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Abstract. Reversible languages occur in many different domains. Al-
though the decision for the membership of reversible languages was
solved in 1992 by Pin, an effective construction of a reversible automa-
ton for a reversible language was still unknown. We give in this paper a
method to compute a reversible automaton from the minimal automa-
ton of a reversible language. With this intention, we use the universal au-
tomaton of the language that can be obtained from the minimal automa-
ton and that contains an equivalent automaton which is quasi-reversible.
This quasi-reversible automaton has nearly the same properties as a re-
versible one and can easily be turned into a reversible automaton.
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Introduction

Reversible languages are a class of rational languages that stands at the junction
of several domains. P. Silva [12] has considered them in the study of inversive
semigroups. J.-E. Pin [9] and P.-C. Héam [5] have given some topological prop-
erties of reversible languages. They constitute also a positive variety of rational
languages and are in correpondence with a variety of ordered monoids: E__,,, [10].
Among rational languages, they are a natural generalization to the notion of
group languages. It is the reason why, in order to extend results proved on group
languages, studying this class can prove to be wise. C. Nicaud [8] has studied
average complexity of some operations on reversible automata. S. Lombardy and
J. Sakarovitch [6] have given a new effective proof to compute their star height.

J.-E. Pin has given some characterizations of reversible languages in [9]. He
gives also an algorithm to decide whether a rational language is reversible. Un-
fortunately, his paper does not provide any effective method to build a reversible
automaton.

We present here such a construction from the minimal automaton of a re-
versible language. We use a canonical automaton, called universal automaton,



attached to every rational language. On the one hand, we give an effective new
method to compute this automaton from the minimal automaton of the language;
on the other hand, we prove that this automaton contains a quasi-reversible au-
tomaton that accepts the language. As it is very easy to turn quasi-reversible
automata into reversible ones, this provides a construction for reversible au-
tomata.

In a first part, we give some basic definitions about automata, that will be
used in the course of this paper. In the second part, we define reversible lan-
guages. We recall the characterization given by J.-E. Pin[9]. Then, we introduce
quasi-reversible automata, that accept reversible languages, are smaller, and give
easily reversible automata.

In a third part, we present the universal automaton of a rational language,
that is based on an idea of J.H. Conway [3]. This automaton has been studied
by A. Arnold, A. Dicky, and M. Nivat [1], O. Matz and A. Potthoff [7] and
J. Sakarovitch [11]. The main property of this finite automaton is that there
exists a morphism from any automaton that accepts the same language, into the
universal automaton. We give an effective construction of it.

The fourth part is devoted to the study of universal automata of reversible
languages. We show that their strongly connected components are reversible.
This result is the key of the theorem of the fifth part which claims that the uni-
versal automaton of a reversible language contains a quasi-reversible automaton
that accepts this language.

1 Definitions

We denote by A* the free monoid generated by a set A. Elements of A* are
words, the identity of this monoid is the empty word 1 4+.

Definition 1. We denote a (finite) automaton by a 5-tuple {Q, A, E,I1,T),
where Q) is a finite set of states, A is a finite set of letters, E, the set of transi-
tions, is a subset of Q@ x A x Q, and I (resp. T), the set of initial states (resp.
terminal states), is a subset of Q.

Definition 2. Let A be an automaton and p a state of A. The past of p in A
is the set of words that label a path from an initial state of A to p. The future
of p in A is the set of words that label a path from p to a terminal state of A. We
respectively denote the past and the future of p in A by Past4(p) and Fut4(p).

Definition 3. Let A = (Q,A,E,I,T) and B = (R, A, F,J,U) be two au-
tomata. A mapping p from Q into R is a morphism of automata if and only

if:

pel=pueld, peT=puelU,  and (p,a,9) € E= (pp,a,qu) € F.



Proposition 1. Let pu be a morphism from an automaton A into an automa-
ton B. Then, for every state p of A,

Past4(p) C Pastg(pp), Futa(p) C Futs(pp).
The proof is by induction on the length of words. O

Definition 4. Let A ={(Q, A, E,I,T) be an automaton. For every state p in Q,
for every letter a, we denote p - a the set {q € Q | (p,a,q) € E}. With the
convention p - 14« = {p}, we can extend this definition to subsets of @ and to
words:

Vu=u'a€ AT, p-u=(p-u)-a, VPQQ,P-u:Up-u.
peP

Symetrically, for every subset P of Q, for every word u,

u-P={peQ|p-unP#0}

There is a path labelled by a word u between two states p and ¢ if and only if ¢
belongs to p - u.

Definition 5. A strongly connected component (SCC for short) of an au-
tomaton is a mazimal subautomaton such that there is a path between every pair
of states.

2 Reversible languages : definition and realization

Definition 6. An automaton A = (Q,A,E,I,T) is reversible if, for every
state p in Q, for every letter a in A there exists at most one transition in E that
comes from p (resp. goes to p) with label a.

A rational language is reversible if there exists a reversible automaton that ac-
cepts it.

Remark 1. A reversible automaton may have several initial or final states. As
a consequence, the minimal automaton of a reversible language may be not
reversible.

Theorem 1. [9] There is a polynomial time algorithm for testing whether the
language accepted by an automaton can be accepted by a reversible automaton.

We give now a new representation for reversible languages.

Definition 7. An automaton A = (Q, A, E,I,T) is quasi-reversible if, in
case two transitions of E have the same label and arrive in or come from the
same state, none of them belongs to any SCC.



Fig. 1. A reversible, a quasi-reversible and a non-reversible automata.

Example 1. Among the three automata of Figure 1, the first automaton is re-
versible. The second one is quasi-reversible: both transitions that come from p
with label a do not belong to any SCC. The last one is not quasi-reversible: one
of both transitions that come from ¢ with label b does belong to a SCC (it is a
loop).

The following proposition proves that languages that are accepted by quasi-
reversible automata, are reversible.

Proposition 2. If A is a quasi-reversible automaton, one can build a reversible
automaton that is equivalent to A.

Proof. We call sensitive pair a pair of transitions that is in contradiction with
reversibility. The proof is by induction on the number of sensitive pair in A.
If there is no such a pair, then A is reversible. If there are n sensitive pairs,
let {e1,e2} be one of them. As neither e; nor ey belongs to any SCC, there is
no path that contains these two transitions. One creates two copies A; and A,
of A and removes e; from A; and ey from A;. The number of sensitive pair is
smaller in each of this two quasi-reversible automata. Thus, by induction, they
can be turned into reversible automata. O

Remark 2. One also could transform the quasi-reversible automaton into a set
of reversible “string-like”-automata, as we shall see later.

Quasi-reversible automaton can be much smaller than reversible ones. P.-
C. Héam [4] has given the following example: the language (aa + ab + bb)*"
is finite and is therefore reversible. The minimal automaton of this language is
quasi-reversible and has 6n+1 states, whereas the smallest reversible automaton
that accepts this language has at least (3v/2/4)" states.

3 Universal automaton

The universal automaton of a language has been defined by Conway [3] as a
“factor matrix”. A complete study of properties of this automaton can be found
in [11]. We recall here the definition and some basic properties of this automaton.
Lastly, we introduce a new construction for the universal automaton.

Definition 8. Let £ be a rational language of A*. A factorization of L in A*
is o mazximal couple (with respect to the inclusion) of languages (L,R) such



that L.R C L.
The universal automaton of L isUr ={(Q, A, E,I,T), where Q is the set of
factorizations of L, and

I={(L,R)e Q| 1la~ € L},
T={(L,R)eQ|LC L}
E ={((L,R),a,(L',R") € @ xax Q| L.aC L'}.

Remark 3. As factorizations are maximal, the condition 14. € L is equivalent
to L C R and £ C L is equivalent to 14+ € R. For the same reason, L.a C L' is
equivalent to a.R' C R and to L.a.R' C L.

Proposition 3. The universal automaton of a rational language is a finite au-
tomaton.

Factorizations of a rational language are recognized by the syntactic monoid of
this language. Thus there is a finite number of factorizations. O

Ezample 2. Let £, = b*ab((a+b)b*+1)+b*(a+1). Figure 2 shows the minimal

automaton of this language.
b b

T a ? b ? ayb I

Fig. 2. Minimal automaton of £;.

By computing the syntactic monoid, we can get factorizations of £; in (a + b)*:

(0", L1),  (b"(a+1),(ba+1)b")
(0*(ab+1),(a+1)b%),  (L1,b").
Hence, the universal automaton of £y has four states. They are all initial, be-
cause 14+ belongs to the left factor of every factorization and they are all terminal
because the left factor of every factorization is a subset of £;. We show at the

end of this section that we can build the universal automaton without computing
these factorizations.

Proposition 4. Let (L, R) be a state of a universal automaton Ug. Then:
Pasty,. ((L,R)) = L Futy,.((L,R)) = R.

The proof is by induction on the length of words. O

Corollary 1. The universal automaton of a rational language L accepts L.

Proof. For every terminal state (L, R) of the universal automaton, Pasty, (L) is
a subset of £. Thus, the language accepted by U, is a subset of L.

Let L = {u € A* | u.L C L}. Then, (L, L) is a factorization which is an initial
state of U, and is future is £. Hence, U accepts L. O



We are here especially interested in the following property of the universal
automaton.

Proposition 5. Let £ be a rational language, and A be a trim automaton that
accepts L. Then there exists a morphism from A into the universal automaton

of L.
We build a mapping p from states of A into factorizations of £: pu = (Lp, Rp),
with:

R, = {v e A" | Past4(p).v C L}, L,={ue A" |u.R, C L}.

We check then that y is a morphism between automata. O
The following proposition gives an effective method to build the universal
automaton of a rational language from its minimal automaton.

Proposition 6. Let A = (Q, A, E,{i},T) be the minimal automaton of L
and P be the set of states of the codeterminized automaton of A:

P={XCQ|ueA" X =u-T}.
Let Pn be the closure of P under intersection (without the empty set):
X, YeP\,XNY #0= XnNY € Pn.
Then, the universal automaton Uy is isomorphic to ( Pn, A, F, J,U ), with:

J={X|ieX}
U={X|XCT}
F={(X,a,Y)|X-aCY andVpe X,p-a # 0}.

Proof. Let ¢ be the mapping from P into A* x A* defined by X¢ = (Lx, Rx),
with:

Lx = |J Pasta(p), Rx= [ Futa(p).

pEX peEX

For every X in Ph, X = (,cp, v T Hence, (Lx, Rx) is a factorization, and,
for every factorization (L, R), the set X =), g u-T belongs to Pn and X¢ =
(L, R). Thus ¢ is a one-to-one mapping between P and factorizations of L.

Then, we check that ¢ is an isomorphism of automata. O

Remark 4. The minimality of A is not required in this construction. WE only
assume that it is deterministic. We can show that the cardinality of P is not
affected by the minimality of A.

Ezample 3. The minimal automaton of £; is shown on Figure 2. Figure 3 shows
its codeterminized automaton. The set {{p}, {p,q},{p,7},{p,q,7, s}} is closed



b

Fig. 3. The codeterminized automaton of the minimal automaton of L.

under intersection. Hence, the automaton defined Proposition 6 (and isomorphic
to the universal automaton) has the following transition table:

{p}|{p, ¢}|{p,r}|{P,q, 7, 5}
{p} b|ab| b a,b
{p, ¢} b b
{p,r} a,b
{p,q,r, s} b

All the states are initial and terminal. The universal automaton of £; is drawn
on Figure 4.

Fig. 4. Universal automaton of £;.

4 Strongly connected components of the universal
automaton of a reversible language

We show in this part that every SCC of the universal automaton of a reversible
language is reversible. This result is an important step to prove that there is a
quasi-reversible automaton that accepts the language in the universal automa-
ton. We define first the subset expansion of an automaton. We show that the
universal automaton is one of its subautomata and that the SCC of the subset
expansion of a reversible automaton are reversible.

Definition 9. Let A = (Q,A,E,I,T) be an automaton that accepts L. Let S
be the set of antichains of P(Q) (the set of subsets of Q, partially ordered by
inclusion). The subset expansion of A is the automaton V4 = (S, A, F,J,U),
with:

J={Xe€S|3IY € X,Y C I},

U={XeS|VYeX,YNT#0},

F={(X,a,X")|VY € X,3V' € X", Y' CY -a}.



Remark 5. If A is a deterministic automaton, the subset expansion of A is ex-
actly the subset automaton of order 0 introduced by R. Cohen and J.A. Brzo-
zoski [2]. In this case, the construction is the same as Proposition 6, excepted
that the set of states is isomorphic to P(Q) \ {0} instead of being isomorphic
to P (which is smaller) defined in the proposition.

Lemma 1. The subset expansion of an automaton A accepts the same language

as A.

Proof. Let I (resp. T') be the set of initial (resp. terminal) states of A. We prove
by induction on the length of words, that there is a path labelled by u between X
and X' if and only if:

VWeX, IV eX Y CY- u

If a word u is accepted by V4, there exists a path labelled by u between an initial
state X and a terminal state X'. There exists Y in X such that Y C I. Hence,
there exists Y’ in X' such that Y CY -« C I -u. As X' is terminal, Y' NT #
and I -uNT # . Therefore, the word u is accepted by A.

Conversely, if u is accepted by A, I -uNT # (), hence, there is a path labelled
by u between the initial state {I} and the terminal state {{p} | p € T}. i

Proposition 7. Let A be an automaton that accepts L. The universal automa-
ton of L is a subautomaton of the subset expansion of A.

We build a mapping from states of i into states of V4:
(L,R) — min{I -u |u € L},

where [ is the set of initial states of A. We show then that this is an injective
morphism of automata. O

Proposition 8. Let A be a reversible automaton. The SCC of the subset expan-
sion of A are reversible.

Proof. Let V4 be the subset expansion of A. We show that in every SCC of V4,
every word induces a one-to-one mapping between sets that characterize states.
Let p and ¢ two states of the same SCC. There exist two words u and v that
respectively label paths from p to ¢ and from g to p. Let X, and X, be the
corresponding elements of S (¢f. Definition 9).
We show by induction on the cardinal k of the elements of X, (resp. X,) that u
(resp. v) induces a bijection from X, onto X, (resp. from X, onto X,) between
elements of same cardinal.

There is no element of cardinal zero, thus the base of the induction is trivial.
Let Y be an element of X, of cardinal k.

i) As A has a deterministic transition system, the cardinal of ¥ - u is smaller
than or equal to k. If it is smaller, by induction hypothesis, there exists Y’ in X,
with the same cardinal as Y -« such that Y’ -4 = Y -u. As A is codeterministic,



Y' C Y, which is in contradiction with the fact that X is an antichain. Therefore,
Y - u has the same cardinal as Y and wu is a bijection from elements of Y onto
elements of Y - u.

ii) If Y - u does not belong to X, there is a smaller element Z in X, in
bijection with an element Y’ in X, such that Y'-w = Z C Y - u. Once more, it
implies Y’ C Y, which is impossible, because X is an antichain.

i) fY - -u=Y"u,asY isin bijection with Y - u, it means that Y C Y.
If Y’ belongs to X,, Y =Y. Thus u induces an injective function from elements
of X, of cardinal k into elements of X, of same cardinal. As v induces a similar
injection from X, into X, these functions are one-to-one.

Therefore, from a state p, given a word u, there is at most one state in
the same SCC, that can be reached by a path labelled by u. Thus, SCC are
deterministic and, symetrically, codeterministic. O

Corollary 2. The SCC of the universal automaton of a reversible language are
reversible.

5 Universal automaton of a reversible language

We prove in this part that the universal automaton of a reversible language
contains a quasi-reversible subautomaton that accepts the language. For this
purpose, we show that, for every reversible language, there exists a reversible
automaton such that its image, in the universal automaton of the language, is
quasi-reversible. This reversible automaton has a particular form. It is a union
of “string-like”-automata:

Definition 10. An automaton is a string-like automaton (SL-automaton for
short) if
i) it has one initial and one terminal state,
ii) there is at most one transition that comes from (resp. goes to) every SCC,
ii1) it is connected,
w) it is trim.

€O OO

Fig. 5. Shape of a SL-automaton.

The general shape of a SL-automaton is presented Figure 5, where ellipses are
SCC (that may be a single state).

Proposition 9. Every reversible automaton is equivalent to a finite union of
reversible SL-automata.

The construction is illustrated on Figure 6. If the automaton is reversible (or
merely quasi-reversible) every SL-automaton is reversible. O

Definition 11. A union of SL-automata is minimal if one can not erase any
SL-automaton without changing the language accepted by the union.



Fig. 6. From an automaton to a set of SL-automata.

In other words, every SL-automaton of a minimal union accepts a word which
is not accepted by the other components.

Proposition 10. Let L be a reversible language and A an automaton that ac-
cepts L and that is a minimal finite union of reversible SL-automata. Let o be a
morphism from A into U;. Then, the image of every SCC of A is a SCC of U .

Proof. We show that, if there is a SCC S for which it is not true, every word
accepted by the SL-automaton R, that contains S, is accepted by another SL-
automaton of A, which is in contradiction with the minimality of the set of
SL-automata.

Let ¢ be a morphism from A into U,. Let w be a word accepted only by R
in A. As R is string-like, in R, every path crosses every SCC. Thus, there exists
a state r in S that belongs to the path labelled by w. One can write w = u.v,
where u (resp. v) is in Pastr(r) (resp. in Futg(r)).

As Sy is not a SCC, there exists a transition e in the SCC that contains S
but that does not belong to Sy. Let x be a word labelling a loop around r¢
that passes through e. As u (resp. v) is in the past (resp. the future) of r and
as Uy recognizes L, for every k in N, the word u.z*.v is in £. As A is reversible,
there exists an integer n such that, for every state of A, either ™ labels a loop
around the state or there is no path starting in this state and labelled by z™.
The word u.z™.v is in L. If it was accepted by R, there would be a loop labelled
by z™ around r, and, as S¢ is deterministic, the transition e would belong to the
image of this loop. Thus, this word is not accepted by R and there exists another
SL-automaton of A that accepts it, and, as 2™ labels a loop, that accepts u.v
too. Which is in contradiction with the assumption.

Therefore, the image of every SCC of every SL-automaton of A is a SCC. O

Proposition 11. Let L be a reversible language and A an automaton that ac-
cepts L and that is a minimal union of reversible SL-automata. Then the image
of every SL-automaton of A in the universal automaton of L, by any morphism,
is reversible.



Proof. If it is not true, let R be a SL-automaton of A the image of which contains
two transitions with the same label that either arrive at the same state p or
come from the same state p. We can assume without loss of generality that the
first configuration occurs. Let #; and ¢ be these two transitions of U, that
are respectively the images of s; and ss. As the image of a SL-automaton is a
SL-automaton and as SCC of U, are reversible, one of both transitions, ¢, for
instance, is in a SCC S and the other one, t3, is not. As R is a SL-automaton,
there exists a path that starts at the end of s; and the last transition of which
is s1. The image of this path in U is a loop labeled by =z.

If A is a minimal union of SL-automata, there exists a word w that is accepted
only by R in A. As sy does not belong to any SCC, the path labelled by w in R
passes through ss. Let u be the label of the part of this path which ends with s
and v the label of the second part. Words u and v respectively belong to the
past and the future of p in U. Thus u.2z*.v belongs to £ for every k, and, as in
the proof of Proposition 10, with the same notations, we prove that there exists
a SL-automaton of A that accepts u.z™.v (and that can therefore not be R)
and u.v = w, which is in contradiction with the assumption. O

Definition 12. Let U be the universal automaton of a reversible language L.
The mazimum gquasi-reversible subautomaton of Uy is the largest subautomaton
of Ur

i) which is quasi-reversible,

i) which has the same SCC as U,.

This automaton exists because SCC of U, are reversible. It is obtained from U,
by deleting transitions that do not belong to any SCC and that are in contra-
diction with the assumption of quasi-reversibility.

Theorem 2. The mazimum quasi-reversible subautomaton of the universal au-
tomaton of a reversible language accepts this language.

Proof. Let A be a minimal finite union of reversible SL-automata that accepts L.
The image of every SL-automaton in U, by any morphism is a reversible au-
tomaton which covers SCC of U that are intersected. Thus, the image of A is a
subautomaton of the maximum quasi-reversible subautomaton of . Therefore,
this one accepts the language L. O

Ezxample 4. The lan-
guage Ly 1is reversible.
(It can be check on its
syntactic monoid). Fig-
ure 7 shows the maximum
quasi-reversible subau-
tomaton of its universal
automaton.

Fig. 7. A quasi-reversible automaton for £;.



6 Complexity of the algorithm

The size of the universal automaton may be exponential. Thus, the complexity
of the algorithm that is described in this paper will be at least exponential.

The first step is the construction of the universal automaton. The computa-
tion of the codeterminized automaton and the closure of its states under inter-
section is polynomial in the size of the output (that may be exponential in the
size of the input).

The second step is the computation of the maximal quasi-reversible subau-
tomaton of the universal automaton. This requires the computation of the SCC,
that is linear in the number of transitions. The number of transitions is quadratic
in the number of states, but the square of an exponential number remains expo-
nential. Then, the criterium of quasi-reversibility is local and the construction
is polynomial in the size of the universal automaton.

Therefore, this algorithm is exponential in the size of the minimal automaton,
but it is polynomial in the size of the output.

The transformation of a quasi-reversible automaton into a reversible one may
be exponential, that makes the algorithm doubling exponential.
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