of a 1D optical lattice: the energy of the resonances is
reported as a function of the height s of the lattice. The experimen-
tal points �blue squares, red circles, and green diamonds� are com-
pared with the numerical calculation of the Bogoliubov spectrum in
the presence of a 1D lattice �solid lines� and the single-particle
Bloch spectrum �dashed lines�. The lines correspond to the energies
of an excitation in the second �blue �II� line�, third �red �III� line�,
and fourth �green �IV� line� Bogoliubov bands. Inset of �a�: zoom of
graph �a� for low values of s. �b� Relative strengths of the excita-
tions in the second �II�, third �III�, and fourth �IV� bands. Symbols
and colors �numbers� are the same as in �a�.
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potential we observe up to three different bands. We find
good agreement between the experimental data and the nu-
merical results of the Bogoliubov calculation �solid lines in
Fig. 2�a��. In particular, for low amplitudes of the 1D lattice
�s�6� the agreement of the resonance energies with the Bo-
goliubov bands �full lines� is better than with the single-
particle �dashed lines� Bloch bands �see inset of Fig. 2�a��.
For larger amplitude of the 1D lattice, we cannot explicitly
distinguish between the Bogoliubov and Bloch results. This
comes from the experimental uncertainty on the calibration
of the lattice amplitude.

In the entire range of s values used in this work, we ob-
serve a resonance corresponding to an excitation created in
the third band �red circles in Fig. 2, labelled III�. For larger
lattice amplitudes two other resonances appear, respectively,
for s�4 and s�20, corresponding to excitations in the sec-
ond band �blue squares in Fig. 2�a�� and in the fourth band
�green diamonds in Fig. 2�a��. This demonstrates the possi-
bility to excite, in a periodic system, several states for a
given momentum transfer �8�. For weak optical lattices cre-
ating an excitation in the third band is the most efficient
process since the excitation energy of this band is continu-
ously connected as s→0 to that of the BEC in the absence of
the 1D optical lattice at the transferred momentum q
=2.12qL. On the contrary, the possibility to excite states in
the second and fourth bands of the optical lattice requires a
large enough amplitude s. These observations can be quanti-
fied in terms of the strength Zj of the different excitations,
which can be extracted from the energy spectrum. The
strengths Zj are proportional to the integral �d�Sj�q ,��, with
Sj�q ,�� being the structure factor corresponding to the cre-
ation of an excitation in the Bogoliubov band j �5�. From Eq.
�1� and assuming that � j is much larger than the width of the
resonances of Sj�q ,��, we obtain

Zj�q� �� d�Sj�q,�� �
1

� j
� d�Ej�q,�� � gj . �2�

In the experiment, we extract the quantity gj from a
Gaussian fit of the different resonances. Normalizing the sum

of these quantities to one for the first three observed reso-
nances �gII+gIII+gIV=1� allows direct comparison with the
relative strengths Zj / �ZII+ZIII+ZIV� for j=II, III , IV. The
comparison between the experimental data and the calcula-
tion reveals reasonable agreement �see Fig. 2�b��.

From the Gaussian fit of the experimental spectra �see
Fig. 1�a��, we also extract the rms width of the resonances
toward the second and third bands with the results plotted in
Fig. 3. Different sources contribute to broaden the observed
resonances. The inhomogeneous density of the trapped BEC
is a first source �11�. From the measured spectrum of the
BEC in the absence of the optical lattice �s=0�, we extract
this contribution as being �0.36�0.11� kHz, consistent with
the expected value of �0.26 kHz �11�. The other contribu-
tions to the width are related to the Bragg spectroscopic
scheme. For our experimental parameters the largest contri-
bution comes from the power broadening ���P�1 kHz�,
whereas the atom-light interaction time broadening ���t
�167 Hz� is much smaller. The total resonance width can
be obtained by quadratically adding up all these rms contri-
butions. In the presence of the optical lattice we observe that
the widths of the resonances corresponding to the excitations
in bands II and III lie within the experimental range of the
resolution as expected for a coherent system, except in the
case of the third band �III� for large amplitudes of the lattice
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FIG. 3. �Color online� rms width of the resonances to the second
�blue squares� and third �red circles� bands as a function of s. The
gray region corresponds to the experimental rms width �with its
uncertainty� for the BEC in the absence of the lattice �s=0�. The
blue �II� and red �III� lines are, respectively, the bandwidths of the
second and the third bands, calculated in the mean-field Bogoliubov
approach.
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FIG. 4. �Color online� �a� Excitation spectrum of a BEC in the
presence of a 1D lattice with height s=11 at a transferred momen-
tum q=0.96qL along the ŷ direction. The arrows below the reso-
nances indicate the corresponding bands, represented in �b� with the
same colors �numbers�. �b� Energies of the resonances correspond-
ing to excitations in bands I �black circle�, II �blue squares�, and III
�red circle� as functions of the transferred quasimomentum q for a
fixed value of the lattice height s= �11�1�. The experimental points
are compared with the numerical calculation of the energy bands in
the Bogoliubov approach for s=11 �black �I�, blue �II�, and red �III�
dashed lines�. The solid lines correspond to the bands for s=10 and
s=12 to take into account the 10% uncertainty of s.
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�s�20� where the width is much larger. We attribute these
larger widths at high amplitude of the 1D lattice to the long
tunneling times �0.11 s for s=20�, implying that the system is
not fully coherent along the ŷ direction on the time scale of
the experiment. Indeed, the loss of coherence spreads the
population of quasimomenta across a larger fraction of the
Brillouin zone. This results in a wider range of resonance
energies in the system and, for large amplitude s, one expects
the width of the resonances in the energy spectrum to be
equal to the bandwidths. In Fig. 3 we have plotted the band-
widths of the second and third bands �blue �II� and red �III�
lines�. When the system becomes incoherent the width of the
resonance toward the third band is equal to the bandwidth.
This effect is not observable for the second band where the
bandwidth �blue �II� line in Fig. 3� is smaller than the experi-
mental resolution.

We also perform the experiment with a different configu-
ration of the Bragg beams corresponding to a transferred
momentum along ŷ, q=0.96qL. In Fig. 4�a� an excitation
spectrum in the presence of an optical lattice of height s
=11 is depicted. Note that a first resonance at low frequency
is visible corresponding to an excitation with nonzero mo-
mentum within the lowest energy band �I�. Such a resonance
is not observed using counterpropagating Bragg beams be-
cause the strength of this transition is negligible for q
=2.12qL. Due to the variation in the transferred momentum q
with respect to the previous case, the frequencies of the reso-
nances are shifted according to the dispersion relation of the
different energy bands of the system. In Fig. 4�b� we report
the frequencies of the resonances to bands I–III for the two

values of quasimomentum used in the experiment �0.12qL

and 0.96qL�. We use the region comprised between the cal-
culated bands for s=10 and s=12 �solid lines� to take into
account the 10% error in the lattice calibration. The experi-
mental points are in good agreement with the numerical cal-
culation of the Bogoliubov bands for s=11 �dashed lines in
Fig. 4�b��.

In conclusion, Bragg spectroscopy has been used to probe
the response of a Bose-Einstein condensate in the presence
of a 1D optical lattice. Changing the angle of the Bragg
beams allowed us to investigate excitations for a transferred
quasimomentum close to the center and to the edge of the
reduced Brillouin zone. We have observed different reso-
nances in the response function of the system corresponding
to the different bands of the periodic potential. The system
being in a weakly interacting regime, the experimental re-
sults are in quantitative agreement with the Bogoliubov band
approach. This work opens the way to investigation of the
excitation spectrum in the presence of an additional lattice
with different wavelength �bichromatic potential� �22� and
eventually to study of the localization of the excitations in a
true disordered potential �23�.
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